comparison p_chunks.R @ 0:f45c65e3fd18 draft

Uploaded
author greg
date Tue, 10 Jan 2023 20:40:45 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:f45c65e3fd18
1 #!/bin/env Rscript
2
3 library(parallel)
4 library(hash)
5 library(stringr)
6 library(grid)
7 library(gridExtra)
8 library(optparse)
9
10 options(width = 180)
11
12 printif = function(string = NULL, condition){
13 if (condition) {
14 print(string)
15 }
16 }
17
18 findPlasmids = function(plasmidPSLFile = NULL, plasmidDatabase = NULL,
19 amrPSLFile = NULL, amrDatabase, noAMR = FALSE,
20 incPSLFile = NULL, incDatabase, noInc = FALSE,
21 outputDirectory = NA, overwrite = TRUE,
22 maxTargetLength = 300000,
23 minQueryLength = 500,
24 makeCircos = FALSE,
25 minQueryCoverage = 1/2, minTargetCoverage = 1/2,
26 searchDepth = NULL,
27 verbosity = 0) {
28
29 ## Verify the arguments
30 argumentsGood = TRUE
31 if (minQueryCoverage < .1 || minQueryCoverage > 1) {
32 argumentsGood = FALSE
33 message(paste('Minimum query coverage', minQueryCoverage, 'is outside of the range 0.1 <= x <= 1'))
34 }
35 if (minTargetCoverage < 0.02 || minTargetCoverage > 1) {
36 argumentsGood = FALSE
37 message(paste('Minimum target coverage', minTargetCoverage, 'is outside of the range 0.1 <= x <= 1'))
38 }
39 if (!argumentsGood){
40 message('There is a problem with the arguments')
41 return()
42 }
43
44 printif(paste('Finding plasmids in', plasmidPSLFile), verbosity > 0)
45
46 ## Keep track of the total score in case we doing a grid search
47 totalPlasmidScore = 0
48
49 ## Check for the existence of the output directory, remove if it exists
50 if (file.exists(outputDirectory)) {
51 printif(paste('Removing existing output directory', outputDirectory), verbosity > 1)
52 unlink(outputDirectory, recursive = TRUE)
53 }
54 printif(paste('Making output directory', outputDirectory), verbosity > 1)
55 dir.create(outputDirectory)
56 outputPrefix = paste0(outputDirectory, "/plasmids")
57
58 ## Read in and filter the plasmid hits
59 plasmidHits = read.table(plasmidPSLFile, row.names = NULL, header = FALSE, sep = '\t', stringsAsFactors = FALSE, skip = 5)
60 colnames(plasmidHits) = c('match', 'mismatch', 'rep_m', 'Ns', 'tgap_c', 'tgap_b',
61 'qgap_c', 'qgap_b', 'strand',
62 'target', 'tlength', 'tstart', 'tstop',
63 'query', 'qlength', 'qstart', 'qstop',
64 'blocks', 'block_sizes', 'tstarts', 'qstarts')
65 printif(paste("Sequence-plasmid hits:", nrow(plasmidHits)), verbosity > 0)
66
67 plasmidHits = plasmidHits[order(plasmidHits[,'target'], -plasmidHits[,'qlength']), ]
68
69 ## Toss out any hits missing information
70 plasmidHits = plasmidHits[complete.cases(plasmidHits),]
71
72 ## Toss out very long plasmid sequences -- probably actually genome chunks labeled incorrectly
73 veryLongHits = sum(plasmidHits[,'tlength'] >= maxTargetLength)
74 printif(paste('Removing', veryLongHits, 'hits greater than', maxTargetLength), verbosity > 0)
75 plasmidHits = plasmidHits[plasmidHits[,'tlength'] <= maxTargetLength, ]
76 printif(paste("Sequence-plasmid hits after removing very long plasmids:", nrow(plasmidHits)), verbosity > 0)
77
78 ## Toss out very short query sequences -- probably junk or repeats
79 veryShortQuery = sum(plasmidHits[,'qlength'] >= minQueryLength)
80 printif(paste('Removing', veryShortQuery, 'queries less than', minQueryLength), verbosity > 0)
81 plasmidHits = plasmidHits[plasmidHits[,'qlength'] >= minQueryLength, ]
