# HG changeset patch
# User greg
# Date 1512572841 18000
# Node ID fe3f86012394610b3aa39b8a6d12d7918f0d7fda
# Parent 1878a03f9c9ffc287744285701471cbabf4fd152
Uploaded
diff -r 1878a03f9c9f -r fe3f86012394 insect_phenology_model.R
--- a/insect_phenology_model.R Wed Nov 22 13:22:49 2017 -0500
+++ b/insect_phenology_model.R Wed Dec 06 10:07:21 2017 -0500
@@ -3,46 +3,30 @@
suppressPackageStartupMessages(library("optparse"))
option_list <- list(
- make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
- make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
- make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
- make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
- make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
- make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
- make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
- make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
- make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
- make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
- make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
- make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
- make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
- make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
- make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"),
- make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)"),
- make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name")
+ make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"),
+ make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"),
+ make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"),
+ make_option(c("--input"), action="store", dest="input", help="Temperature data for selected location"),
+ make_option(c("--insect"), action="store", dest="insect", help="Insect name"),
+ make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"),
+ make_option(c("--location"), action="store", dest="location", help="Selected location"),
+ make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
+ make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
+ make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"),
+ make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"),
+ make_option(c("--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
+ make_option(c("--output"), action="store", dest="output", help="Output dataset"),
+ make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
+ make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
+ make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
+ make_option(c("--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"),
+ make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)")
)
parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
args <- parse_args(parser, positional_arguments=TRUE)
opt <- args$options
-parse_input_data = function(input_file, num_rows) {
- # Read in the input temperature datafile into a data frame.
- temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",")
- num_columns <- dim(temperature_data_frame)[2]
- if (num_columns == 6) {
- # The input data has the following 6 columns:
- # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
- # Set the column names for access when adding daylight length..
- colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX")
- # Add a column containing the daylight length for each day.
- temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows)
- # Reset the column names with the additional column for later access.
- colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN")
- }
- return(temperature_data_frame)
-}
-
add_daylight_length = function(temperature_data_frame, num_columns, num_rows) {
# Return a vector of daylight length (photoperido profile) for
# the number of days specified in the input temperature data
@@ -57,29 +41,52 @@
theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)))
phi <- asin(0.39795 * cos(theta))
# Compute the length of daylight for the day of the year.
- daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))))
+ darkness_length <- 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))
+ daylight_length_vector[i] <- 24 - darkness_length
}
# Append daylight_length_vector as a new column to temperature_data_frame.
temperature_data_frame[, num_columns+1] <- daylight_length_vector
return(temperature_data_frame)
}
+dev.egg = function(temperature) {
+ dev.rate = -0.9843 * temperature + 33.438
+ return(dev.rate)
+}
+
+dev.emerg = function(temperature) {
+ emerg.rate <- -0.5332 * temperature + 24.147
+ return(emerg.rate)
+}
+
+dev.old = function(temperature) {
+ n34 <- -0.6119 * temperature + 17.602
+ n45 <- -0.4408 * temperature + 19.036
+ dev.rate = mean(n34 + n45)
+ return(dev.rate)
+}
+
+dev.young = function(temperature) {
+ n12 <- -0.3728 * temperature + 14.68
+ n23 <- -0.6119 * temperature + 25.249
+ dev.rate = mean(n12 + n23)
+ return(dev.rate)
+}
+
get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) {
# Base development threshold for Brown Marmolated Stink Bug
# insect phenology model.
- # TODO: Pass insect on the command line to accomodate more
- # the just the Brown Marmolated Stink Bub.
threshold <- 14.17
# Minimum temperature for current row.
- dnp <- temperature_data_frame$TMIN[row]
+ curr_min_temp <- temperature_data_frame$TMIN[row]
# Maximum temperature for current row.
- dxp <- temperature_data_frame$TMAX[row]
+ curr_max_temp <- temperature_data_frame$TMAX[row]
# Mean temperature for current row.
- dmean <- 0.5 * (dnp + dxp)
+ curr_mean_temp <- 0.5 * (curr_min_temp + curr_max_temp)
