Mercurial > repos > greg > lrn_risk
view lrn_risk.py @ 0:99e04eba4033 draft
Uploaded
author | greg |
---|---|
date | Thu, 27 Apr 2023 19:22:36 +0000 |
parents | |
children | f98c92618a6c |
line wrap: on
line source
#!/usr/bin/env python import argparse BLACKLIST_HEADER = ['Blacklisted Gene', 'Reason', 'Risk Category'] VFDB_HEADER = ['Gene', 'Contig', '% Identity', '% Coverage', 'E-Value', 'Annotation', 'Comparison to Publicly Available Genomes'] def get_species_from_gtdb(f): # get GTDB species # assumes there is one genome in the GTDB-Tk output file with open(f, 'r') as fh: for line in fh: if line.find('user_genome') < 0: items = line.split('\t') tax = items[1].strip() tax = tax.split(';')[-1].strip() # split on GTDB species tag tax = tax.split('s__')[1].strip() if len(tax) == 0: tax = '(Unknown Species)' return tax def get_blast_genes(f): # reads genes detected via BLAST # BLAST header is as follows: # qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore nident qlen d = {} with open(f, 'r') as fh: for line in fh: items = line.split('\t') gene = items[0] # contig = items[1] # pid = items[2] alen = items[3] # e = items[-4] qlen = items[-1] # calculate query coverage by dividing alignment length by query length qcov = round(float(alen) / float(qlen) * 100.0, 2) if gene not in d.keys(): d[gene] = [] d[gene].append('%s\t%s' % (line, str(qcov))) return d def get_blacklist(v, b): # identify high-risk isolates based on blacklisted genes # blacklisted genes file contains two columns: # column 0=the gene name as it appears in the gene database # column 1=the reason why the gene was blacklisted, which will be reported # e.g., 'ANTHRAX TOXIN' bdict = {} with open(b, 'r') as fh: for line in fh: items = line.split('\t') gene = items[0].strip() val = items[1].strip() bdict[gene] = val blacklist_present = {} for key in v.keys(): if key in bdict.keys(): val = bdict[key] blacklist_present[key] = val return blacklist_present def gene_dist(f, blast, gtdb): # get within-species prevalence of genes # for virulence factors (VFs): uses VFDB VFs detected via ABRicate's VFDB db # for AMR genes: uses AMR genes detected via ABRicate's ResFinder db # for VFs and AMR genes: genes were detected via ABRicate XXX # minimum nucleotide identity and coverage values >=80% # total of 61,161 genomes queried # takes VFDB or AMR gene distribution file as input (f) # BLAST file of VFDB or AMR genes (blast) # GTDB species (gtdb) # create dictionaries based on gene distribution d = {} annd = {} gtdbd = {} with open(f, 'r') as fh: for line in fh: items = line.split('\t') tax = items[0].strip() tax = tax.split('s__')[1].strip() if len(tax) == 0: tax = '(Unknown Species)' gene = items[1].strip() ann = items[-1].strip() denom = items[3].strip() d['%s___%s' % (tax, gene)] = line annd[gene] = ann gtdbd[tax] = denom # parse BLAST results finallines = [] for key in blast.keys(): blastval = blast[key] for bv in blastval: testkey = '%s___%s' % (gtdb, key) if testkey in d.keys() and gtdb != '(Unknown Species)': taxval = d[testkey] items = taxval.split('\t') tax = items[0].strip() tax = tax.split('s__')[1].strip() if len(tax) == 0: tax = '(Unknown Species)' gene = items[1].strip() pres = items[2].strip() denom = items[3].strip() perc = items[4].strip() perc = str(round(float(perc), 2)) ann = items[-1].strip() freetext = 'Gene {0} has been detected in {1}% of {2} genomes ({3} of {4} genomes queried)'.format(gene, perc, tax, pres, denom) elif gtdb != '(Unknown Species)': ann = annd[key] denom = gtdbd[gtdb] freetext = 'WARNING: Gene {0} ({1}) has never been detected in species {2} (n={3} genomes queried)! Interpret with caution!'