82 printif(paste("Sequence-plasmid hits after removing very short queries:", nrow(plasmidHits)), verbosity > 0)
83
84 ## Toss out sequece-plasmid pairs below the coverage cutoff
85 sequenceMatches = aggregate(x = plasmidHits[,'match',drop = FALSE],
86 by = list(plasmidHits[,'query'], plasmidHits[,'target']), FUN = sum)
87 printif(head(sequenceMatches), verbosity > 1)
88 printif(paste('Sequence-plasmid pair matches:', paste(dim(sequenceMatches), collapse = 'x')), verbosity > 1)
89
90 sequenceLengths = aggregate(x = plasmidHits[,'qlength', drop = FALSE],
91 by = list(plasmidHits[,'query'], plasmidHits[,'target']), FUN = max)
92 printif(head(sequenceLengths), verbosity > 1)
93 printif(paste('Sequence-plasmid pair lengths:', paste(dim(sequenceLengths), collapse = 'x')), verbosity > 1)
94
95 matchingFractions = cbind(sequenceMatches[,c(1,2)], sequenceMatches[,3] / sequenceLengths[,3])
96 colnames(matchingFractions) = c('query', 'target', 'fraction')
97 printif(head(matchingFractions), verbosity > 1)
98 printif(paste('Sequence-plasmid pair fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
99
100 matchingFractions = matchingFractions[matchingFractions[,'fraction'] >= minQueryCoverage,]
101 printif(head(matchingFractions), verbosity > 1)
102 printif(paste('Passing sequence-plasmid pair fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
103
104 aboveMinCoverage = apply(matchingFractions, 1, function(i){paste0(i['query'], '|', i['target'])})
105 plasmidHits = plasmidHits[apply(plasmidHits, 1, function(i){paste0(i['query'], '|', i['target'])}) %in% aboveMinCoverage, ]
106 printif(paste("Sequence-plasmid hits after removing low-coverage hits:", nrow(plasmidHits)), verbosity > 0)
107
108 ## Toss out plasmid sequences below the coverage cutoff
109 targetMatches = aggregate(x = plasmidHits[,'match',drop = FALSE],
110 by = list(plasmidHits[,'target']), FUN = sum)
111 printif(head(targetMatches), verbosity > 1)
112 printif(paste('Plasmid matches:', paste(dim(targetMatches), collapse = 'x')), verbosity > 1)
113
114 targetLengths = aggregate(x = plasmidHits[,'tlength', drop = FALSE],
115 by = list(plasmidHits[,'target']), FUN = max)
116 printif(head(targetLengths), verbosity > 1)
117 printif(paste('Plasmid lengths:', paste(dim(targetLengths), collapse = 'x')), verbosity > 1)
118
119 matchingFractions = cbind(targetMatches[,1], targetMatches[,2] / targetLengths[,2])
120 colnames(matchingFractions) = c('target', 'fraction')
121 printif(head(matchingFractions), verbosity > 1)
122 printif(paste('Plasmid fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
123
124 matchingFractions = matchingFractions[matchingFractions[,'fraction'] >= minTargetCoverage,]
125 printif(head(matchingFractions), verbosity > 1)
126 printif(paste('Passing plasmid fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
127
128 aboveMinCoverage = matchingFractions[, 'target']
129 plasmidHits = plasmidHits[plasmidHits[, 'target'] %in% aboveMinCoverage, ]
130 printif(paste("Sequence-plasmid hits after removing low-coverage hits:", nrow(plasmidHits)), verbosity > 0)
131
132
133 ## If we're out of sequece-plasmid hits, then stop here
134 if (nrow(plasmidHits) == 0) {
135 message(paste('Not hits found'))
136 return
137 }
138
139 ## Find out how much of each query (contig) is covered by each target (plasmid).