# Initialize degree day accumulation
- dd <- 0
- if (dxp < threshold) {
- dd <- 0
+ averages <- 0
+ if (curr_max_temp < threshold) {
+ averages <- 0
}
else {
# Initialize hourly temperature.
@@ -98,12 +105,12 @@
risetime <- 12 - y / 2
# Sunset time.
settime <- 12 + y / 2
- ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
+ ts <- (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp
for (i in 1:24) {
if (i > risetime && i < settime) {
# Number of hours after Tmin until sunset.
m <- i - 5
- T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
+ T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp
if (T[i] < 8.4) {
dh[i] <- 0
}
@@ -111,9 +118,9 @@
dh[i] <- T[i] - 8.4
}
}
- else if (i > settime) {
+ else if (i > settime) {
n <- i - settime
- T[i] = dnp + (ts - dnp) * exp( - b * n / z)
+ T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z)
if (T[i] < 8.4) {
dh[i] <- 0
}
@@ -123,7 +130,7 @@
}
else {
n <- i + 24 - settime
- T[i]=dnp + (ts - dnp) * exp( - b * n / z)
+ T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z)
if (T[i] < 8.4) {
dh[i] <- 0
}
@@ -132,99 +139,153 @@
}
}
}
- dd <- sum(dh) / 24
+ averages <- sum(dh) / 24
}
- return(c(dmean, dd))
-}
-
-dev.egg = function(temperature) {
- dev.rate= -0.9843 * temperature + 33.438
- return(dev.rate)
+ return(c(curr_mean_temp, averages))
}
-dev.young = function(temperature) {
- n12 <- -0.3728 * temperature + 14.68
- n23 <- -0.6119 * temperature + 25.249
- dev.rate = mean(n12 + n23)
- return(dev.rate)
-}
-
-dev.old = function(temperature) {
- n34 <- -0.6119 * temperature + 17.602
- n45 <- -0.4408 * temperature + 19.036
- dev.rate = mean(n34 + n45)
- return(dev.rate)
-}
-
-dev.emerg = function(temperature) {
- emerg.rate <- -0.5332 * temperature + 24.147
- return(emerg.rate)
+mortality.adult = function(temperature) {
+ if (temperature < 12.7) {
+ mortality.probability = 0.002
+ }
+ else {
+ mortality.probability = temperature * 0.0005 + 0.02
+ }
+ return(mortality.probability)
}
mortality.egg = function(temperature) {
if (temperature < 12.7) {
- mort.prob = 0.8
+ mortality.probability = 0.8
}
else {
- mort.prob = 0.8 - temperature / 40.0
- if (mort.prob < 0) {
- mort.prob = 0.01
+ mortality.probability = 0.8 - temperature / 40.0
+ if (mortality.probability < 0) {
+ mortality.probability = 0.01
}
}
- return(mort.prob)
+ return(mortality.probability)
}
mortality.nymph = function(temperature) {
if (temperature < 12.7) {
- mort.prob = 0.03
+ mortality.probability = 0.03
}
else {
- mort.prob = temperature * 0.0008 + 0.03
+ mortality.probability = temperature * 0.0008 + 0.03
}
- return(mort.prob)
+ return(mortality.probability)
+}
+
+parse_input_data = function(input_file, num_rows) {
+ # Read in the input temperature datafile into a data frame.
+ temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",")
+ num_columns <- dim(temperature_data_frame)[2]
+ if (num_columns == 6) {
+ # The input data has the following 6 columns:
+ # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
+ # Set the column names for access when adding daylight length..
+ colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX")
+ # Add a column containing the daylight length for each day.
+ temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows)
+ # Reset the column names with the additional column for later access.
+ colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN")
+ }
+ return(temperature_data_frame)
}
-mortality.adult = function(temperature) {
- if (temperature < 12.7) {
- mort.prob = 0.002
+render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error,
+ group1, group2, group3, group1_std_error, group2_std_error, group3_std_error) {
+ if (chart_type == "pop_size_by_life_stage") {
+ title <- paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+ legend_text <- c("Egg", "Nymph", "Adult")
+ columns <- c(4, 2, 1)
+ } else if (chart_type == "pop_size_by_generation") {
+ title <- paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+ legend_text <- c("P", "F1", "F2")
+ columns <- c(1, 2, 4)
+ } else if (chart_type == "adult_pop_size_by_generation") {
+ title <- paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
+ legend_text <- c("P", "F1", "F2")
+ columns <- c(1, 2, 4)
}
- else {
- mort.prob = temperature * 0.0005 + 0.02
+ plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
+ legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3)
+ lines(days, group2, lwd=2, lty=1, col=2)
+ lines(days, group3, lwd=2, lty=1, col=4)
+ axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
+ axis(2, cex.axis=3)
+ if (plot_std_error==1) {
+ # Standard error for group1.
+ lines(days, group1+group1_std_error, lty=2)
+ lines (days, group1-group1_std_error, lty=2)
+ # Standard error for group2.
+ lines(days, group2+group2_std_error, col=2, lty=2)
+ lines(days, group2-group2_std_error, col=2, lty=2)
+ # Standard error for group3.
+ lines(days, group3+group3_std_error, col=4, lty=2)
+ lines(days, group3-group3_std_error, col=4, lty=2)
}
- return(mort.prob)
}
temperature_data_frame <- parse_input_data(opt$input, opt$num_days)
-# All latitude values are the same,
-# so get the value from the first row.
+# All latitude values are the same, so get the value from the first row.
latitude <- temperature_data_frame$LATITUDE[1]
-cat("Number of days: ", opt$num_days, "\n")
+# Initialize matrices.
+Eggs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+YoungNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+OldNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+Previtellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+Vitellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+Diapausing.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-# Initialize matrix for results from all replications.