.format(key, ann, gtdb, denom) else: ann = annd[key] freetext = 'WARNING: Genome belongs to an undescribed species. Interpret with caution!' finalline = '%s\t%s\t%s' % (bv, ann, freetext) finallines.append(finalline) return finallines def output_blacklist(blacklist, blacklist_output_file): # takes detected blacklisted genes as input (blacklist) # blacklist results with open(blacklist_output_file, 'w') as fh: fh.write('%s\n' % '\t'.join(BLACKLIST_HEADER)) if len(blacklist.keys()) == 0: # print this if no blacklisted genes are detected fh.write('(No blacklisted genes detected)\tNA\tNot high risk\n') else: # print this if blacklisted genes are detected # print a table with one row per detected blacklisted gene for key in blacklist.keys(): val = blacklist[key] fh.write('%s\t%s\tHIGH RISK\n' % (key, val)) def output_vfdb(vfdist, vfdb_output_file): # takes distribution of virulence factors as input (vfdist) # VFDB results with open(vfdb_output_file, 'w') as fh: fh.write('%s\n' % '\t'.join(VFDB_HEADER)) if len(vfdist) == 0: # print this if no VFs detected fh.write('%s\n' % '\t'.join(['(No VFs Detected)'] * 7)) else: # print table of VFs if VFs detected for vline in vfdist: # blast_header=['Gene', 'Contig', 'Percent (%) Nucleotide Identity', 'Alignment Length', 'Mismatches', 'Gaps', 'Query Start', 'Query End', 'Subject Start', 'Subject End', 'E-Value', 'Bit Score', 'Identical Matches', 'Query Length'] # lc_header=['Query Coverage', 'Annotation', 'Comparison to Publicly Available Genomes'] items = vline.split('\t') vgene = items[0].strip() vcontig = items[1].strip() vid = items[2].strip() vcov = items[-3].strip() veval = items[-7].strip() vann = items[-2].strip() vnotes = items[-1].strip() vfinal = [vgene, vcontig, vid, vcov, veval, vann, vnotes] vfinal = '\t'.join(vfinal).strip() fh.write('%s\n' % vfinal) def output_amr(amrdist, amr_output_file): # takes distribution of AMR genes as input (amrdist) # AMR results with open(amr_output_file, 'w') as fh: fh.write('%s\n' % '\t'.join(VFDB_HEADER)) if len(amrdist) == 0: # print this if no AMR genes detected fh.write('%s\n' % '\t'.join(['(No AMR Genes Detected)'] * 7)) else: # print this if AMR genes detected for aline in amrdist: # blast_header=['Gene', 'Contig', 'Percent (%) Nucleotide Identity', 'Alignment Length', 'Mismatches', 'Gaps', 'Query Start', 'Query End', 'Subject Start', 'Subject End', 'E-Value', 'Bit Score', 'Identical Matches', 'Query Length'] # lc_header=['Query Coverage', 'Annotation', 'Comparison to Publicly Available Genomes'] items = aline.split('\t') agene = items[0].strip() acontig = items[1].strip() aid = items[2].strip() acov = items[-3].strip() aeval = items[-7].strip() aann = items[-2].strip() anotes = items[-1].strip() afinal = [agene, acontig, aid, acov, aeval, aann, anotes] afinal = '\t'.join(afinal).strip() fh.write('%s\n' % afinal) # lrnrisk_prototype arguments parser = argparse.ArgumentParser() parser.add_argument('--gtdb_file', action='store', dest='gtdb_file', help='Path to gtdbtk tsv file') parser.add_argument('--virulence_factors_file', action='store', dest='virulence_factors_file', help='Path to tsv virulence factors file') parser.add_argument('--amr_determinants_file', action='store', dest='amr_determinants_file', help='Path to AMR determinants tsv file') parser.add_argument('--blacklist_file', action='store', dest='blacklist_file', help='Path to blacklisted high-risk virulence factors tsv file') parser.add_argument('--vf_distribution_file', action='store', dest='vf_distribution_file', help='Path to virulence factor distribution tsv file') parser.add_argument('--amr_distribution_file', action='store', dest='amr_distribution_file', help='Path to AMR determinant distribution tsv file') parser.add_argument('--blacklist_output_file', action='store', dest='blacklist_output_file', help='Path to blacklist output file') parser.add_argument('--vfdb_output_file', action='store', dest='vfdb_output_file', help='Path to vfdb output file') parser.add_argument('--amr_output_file', action='store', dest='amr_output_file', help='Path to amr output file') # parse arguments and run pipeline args = parser.parse_args() # print_output(blacklist, vf_distribution, amr_distribution, args.output, species) virulence_genes = get_blast_genes(args.virulence_factors_file) species = get_species_from_gtdb(args.gtdb_file) blacklist = get_blacklist(virulence_genes, args.blacklist_file) output_blacklist(blacklist, args.blacklist_output_file) vf_distribution = gene_dist(args.vf_distribution_file, virulence_genes, species) output_vfdb(vf_distribution, args.vfdb_output_file) amr_genes = get_blast_genes(args.amr_determinants_file) amr_distribution = gene_dist(args.amr_distribution_file, amr_genes, species) output_amr(amr_distribution, args.amr_output_file)