140 ## Query coverage is constant and does not change as we assign contigs to plasmids
141 queryCoverage = hash()
142 queryMismatches = hash()
143 for (i in 1:nrow(plasmidHits)) {
144 if (!(i %% 1000)) {
145 printif(paste('Processing hit', i, '/', nrow(plasmidHits)), verbosity > 0)
146 }
147
148 query = plasmidHits[i,'query']
149 target = plasmidHits[i, 'target']
150
151 ## Represent each sequence-plasmid hit as a series of 0/1 vectors that
152 if (!has.key(query, queryCoverage)) {
153 queryCoverage[[query]] = hash()
154 queryMismatches[[query]] = hash()
155 }
156 if (!has.key(target, queryCoverage[[query]])) {
157 queryCoverage[[query]][[target]] = rep(0, times = plasmidHits[i, 'qlength'])
158 queryMismatches[[query]][[target]] = 0
159 }
160
161 blockSizes = as.numeric(unlist(strsplit(x = plasmidHits[i,'block_sizes'], ',')))
162 qBlockStarts = as.numeric(unlist(strsplit(x = plasmidHits[i,'qstarts'], ',')))
163
164 for (j in 1:length(blockSizes)) {
165 queryCoverage[[query]][[target]][qBlockStarts[j]:(qBlockStarts[j]+blockSizes[j])] = 1
166 }
167 queryMismatches[[query]][[target]] = queryMismatches[[query]][[target]] + plasmidHits[i,'mismatch']
168 }
169
170
171 ## Pull the full plasmid names from the blast database because BLAT/minimap2 doesn't report them, just the ID's
172 targetIDs = plasmidHits[,'target']
173 targetIDs = gsub("\\|$", "", targetIDs)
174 targetIDs = gsub(".*(\\|.*)$", "\\1", targetIDs)
175 noDotIDs = gsub("\\|", "", targetIDs)
176 noDotIDs = gsub("(^H[^.]+).[0-9]+$", "\\1", noDotIDs)
177 noDotIDs = cbind(noDotIDs)
178
179 targetFile = paste0(outputDirectory, '/targets.tsv', sep = '')
180 write.table(file = targetFile, x = noDotIDs, quote = FALSE, row.names = FALSE, col.names = FALSE)
181 command = paste('blastdbcmd -db', plasmidDatabase,
182 '-entry_batch', targetFile,
183 '| grep ">"')
184 targetNames = system(command, intern = TRUE)
185 printif(paste('Found', length(targetNames), 'target names for', length(targetIDs), 'targets.'), verbosity > 0)
186
187 targetNames = gsub('^>.*\\| ', '', targetNames)
188 targetNames = gsub('^>[^ ]+', '', targetNames)
189 plasmidHits = cbind(plasmidHits, targetIDs, targetNames)
190 printif(paste('Named hits:', nrow(plasmidHits)), verbosity > 1)
191
192 #Pull just the plasmids out of the larget set of hits, i.e, make sure it has the word 'plasmid' in the description.
193 plasmidHits = plasmidHits[grep('plasmid|vector', plasmidHits[,'targetNames'], ignore.case = TRUE), ,drop = FALSE]
194 plasmidHits = plasmidHits[!grepl('tig0000|unnamed', plasmidHits[,'targetNames'], ignore.case = TRUE), , drop = FALSE]
195 printif(paste("Sequece-plasmid hits after screening by name:", paste(dim(plasmidHits), collapse = 'x')), verbosity > 1)
196
197 ## Stop if there is nothing left
198 if (is.null(plasmidHits)) {
199 message('Not hits found')
200 return()
201 }
202 if (nrow(plasmidHits) == 0) {
203 message('Not hits found')
204 return()
205 }
206
207 ## Clean up the plasmid names -- they look like crap by default.