-S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications)
-newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications)
+newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+
+P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+
+population.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-# Loop through replications.
-for (N.rep in 1:opt$replications) {
- # During each replication start with 1000 individuals.
- # TODO: user definable as well?
- n <- 1000
- # Generation, Stage, DD, T, Diapause.
- vec.ini <- c(0, 3, 0, 0, 0)
- # Overwintering, previttelogenic, DD=0, T=0, no-diapause.
- vec.mat <- rep(vec.ini, n)
+# Process replications.
+for (N.replications in 1:opt$replications) {
+ # Start with the user-defined number of insects per replication.
+ num_insects <- opt$insects_per_replication
+ # Generation, Stage, degree-days, T, Diapause.
+ vector.ini <- c(0, 3, 0, 0, 0)
+ # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause.
+ vector.matrix <- rep(vector.ini, num_insects)
# Complete matrix for the population.
- vec.mat <- base::t(matrix(vec.mat, nrow=5))
+ vector.matrix <- base::t(matrix(vector.matrix, nrow=5))
# Time series of population size.
- tot.pop <- NULL
- gen0.pop <- rep(0, opt$num_days)
- gen1.pop <- rep(0, opt$num_days)
- gen2.pop <- rep(0, opt$num_days)
- S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days)
- g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days)
- N.newborn <- N.death <- N.adult <- rep(0, opt$num_days)
- dd.day <- rep(0, opt$num_days)
+ Eggs <- rep(0, opt$num_days)
+ YoungNymphs <- rep(0, opt$num_days)
+ OldNymphs <- rep(0, opt$num_days)
+ Previtellogenic <- rep(0, opt$num_days)
+ Vitellogenic <- rep(0, opt$num_days)
+ Diapausing <- rep(0, opt$num_days)
+
+ N.newborn <- rep(0, opt$num_days)
+ N.adult <- rep(0, opt$num_days)
+ N.death <- rep(0, opt$num_days)
+
+ overwintering_adult.population <- rep(0, opt$num_days)
+ first_generation.population <- rep(0, opt$num_days)
+ second_generation.population <- rep(0, opt$num_days)
+
+ P.adult <- rep(0, opt$num_days)
+ F1.adult <- rep(0, opt$num_days)
+ F2.adult <- rep(0, opt$num_days)
+
+ total.population <- NULL
+
+ averages.day <- rep(0, opt$num_days)
# All the days included in the input temperature dataset.
for (row in 1:opt$num_days) {
# Get the integer day of the year for the current row.
@@ -233,415 +294,357 @@
photoperiod <- temperature_data_frame$DAYLEN[row]
temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days)
mean.temp <- temp.profile[1]
- dd.temp <- temp.profile[2]
- dd.day[row] <- dd.temp
+ averages.temp <- temp.profile[2]
+ averages.day[row] <- averages.temp
# Trash bin for death.
- death.vec <- NULL
+ death.vector <- NULL
# Newborn.
- birth.vec <- NULL
+ birth.vector <- NULL
# All individuals.
- for (i in 1:n) {
- # Find individual record.
- vec.ind <- vec.mat[i,]
- # First of all, still alive?
- # Adjustment for late season mortality rate.
+ for (i in 1:num_insects) {
+ # Individual record.
+ vector.individual <- vector.matrix[i,]
+ # Adjustment for late season mortality rate (still alive?).
if (latitude < 40.0) {
- post.mort <- 1
+ post.mortality <- 1
day.kill <- 300
}
else {
- post.mort <- 2
+ post.mortality <- 2
day.kill <- 250
}
- if (vec.ind[2] == 0) {
+ if (vector.individual[2] == 0) {
# Egg.
- death.prob = opt$egg_mort * mortality.egg(mean.temp)
+ death.probability = opt$egg_mortality * mortality.egg(mean.temp)
}
- else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
- death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
+ else if (vector.individual[2] == 1 | vector.individual[2] == 2) {
+ death.probability = opt$nymph_mortality * mortality.nymph(mean.temp)
}
- else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
- # For adult.
+ else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) {
+ # Adult.
if (doy < day.kill) {
- death.prob = opt$adult_mort * mortality.adult(mean.temp)
+ death.probability = opt$adult_mortality * mortality.adult(mean.temp)
}
else {
# Increase adult mortality after fall equinox.
- death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
+ death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp)
}
}
- # (or dependent on temperature and life stage?)
+ # Dependent on temperature and life stage?
u.d <- runif(1)
- if (u.d < death.prob) {
- death.vec <- c(death.vec, i)
- }
+ if (u.d < death.probability) {
+ death.vector <- c(death.vector, i)
+ }
else {
- # Aggregrate index of dead bug.
- # Event 1 end of diapause.
- if (vec.ind[1] == 0 && vec.ind[2] == 3) {
+ # End of diapause.
+ if (vector.individual[1] == 0 && vector.individual[2] == 3) {
# Overwintering adult (previttelogenic).
- if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && doy < 180) {
+ if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) {
# Add 68C to become fully reproductively matured.
# Transfer to vittelogenic.
- vec.ind <- c(0, 4, 0, 0, 0)
- vec.mat[i,] <- vec.ind
+ vector.individual <- c(0, 4, 0, 0, 0)
+ vector.matrix[i,] <- vector.individual
}
else {
- # Add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
+ # Add to # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
- vec.mat[i,] <- vec.ind
+ vector.individual[4] <- vector.individual[4] + 1
+ vector.matrix[i,] <- vector.individual
}
}
- if (vec.ind[1] != 0 && vec.ind[2] == 3) {
+ if (vector.individual[1] != 0 && vector.individual[2] == 3) {
# Not overwintering adult (previttelogenic).
- current.gen <- vec.ind[1]
- if (vec.ind[3] > 68) {
+ current.gen <- vector.individual[1]
+ if (vector.individual[3] > 68) {
# Add 68C to become fully reproductively matured.
# Transfer to vittelogenic.
- vec.ind <- c(current.gen, 4, 0, 0, 0)
- vec.mat[i,] <- vec.ind
+ vector.individual <- c(current.gen, 4, 0, 0, 0)
+ vector.matrix[i,] <- vector.individual
}
else {
- # Add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
- vec.mat[i,] <- vec.ind
+ vector.individual[4] <- vector.individual[4] + 1
+ vector.matrix[i,] <- vector.individual
}
}
- # Event 2 oviposition -- where population dynamics comes from.
- if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) {
+ # Oviposition -- where population dynamics comes from.
+ if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) {
# Vittelogenic stage, overwintering generation.
- if (vec.ind[4] == 0) {
+ if (vector.individual[4] == 0) {
# Just turned in vittelogenic stage.
- n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
+ num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
}
else {
# Daily probability of birth.
p.birth = opt$oviposition * 0.01
u1 <- runif(1)
if (u1 < p.birth) {
- n.birth=round(runif(1, 2, 8))
+ num_insects.birth = round(runif(1, 2, 8))
}
}
- # Add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
- vec.mat[i,] <- vec.ind
- if (n.birth > 0) {
+ vector.individual[4] <- vector.individual[4] + 1
+ vector.matrix[i,] <- vector.individual
+ if (num_insects.birth > 0) {
# Add new birth -- might be in different generations.
- new.gen <- vec.ind[1] + 1
+ new.gen <- vector.individual[1] + 1
# Egg profile.
- new.ind <- c(new.gen, 0, 0, 0, 0)
- new.vec <- rep(new.ind, n.birth)
+ new.individual <- c(new.gen, 0, 0, 0, 0)
+ new.vector <- rep(new.individual, num_insects.birth)
# Update batch of egg profile.
- new.vec <- t(matrix(new.vec, nrow=5))
+ new.vector <- t(matrix(new.vector, nrow=5))
# Group with total eggs laid in that day.
- birth.vec <- rbind(birth.vec, new.vec)
+ birth.vector <- rbind(birth.vector, new.vector)
}
}
- # Event 2 oviposition -- for generation 1.
- if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && doy < 222) {
+ # Oviposition -- for generation 1.
+ if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) {
# Vittelogenic stage, 1st generation
- if (vec.ind[4] == 0) {
+ if (vector.individual[4] == 0) {
# Just turned in vittelogenic stage.
- n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
+ num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size))
}
else {
# Daily probability of birth.
p.birth = opt$oviposition * 0.01
u1 <- runif(1)
if (u1 < p.birth) {
- n.birth = round(runif(1, 2, 8))
+ num_insects.birth = round(runif(1, 2, 8))
}
}
- # Add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
- vec.mat[i,] <- vec.ind
- if (n.birth > 0) {
+ vector.individual[4] <- vector.individual[4] + 1
+ vector.matrix[i,] <- vector.individual
+ if (num_insects.birth > 0) {
# Add new birth -- might be in different generations.
- new.gen <- vec.ind[1] + 1
+ new.gen <- vector.individual[1] + 1
# Egg profile.
- new.ind <- c(new.gen, 0, 0, 0, 0)
- new.vec <- rep(new.ind, n.birth)
+ new.individual <- c(new.gen, 0, 0, 0, 0)
+ new.vector <- rep(new.individual, num_insects.birth)
# Update batch of egg profile.
- new.vec <- t(matrix(new.vec, nrow=5))
+ new.vector <- t(matrix(new.vector, nrow=5))
# Group with total eggs laid in that day.
- birth.vec <- rbind(birth.vec, new.vec)
+ birth.vector <- rbind(birth.vector, new.vector)
}
}
- # Event 3 development (with diapause determination).
- # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg).
- if (vec.ind[2] == 0) {
- # Egg stage.
- # Add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
- if (vec.ind[3] >= (68 + opt$young_nymph_accum)) {
- # From egg to young nymph, DD requirement met.
- current.gen <- vec.ind[1]
+ # Egg to young nymph.