208 plasmidNames = plasmidHits[,'targetNames']
209 plasmidNames = gsub(', comp.*', '', plasmidNames)
210 plasmidNames = gsub(', contig.*', '', plasmidNames)
211 plasmidNames = gsub(', partial.*', '', plasmidNames)
212 plasmidNames = gsub('strain ', '', plasmidNames)
213 plasmidNames = gsub('^ *', '', plasmidNames)
214 plasmidNames = sub('^(cl\\|)(.*?) ', '', plasmidNames)
215 plasmidNames = sub('subsp. (.*?) ', '', plasmidNames)
216 plasmidNames = sub('serovar (.*?) ', '', plasmidNames)
217 plasmidNames = sub('strain ', '', plasmidNames)
218 plasmidNames = sub('plasmid$', '', plasmidNames)
219 plasmidHits[,'targetNames'] = plasmidNames
220
221 ## Just take the best hit for each plasmid, hence the head, 1 in the agg
222 plasmidNames = aggregate(plasmidHits, by = list(plasmidHits[,'query']), FUN = head, 1)
223 plasmidNames = plasmidNames[, 'targetNames', drop = FALSE]
224
225 ## Find the set of plasmid coverage hits for each itteration
226 usedContigs = c()
227 plasmidMismatches = c()
228
229 ## Order hits by the plasmid ID and the query length
230 plasmidHits = plasmidHits[order(plasmidHits[,'target'], -plasmidHits[,'qlength']), ]
231
232 ## Iterate, finding plasmids until we run out of usable sequence-plasmid its
233 plasmidNumber = 0
234 plasmidResults = c()
235 while (1) {
236
237 ## Keep track of how many plasmids we have gone over
238 plasmidNumber = plasmidNumber + 1
239
240 printif(paste('Sequence-plasmid hits left:', nrow(plasmidHits)), verbosity > 1)
241 contigToPlasmid = hash()
242 plasmidToContig = hash()
243 plasmidCoverage = hash()
244 plasmidCoverageWithRepeats = hash()
245 contigCoverage = hash()
246
247 ##Find contig/plasmid plasmid/contig pairs
248 if (is.null(plasmidHits)) {
249 break
250 }
251 if (nrow(plasmidHits) == 0) {
252 break
253 }
254 repLengths = c()
255
256
257 ## Find the coverage of each plasmid in the possible set by the contigs
258 for (i in 1:nrow(plasmidHits)) {
259
260 query = plasmidHits[i,'query']
261 target = plasmidHits[i,'target']
262 matches = plasmidHits[i,'match']
263 mismatches = plasmidHits[i,'mismatch']
264 score = matches - mismatches
265 queryLength = plasmidHits[i,'qlength']
266 blockSizes = as.numeric(unlist(strsplit(plasmidHits[i, 'block_sizes'], ',')))
267 queryStarts = as.numeric(unlist(strsplit(plasmidHits[i, 'qstarts'], ',')))
268 targetStarts = as.numeric(unlist(strsplit(plasmidHits[i, 'tstarts'], ',')))
269
270 ## Skip matches which have less than 50% of the bases from the contig on the plasmid -- probably not a good match
271 if ((sum(queryCoverage[[query]][[target]]) - queryMismatches[[query]][[target]]) / queryLength <= minQueryCoverage) {
272 next
273 }
274
275 targetLength = plasmidHits[i, 'tlength']; targetStart = plasmidHits[i, 'tstart']; targetStop = plasmidHits[i, 'tstop']
276
277 ## Relate this contig to this plasmid
278 if (!has.key(query, contigToPlasmid)) {
279 contigToPlasmid[[query]] = hash()
280 contigCoverage[[query]] = hash()
281 }
282 if (!has.key(target, contigToPlasmid[[query]])) {
283 contigToPlasmid[[query]][[target]] = score
284 contigCoverage[[query]][[target]] = rep(0, queryLength)
285 } else {
286 contigToPlasmid[[query]][[target]] = contigToPlasmid[[query]][[target]] + score
287 }
288
289 ## Keep track of target(plasmid) coverage by the contigs
290 if (!has.key(target, plasmidCoverage)) {
291 plasmidCoverage[[target]] = rep(0, targetLength)
292 plasmidCoverageWithRepeats[[target]] = rep(0, targetLength)
293 plasmidToContig[[target]] = hash()
294 plasmidMismatches[target] = 0
295 }
296
297 penalized = FALSE
298 for (j in 1:length(blockSizes)) {
299
300 ## Keep track of all contig alignments to this plasmid, even with repeats
301 plasmidCoverageWithRepeats[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])] = 1
302
303 ## Skip if this region of the query sequence has already been assigned to this plasmid
304 if (sum(contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0) <= 50) {
305 printif(paste('Sequence', query, 'already used for', target,
306 '. ', paste0(queryStarts[j], '-', queryStarts[j] + blockSizes[j])), verbosity > 2)
307 next
308 }
309 if (!penalized) {
310 ## Penalty for every gap, only penalize once per match
311 ## TODO: Penalize for gap length, not just once per gap
312 #plasmidMismatches[target] = plasmidMismatches[target] + (length(blockSizes) - 1) * 100
313 plasmidMismatches[target] = plasmidMismatches[target] + mismatches * 5
314 penalized = TRUE
315 }
316
317 plasmidCoverage[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])][contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0] =
318 plasmidCoverage[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])][contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0] + 1
319 contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] = 1
320 }
321
322 ## Relate this plasmid to this contig
323 if (!has.key(query, plasmidToContig[[target]])) {
324 plasmidToContig[[target]][[query]] = score
325 } else {
326 plasmidToContig[[target]][[query]] = plasmidToContig[[target]][[query]] + score
327 }
328 if (target == 'NZ_GG692894.1' && query == 'contig_3_0') {
329 print('NZ_GG692894.1')
330 print(sum(plasmidCoverage[[target]]))
331 print(sum(contigCoverage[[query]][[target]]))
332 }
333
334 }
335
336 ## Get the best set of plasmids out, i.e., the set with the most bases matching between the contig and plasmid
337 plasmidScores = c()
338 for (thisPlasmid in keys(plasmidCoverage)){
339 thisPlasmidScore = sum(plasmidCoverage[[thisPlasmid]])
340 plasmidScores = c(plasmidScores, thisPlasmidScore)
341 names(plasmidScores)[length(plasmidScores)] = thisPlasmid
342 }
343 plasmidScores = sort(plasmidScores - plasmidMismatches[names(plasmidScores)], dec = TRUE)
344
345 if (length(plasmidScores) > 0) {
346 printif('Highest scoring plasmids', verbosity > 1)
347 printif(head(cbind(plasmidScores), 20), verbosity > 1)
348 }
349
350 ## Stop searching for plasmids if nothing matches well or we're out of hits
351 if (length(plasmidScores) == 0) {
352 printif('Out of plasmids', verbosity > 0)
353 break
354 } else if (max(plasmidScores) < 500) {
355 printif('Out of min-scoring plasmids', verbosity > 0)
356 break
357 }
358
359 ## For each matching plasmid, ordered by total bases matching the assembly, find the set of corresponding contigs
360 plasmidToUse = 1
361 if (!is.null(searchDepth) && plasmidNumber <= length(searchDepth)) {
362 plasmidToUse = searchDepth[plasmidNumber]
363 }
364 if (plasmidToUse > length(plasmidScores)) {
365 plasmidToUse = length(plasmidScores)
366 }
367
368 plasmid = names(plasmidScores)[plasmidToUse]
369 print(paste('Plasmid picked', plasmid))
370 totalPlasmidScore = totalPlasmidScore + plasmidScores[plasmid]
371 printif(paste("Pulling sequences for", plasmid), verbosity > 0)
372
373 ## Find contigs what haven't already been given to another plasmid so we can assign them next round
374 plasmidContigs = keys(plasmidToContig[[plasmid]])
375 unusedContigs = plasmidContigs[!(plasmidContigs %in% usedContigs)]
376
377 ## If no unused contigs that also map to this plasmid then skip it
378 if (length(unusedContigs) == 0) {
379 printif(paste("No unused sequences for", plasmid), verbosity > 1)
380 next
381 }
382
383 ## Keep just the rows for this plasmid and which haven't already been used by another plasmid
384 plasmidRows = plasmidHits[plasmidHits[,'target'] == plasmid,]
385 plasmidRows = plasmidRows[plasmidRows[,'query'] %in% unusedContigs,,drop = FALSE]
386 plasmidName = plasmidRows[1, 'targetNames']
387 plasmidID = plasmidRows[1, 'targetIDs']
388 ## Get the plasmid length
389 command = paste('blastdbcmd -db', plasmidDatabase,
390 '-entry', plasmidID,
391 '-outfmt "%l"')
392 plasmidLength = system(command, intern = TRUE)
393 plasmidLength = rep(plasmidLength, nrow(plasmidRows))
394
395 ## How many bases from the plasmid are uncovered?