+ if (vector.individual[2] == 0) {
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
+ if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) {
+ # From egg to young nymph, degree-days requirement met.
+ current.gen <- vector.individual[1]
# Transfer to young nymph stage.
- vec.ind <- c(current.gen, 1, 0, 0, 0)
+ vector.individual <- c(current.gen, 1, 0, 0, 0)
}
else {
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
+ vector.individual[4] <- vector.individual[4] + 1
}
- vec.mat[i,] <- vec.ind
+ vector.matrix[i,] <- vector.individual
}
- # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause).
- if (vec.ind[2] == 1) {
- # young nymph stage.
- # add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
- if (vec.ind[3] >= (250 + opt$old_nymph_accum)) {
- # From young to old nymph, dd requirement met.
- current.gen <- vec.ind[1]
+ # Young nymph to old nymph.
+ if (vector.individual[2] == 1) {
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
+ if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) {
+ # From young to old nymph, degree_days requirement met.
+ current.gen <- vector.individual[1]
# Transfer to old nym stage.
- vec.ind <- c(current.gen, 2, 0, 0, 0)
+ vector.individual <- c(current.gen, 2, 0, 0, 0)
if (photoperiod < opt$photoperiod && doy > 180) {
- vec.ind[5] <- 1
+ vector.individual[5] <- 1
} # Prepare for diapausing.
}
else {
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
+ vector.individual[4] <- vector.individual[4] + 1
}
- vec.mat[i,] <- vec.ind
- }
- # Event 3.3 old nymph to adult: previttelogenic or diapausing?
- if (vec.ind[2] == 2) {
- # Old nymph stage.
- # add to dd.
- vec.ind[3] <- vec.ind[3] + dd.temp
- if (vec.ind[3] >= (200 + opt$adult_accum)) {
- # From old to adult, dd requirement met.
- current.gen <- vec.ind[1]
- if (vec.ind[5] == 0) {
- # Non-diapausing adult -- previttelogenic.
- vec.ind <- c(current.gen, 3, 0, 0, 0)
+ vector.matrix[i,] <- vector.individual
+ }
+ # Old nymph to adult: previttelogenic or diapausing?
+ if (vector.individual[2] == 2) {
+ # Add average temperature for current day.
+ vector.individual[3] <- vector.individual[3] + averages.temp
+ if (vector.individual[3] >= (200+opt$adult_accumulation)) {
+ # From old to adult, degree_days requirement met.
+ current.gen <- vector.individual[1]
+ if (vector.individual[5] == 0) {
+ # Previttelogenic.
+ vector.individual <- c(current.gen, 3, 0, 0, 0)
}
else {
# Diapausing.
- vec.ind <- c(current.gen, 5, 0, 0, 1)
+ vector.individual <- c(current.gen, 5, 0, 0, 1)
}
}
else {
# Add 1 day in current stage.
- vec.ind[4] <- vec.ind[4] + 1
+ vector.individual[4] <- vector.individual[4] + 1
}
- vec.mat[i,] <- vec.ind
+ vector.matrix[i,] <- vector.individual
}
- # Event 4 growing of diapausing adult (unimportant, but still necessary).
- if (vec.ind[2] == 5) {
- vec.ind[3] <- vec.ind[3] + dd.temp
- vec.ind[4] <- vec.ind[4] + 1
- vec.mat[i,] <- vec.ind
+ # Growing of diapausing adult (unimportant, but still necessary).
+ if (vector.individual[2] == 5) {
+ vector.individual[3] <- vector.individual[3] + averages.temp
+ vector.individual[4] <- vector.individual[4] + 1
+ vector.matrix[i,] <- vector.individual
}
} # Else if it is still alive.
} # End of the individual bug loop.
- # Find how many died.
- n.death <- length(death.vec)
- if (n.death > 0) {
- vec.mat <- vec.mat[-death.vec, ]
+
+ # Number of deaths.
+ num_insects.death <- length(death.vector)
+ if (num_insects.death > 0) {
+ # Remove record of dead.
+ vector.matrix <- vector.matrix[-death.vector, ]
}
- # Remove record of dead.
- # Find how many new born.
- n.newborn <- length(birth.vec[,1])
- vec.mat <- rbind(vec.mat, birth.vec)
+ # Number of births.
+ num_insects.newborn <- length(birth.vector[,1])
+ vector.matrix <- rbind(vector.matrix, birth.vector)
# Update population size for the next day.
- n <- n - n.death + n.newborn
+ num_insects <- num_insects - num_insects.death + num_insects.newborn
# Aggregate results by day.
- tot.pop <- c(tot.pop, n)
- # Egg.
- s0 <- sum(vec.mat[,2] == 0)
- # Young nymph.
- s1 <- sum(vec.mat[,2] == 1)
- # Old nymph.
- s2 <- sum(vec.mat[,2] == 2)
- # Previtellogenic.
- s3 <- sum(vec.mat[,2] == 3)
- # Vitellogenic.
- s4 <- sum(vec.mat[,2] == 4)
- # Diapausing.
- s5 <- sum(vec.mat[,2] == 5)
- # Overwintering adult.
- gen0 <- sum(vec.mat[,1] == 0)
- # First generation.
- gen1 <- sum(vec.mat[,1] == 1)
- # Second generation.
- gen2 <- sum(vec.mat[,1] == 2)
- # Sum of all adults.
- n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
+ # Egg population size.
+ Eggs[row] <- sum(vector.matrix[,2]==0)
+ # Young nymph population size.
+ YoungNymphs[row] <- sum(vector.matrix[,2]==1)
+ # Old nymph population size.
+ OldNymphs[row] <- sum(vector.matrix[,2]==2)
+ # Previtellogenic population size.
+ Previtellogenic[row] <- sum(vector.matrix[,2]==3)
+ # Vitellogenic population size.
+ Vitellogenic[row] <- sum(vector.matrix[,2]==4)
+ # Diapausing population size.
+ Diapausing[row] <- sum(vector.matrix[,2]==5)
- # Generation 0 pop size.
- gen0.pop[row] <- gen0
- gen1.pop[row] <- gen1
- gen2.pop[row] <- gen2
+ # Newborn population size.
+ N.newborn[row] <- num_insects.newborn
+ # Adult population size.
+ N.adult[row] <- sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5)
+ # Dead population size.
+ N.death[row] <- num_insects.death
+
+ total.population <- c(total.population, num_insects)
+
+ # Overwintering adult population size.
+ overwintering_adult.population[row] <- sum(vector.matrix[,1]==0)
+ # First generation population size.
+ first_generation.population[row] <- sum(vector.matrix[,1]==1)
+ # Second generation population size.
+ second_generation.population[row] <- sum(vector.matrix[,1]==2)
- S0[row] <- s0
- S1[row] <- s1
- S2[row] <- s2
- S3[row] <- s3
- S4[row] <- s4
- S5[row] <- s5
+ # P adult population size.
+ P.adult[row] <- sum(vector.matrix[,1]==0)
+ # F1 adult population size.
+ F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5))
+ # F2 adult population size
+ F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5))
+ } # End of days specified in the input temperature data.
- g0.adult[row] <- sum(vec.mat[,1] == 0)
- g1.adult[row] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
- g2.adult[row] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
-
- N.newborn[row] <- n.newborn
- N.death[row] <- n.death
- N.adult[row] <- n.adult
- } # end of days specified in the input temperature data
-
- dd.cum <- cumsum(dd.day)
+ averages.cum <- cumsum(averages.day)
- # Collect all the outputs.
- S0.rep[,N.rep] <- S0
- S1.rep[,N.rep] <- S1
- S2.rep[,N.rep] <- S2
- S3.rep[,N.rep] <- S3
- S4.rep[,N.rep] <- S4
- S5.rep[,N.rep] <- S5
- newborn.rep[,N.rep] <- N.newborn
- death.rep[,N.rep] <- N.death
- adult.rep[,N.rep] <- N.adult
- pop.rep[,N.rep] <- tot.pop
- g0.rep[,N.rep] <- gen0.pop
- g1.rep[,N.rep] <- gen1.pop
- g2.rep[,N.rep] <- gen2.pop
- g0a.rep[,N.rep] <- g0.adult
- g1a.rep[,N.rep] <- g1.adult
- g2a.rep[,N.rep] <- g2.adult
+ # Define the output values.
+ Eggs.replications[,N.replications] <- Eggs
+ YoungNymphs.replications[,N.replications] <- YoungNymphs
+ OldNymphs.replications[,N.replications] <- OldNymphs
+ Previtellogenic.replications[,N.replications] <- Previtellogenic
+ Vitellogenic.replications[,N.replications] <- Vitellogenic
+ Diapausing.replications[,N.replications] <- Diapausing
+
+ newborn.replications[,N.replications] <- N.newborn
+ adult.replications[,N.replications] <- N.adult
+ death.replications[,N.replications] <- N.death
+
+ P.replications[,N.replications] <- overwintering_adult.population
+ P_adults.replications[,N.replications] <- P.adult
+ F1.replications[,N.replications] <- first_generation.population
+ F1_adults.replications[,N.replications] <- F1.adult
+ F2.replications[,N.replications] <- second_generation.population
+ F2_adults.replications[,N.replications] <- F2.adult
+
+ population.replications[,N.replications] <- total.population
}
-# Data analysis and visualization can currently
-# plot only within a single calendar year.
-# TODO: enhance this to accomodate multiple calendar years.
-start_date <- temperature_data_frame$DATE[1]
-end_date <- temperature_data_frame$DATE[opt$num_days]
+# Mean value for eggs.
+eggs <- apply(Eggs.replications, 1, mean)
+# Standard error for eggs.
+eggs.std_error <- apply(Eggs.replications, 1, sd) / sqrt(opt$replications)
+
+# Mean value for nymphs.