396 plasmidMissing = rep(sum(plasmidCoverageWithRepeats[[as.character(plasmidID)]] == 0), nrow(plasmidRows))
397
398 ## Keep track of all of the contigs included
399 usedContigs = c(usedContigs, unusedContigs)
400
401 ## How many matching bases for each query sequence?
402 thisPlasmidQuerySizes = c()
403 thisPlasmidMatches = c()
404 for (contig in unusedContigs) {
405 thisPlasmidQuerySizes = c(thisPlasmidQuerySizes, length(queryCoverage[[contig]][[plasmid]]))
406 thisPlasmidMatches = c(thisPlasmidMatches, sum(queryCoverage[[contig]][[plasmid]]))
407 }
408
409 ## Add this plasmid's hits onto the growing list of sequence-plasmid hits
410 thisPlasmidResults = cbind(unusedContigs, plasmidName, as.character(plasmidID), thisPlasmidQuerySizes, thisPlasmidMatches, plasmidLength, plasmidMissing)
411 colnames(thisPlasmidResults) = c('query.name', 'plasmid.name', 'plasmid.accession', 'query.size', 'aligned.bases', 'plasmid.size', 'plasmid.missing')
412 thisPlasmidResults = thisPlasmidResults[order(-thisPlasmidMatches), ]
413 plasmidResults = rbind(plasmidResults, thisPlasmidResults)
414
415 ## Remove the contigs added to this plasmid from the list of plasmid/contig BLAT hits
416 plasmidHits = plasmidHits[!(plasmidHits[,'query'] %in% usedContigs),]
417 plasmidHits = plasmidHits[!(plasmidHits[,'target'] == plasmid),]
418 }
419
420 rownames(plasmidResults) = plasmidResults[,1]
421
422 ## Check for the presence of AMR genes in this file
423 if (!noAMR) {
424 amrBEDFile = paste0(outputDirectory, '/amrMapping.bed')
425 command = paste('cat', amrPSLFile,
426 '| awk -F \'\\t\' \'($3 >= 80) && ($4 / $14 >= .95){OFS = "\t"; print $2,($9 < $10 ? $9 : $10),($9 < $10 ? $10 : $9),$1,$3/100,($9 < $10 ? "+" : "-")}\'',
427 '| sort -k 1,1 -k 2,2n >', amrBEDFile)
428 printif(command, verbosity > 1)
429 system(command)
430 ## Find local overlapping regions
431 amrMergedBEDFile = paste0(outputDirectory, '/amrMergedMapping.bed')
432 command = paste('bedtools merge -d -30 -i', amrBEDFile, '>', amrMergedBEDFile)
433 printif(command, verbosity > 1)
434 system(command)
435 ## Find the best AMR gene for each region
436 amrFinalBEDFile = paste0(outputDirectory, '/amrFinal.bed')
437 command = paste('bedtools intersect',
438 '-a', amrBEDFile,
439 '-b', amrMergedBEDFile,
440 '-f .9 -F .9',
441 '-wao',
442 '| awk \'$7 != "."\'',
443 '| awk \'{OFS="\t";locus=$7"\t"$8"\t"$9; if($5 > s[locus]){s[locus]=$5;b[locus] = $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6}}END{for(i in b){print i,b[i]}}\'',
444 '>', amrFinalBEDFile)
445 printif(command, verbosity > 1)
446 system(command)
447
448 ## Read the AMR results in and add them to the plasmid contigs
449 amrResults = read.table(file = amrFinalBEDFile, header = FALSE, row.names = NULL, stringsAsFactors = FALSE, quote = '')
450 amrResults[,7] = gsub('(_.*$)|(.*\\|)', '', amrResults[,7])
451 amrResults = aggregate(amrResults[ , 7, drop = FALSE], by = list(amrResults[,1]), function(i){paste(i, collapse = ', ')})
452 rownames(amrResults) = amrResults[,1]
453 amrResults = amrResults[ , 2, drop = FALSE]
454 print(amrResults)
455
456 plasmidResults = cbind(plasmidResults, rep('', nrow(plasmidResults)))
457 colnames(plasmidResults)[ncol(plasmidResults)] = 'amr'