+nymphs <- apply((YoungNymphs.replications+OldNymphs.replications), 1, mean)
+# Standard error for nymphs.
+nymphs.std_error <- apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd)
-n.yr <- 1
-day.all <- c(1:opt$num_days * n.yr)
+# Mean value for adults.
+adults <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean)
+# Standard error for adults.
+adults.std_error <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications)
+
+# Mean value for P.
+P <- apply(P.replications, 1, mean)
+# Standard error for P.
+P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications)
-# mean value for adults
-sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
-# mean value for nymphs
-sn <- apply((S1.rep + S2.rep), 1,mean)
-# mean value for eggs
-se <- apply(S0.rep, 1, mean)
-# mean value for P
-g0 <- apply(g0.rep, 1, mean)
-# mean value for F1
-g1 <- apply(g1.rep, 1, mean)
-# mean value for F2
-g2 <- apply(g2.rep, 1, mean)
-# mean value for P adult
-g0a <- apply(g0a.rep, 1, mean)
-# mean value for F1 adult
-g1a <- apply(g1a.rep, 1, mean)
-# mean value for F2 adult
-g2a <- apply(g2a.rep, 1, mean)
+# Mean value for P adults.
+P_adults <- apply(P_adults.replications, 1, mean)
+# Standard error for P_adult.
+P_adults.std_error <- apply(P_adults.replications, 1, sd) / sqrt(opt$replications)
+
+# Mean value for F1.
+F1 <- apply(F1.replications, 1, mean)
+# Standard error for F1.
+F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications)
-# SE for adults
-sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
-# SE for nymphs
-sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
-# SE for eggs
-se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications)
-# SE value for P
-g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
-# SE for F1
-g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
-# SE for F2
-g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
-# SE for P adult
-g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
-# SE for F1 adult
-g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
-# SE for F2 adult
-g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
+# Mean value for F1 adults.
+F1_adults <- apply(F1_adults.replications, 1, mean)
+# Standard error for F1 adult.
+F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications)
+
+# Mean value for F2.
+F2 <- apply(F2.replications, 1, mean)
+# Standard error for F2.
+F2.std_error <- apply(F2.replications, 1, sd) / sqrt(opt$replications)
+
+# Mean value for F2 adults.
+F2_adults <- apply(F2_adults.replications, 1, mean)
+# Standard error for F2 adult.
+F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications)
+
+# Display the total number of days in the Galaxy history item blurb.
+cat("Number of days: ", opt$num_days, "\n")
dev.new(width=20, height=30)
# Start PDF device driver to save charts to output.
pdf(file=opt$output, width=20, height=30, bg="white")
-
-par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
+par(mar=c(5, 6, 4, 4), mfrow=c(3, 1))
-# Subfigure 1: population size by life stage
-title <- paste(opt$insect, ": Total pop. by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-# Young and old nymphs.
-lines(day.all, sn, lwd=2, lty=1, col=2)
-# Eggs
-lines(day.all, se, lwd=2, lty=1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("Egg", "Nymph", "Adult")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=3)
-if (opt$se_plot == 1) {
- # Add SE lines to plot
- # SE for adults
- lines (day.all, sa + sa.se, lty=2)
- lines (day.all, sa - sa.se, lty=2)
- # SE for nymphs
- lines (day.all, sn + sn.se, col=2, lty=2)
- lines (day.all, sn - sn.se, col=2, lty=2)
- # SE for eggs
- lines (day.all, se + se.se, col=4, lty=2)
- lines (day.all, se - se.se, col=4, lty=2)
-}
+# Data analysis and visualization plots only within a single calendar year.
+days <- c(1:opt$num_days)
+start_date <- temperature_data_frame$DATE[1]
+end_date <- temperature_data_frame$DATE[opt$num_days]
-# Subfigure 2: population size by generation
-title <- paste(opt$insect, ": Total pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-lines(day.all, g1, lwd = 2, lty = 1, col=2)
-lines(day.all, g2, lwd = 2, lty = 1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("P", "F1", "F2")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
-if (opt$se_plot == 1) {
- # Add SE lines to plot
- # SE for adults
- lines (day.all, g0+g0.se, lty=2)
- lines (day.all, g0-g0.se, lty=2)
- # SE for nymphs
- lines (day.all, g1+g1.se, col=2, lty=2)
- lines (day.all, g1-g1.se, col=2, lty=2)
- # SE for eggs
- lines (day.all, g2+g2.se, col=4, lty=2)
- lines (day.all, g2-g2.se, col=4, lty=2)
-}
-
-# Subfigure 3: adult population size by generation
-title <- paste(opt$insect, ": Adult pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-lines(day.all, g1a, lwd = 2, lty = 1, col=2)
-lines(day.all, g2a, lwd = 2, lty = 1, col=4)
-axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-axis(2, cex.axis=3)
-leg.text <- c("P", "F1", "F2")
-legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3)
-if (opt$se_plot == 1) {
- # Add SE lines to plot
- # SE for adults
- lines (day.all, g0a+g0a.se, lty=2)
- lines (day.all, g0a-g0a.se, lty=2)
- # SE for nymphs
- lines (day.all, g1a+g1a.se, col=2, lty=2)
- lines (day.all, g1a-g1a.se, col=2, lty=2)
- # SE for eggs
- lines (day.all, g2a+g2a.se, col=4, lty=2)
- lines (day.all, g2a-g2a.se, col=4, lty=2)
-}
+# Subfigure 1: population size by life stage.