458 plasmidResults[rownames(plasmidResults) %in% rownames(amrResults), 'amr'] =
459 amrResults[rownames(plasmidResults)[rownames(plasmidResults) %in% rownames(amrResults)], 1]
460
461 }
462
463 ## Check for the presence of incompatibility groups in this file
464 if (!noInc) {
465 incBEDFile = paste0(outputDirectory, '/incMapping.bed')
466 command = paste('cat', incPSLFile,
467 '| awk -F \'\\t\' \'($3 >= 80) && ($4 / $14 >= .95){OFS = "\t"; print $2,($9 < $10 ? $9 : $10),($9 < $10 ? $10 : $9),$1,$3/100,($9 < $10 ? "+" : "-")}\'',
468 '| sort -k 1,1 -k 2,2n >', incBEDFile)
469 printif(command, verbosity > 1)
470 system(command)
471 ## Find local overlapping regions
472 incMergedBEDFile = paste0(outputDirectory, '/incMergedMapping.bed')
473 command = paste('bedtools merge -d -30 -i', incBEDFile, '>', incMergedBEDFile)
474 printif(command, verbosity > 1)
475 system(command)
476 ## Find the best INC group for each region
477 incFinalBEDFile = paste0(outputDirectory, '/incFinal.bed')
478 command = paste('bedtools intersect',
479 '-a', incBEDFile,
480 '-b', incMergedBEDFile,
481 '-f .9 -F .9',
482 '-wao',
483 '| awk \'$7 != "."\'',
484 '| awk \'{OFS="\t";locus=$7"\t"$8"\t"$9; if($5 > s[locus]){s[locus]=$5;b[locus] = $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6}}END{for(i in b){print i,b[i]}}\'',
485 '>', incFinalBEDFile)
486 printif(command, verbosity > 1)
487 system(command)
488
489 ## Read the inc group results in and add them to the plasmid contigs
490 incResults = read.table(file = incFinalBEDFile, header = FALSE, row.names = NULL, stringsAsFactors = FALSE, quote = '')
491 incResults[,7] = gsub('(_.*$)|(.*\\|)', '', incResults[,7])
492 incResults = aggregate(incResults[ , 7, drop = FALSE], by = list(incResults[,1]), function(i){paste(i, collapse = ', ')})
493 rownames(incResults) = incResults[,1]
494 incResults = incResults[ , 2, drop = FALSE]
495 print(incResults)
496
497 plasmidResults = cbind(plasmidResults, rep('', nrow(plasmidResults)))
498 colnames(plasmidResults)[ncol(plasmidResults)] = 'inc'
499 plasmidResults[rownames(plasmidResults) %in% rownames(incResults), 'inc'] =
500 incResults[rownames(plasmidResults)[rownames(plasmidResults) %in% rownames(incResults)], 1]
501 }
502
503 ## Write the plasmid results to file
504 plasmidChunksFile = paste0(outputDirectory, '/plasmids.tsv')
505 write.table(file = plasmidChunksFile, x = plasmidResults, quote = FALSE, sep = '\t', row.names = FALSE, col.names = TRUE)
506
507 ## Dump a sequence file of potential plasmid contigs
508 plasmidSequenceFile = paste0(outputPrefix, '.fna')
509 system(paste0('echo "" >', plasmidSequenceFile))
510 for (contig in plasmidResults[,'query.name']) {
511 command = paste('faidx', paste0('assembly.fasta'), contig, '>>', plasmidSequenceFile)
512 print(command)
513 #system(command)
514 }
515
516
517 ## Return the total score of this round, in case we are doing a search
518 return(totalPlasmidScore)
519
520 }
521
522 pChunks = function(plasmidPSLFile = NULL, plasmidDatabase = NULL,
523 amrPSLFile = NULL, amrDatabase, noAMR = FALSE,
524 incPSLFile = NULL, incDatabase, noInc = FALSE,
525 outputDirectory = NA, overwrite = TRUE,
526 maxTargetLength = 300000,
527 minQueryLength = 200,
528 makeCircos = FALSE,
529 minQueryCoverage = 1/2, minTargetCoverage = 1/2,