+maxval <- max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error)
+render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
+ opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error)
+# Subfigure 2: population size by generation.
+maxval <- max(F2)
+render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
+ opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error)
+# Subfigure 3: adult population size by generation.
+maxval <- max(F2_adults) + 100
+render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
+ opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error)
# Turn off device driver to flush output.
dev.off()
diff -r 1878a03f9c9f -r fe3f86012394 insect_phenology_model.xml
--- a/insect_phenology_model.xml Wed Nov 22 13:22:49 2017 -0500
+++ b/insect_phenology_model.xml Wed Dec 06 10:07:21 2017 -0500
@@ -5,23 +5,24 @@
+--adult_mortality $adult_mortality
+--adult_accumulation $adult_accumulation
+--egg_mortality $egg_mortality
+--input '$input'
+--insect '$insect'
+--insects_per_replication $insects_per_replication
+--location '$location'
+--max_clutch_size $max_clutch_size
+--min_clutch_size $min_clutch_size
+--nymph_mortality $nymph_mortality
+--num_days $input.metadata.data_lines
+--old_nymph_accumulation $old_nymph_accumulation
+--output '$output'
+--oviposition $oviposition
+--photoperiod $photoperiod
+--replications $replications
+--std_error_plot $std_error_plot
+--young_nymph_accumulation $young_nymph_accumulation]]>
@@ -29,17 +30,18 @@
+
-
-
-
+
+
+
-
-
-
-
+
+
+
+
@@ -57,7 +59,7 @@
**What it does**
-
+
Provides an agent-based stochastic model expressing stage-specific phenology and population dynamics for an insect species across geographic regions.
-----
@@ -66,7 +68,9 @@
* **Location** - the location associated with the selected temperature data.
* **Temperature data** - select the dataset from your history containing the temperature data.
+ * **Select insect** - currently only the Brown Marmolated Stink Bug can be analyzed.
* **Number of replications** - number of replications.
+ * **Number of insects with which to start each replication** - the analysis for each replication will start with this number of insects.
* **Critical photoperiod for diapause induction/termination** - critical photoperiod for diapause induction/termination.
* **Adjustment rate for egg mortality** - adjustment rate for egg mortality.
* **Adjustment rate for nymph mortality** - adjustment rate for nymph mortality.
@@ -74,11 +78,11 @@
* **Adjustment oviposition rate** - adjustment oviposition rate.
* **Adjustment of minimum clutch size** - adjustment of minimum clutch size.
* **Adjustment of maximum clutch size** - adjustment of maximum clutch size
- * **Adjustment of DD accumulation (egg->young nymph)** - adjustment of DD accumulation (egg->young nymph).
- * **Adjustment of DD accumulation (young nymph->old nymph)** - adjustment of DD accumulation (young nymph->old nymph).
- * **Adjustment of DD accumulation (old nymph->adult)** - adjustment of DD accumulation (old nymph->adult).
- * **Plot SE** - add SE lines to plot for eggs, nymphs and adults.
-
+ * **Adjustment of degree-days accumulation (egg->young nymph)** - adjustment of degree-days accumulation (egg->young nymph).
+ * **Adjustment of degree-days accumulation (young nymph->old nymph)** - adjustment of degree-days accumulation (young nymph->old nymph).
+ * **Adjustment of degree-days accumulation (old nymph->adult)** - adjustment of degree-days accumulation (old nymph->adult).
+ * **Plot standard error** - add standard error lines to plot.
+
10.3389/fphys.2016.00165
diff -r 1878a03f9c9f -r fe3f86012394 test-data/output.pdf
--- a/test-data/output.pdf Wed Nov 22 13:22:49 2017 -0500
+++ b/test-data/output.pdf Wed Dec 06 10:07:21 2017 -0500
@@ -1,19 +1,16 @@
+%PDF
1 0 obj
<<
+/CreationDate
+/ModDate
/Title (R Graphics Output)
+/Producer
/Creator (R)
->>
-endobj
-2 0 obj
<< /Type /Catalog /Pages 3 0 R >>
endobj
7 0 obj
<< /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >>
endobj
-8 0 obj
-<<
->>
-stream
3 0 obj
<< /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 1440 2160] >>
endobj
@@ -52,3 +49,4 @@
trailer
<< /Size 12 /Info 1 0 R /Root 2 0 R >>
startxref
+%%EOF