530 searchDepth = c(1),
531 threads = 1,
532 verbosity = 2) {
533
534 print(plasmidDatabase)
535
536 ## Verify the arguments
537 argumentsGood = TRUE
538 if (!file.exists(plasmidPSLFile)) {
539 argumentsGood = FALSE
540 message(paste('Plasmid PSL file', plasmidPSLFile, 'not found'))
541 }
542 if (is.na(outputDirectory)) {
543 argumentsGood = FALSE
544 message('Output directory not given')
545 }
546 if (file.exists(outputDirectory) && !overwrite) {
547 argumentsGood = FALSE
548 message(paste('Output directory', outputDirectory, 'already exists. Add overwrite = TRUE'))
549 }
550 if (minQueryCoverage < .1 || minQueryCoverage > 1) {
551 argumentsGood = FALSE
552 message(paste('Minimum query coverage', minQueryCoverage, 'is outside of the range 0.1 <= x <= 1'))
553 }
554 if (minTargetCoverage < 0.02 || minTargetCoverage > 1) {
555 argumentsGood = FALSE
556 message(paste('Minimum target coverage', minTargetCoverage, 'is outside of the range 0.1 <= x <= 1'))
557 }
558 if (!argumentsGood){
559 message('There is a problem with the arguments')
560 return()
561 }
562
563 ## Check for the existence of the output directory, remove if it exists
564 if (file.exists(outputDirectory)) {
565 printif(paste('Removing existing output directory', outputDirectory), verbosity > 1)
566 unlink(outputDirectory, recursive = TRUE)
567 }
568 printif(paste('Making output directory', outputDirectory), verbosity > 1)
569 dir.create(outputDirectory)
570
571 ## Default to c(1) for the plasmid search depth
572 searchDepths = lapply(searchDepth, function(i){seq(i, 1)})
573 searchDepths = as.matrix(expand.grid(searchDepths))
574 print(searchDepths)
575
576 plasmidScores = mclapply(1:nrow(searchDepths), function(i) {
577 findPlasmids(plasmidPSLFile = plasmidPSLFile, plasmidDatabase = plasmidDatabase,
578 amrPSLFile = amrPSLFile, amrDatabase, noAMR = noAMR,
579 incPSLFile = incPSLFile, incDatabase, noInc = noInc,
580 outputDirectory = paste0(outputDirectory, '/plasmids_', paste(searchDepths[i,], collapse = '_')), overwrite = overwrite,
581 maxTargetLength = 300000,
582 minQueryLength = 200,
583 makeCircos = makeCircos,
584 minQueryCoverage = 1/2, minTargetCoverage = 1/2,
585 searchDepth = searchDepths[i,], ## Search depth i
586 verbosity = verbosity)
587 },
588 mc.cores = threads)
589 plasmidScores = unlist(plasmidScores)
590
591 print(cbind(searchDepths, plasmidScores))
592
593 ## Pick out the best set, penalizing for not taking the first
594 penalties = (unlist(apply(searchDepths, 1, sum)) - ncol(searchDepths)) * 2500
595 print(penalties)
596 plasmidScores = plasmidScores - penalties
597 print(cbind(searchDepths, plasmidScores))
598 bestScoring = which.max(plasmidScores)
599 bestScoringDirectory = paste0(outputDirectory, '/plasmids_', paste(searchDepths[bestScoring,], collapse = '_'))
600
601 ## Link to the best scoring files
602 files = c('plasmids.tsv', 'amrFinal.bed')
603 commands = paste('ln -s ', paste0('"', bestScoringDirectory, '/', files, '"'),
604 paste0(outputDirectory, '/', files))
605 printif(commands, verbosity >= 2)
606 lapply(commands, system)
607
608 }
609
610
611 optionList = list(
612 make_option('--plasmid_psl', type = 'character', default = NULL,
613 help = 'Plasmid PSL database-v-contig output', metavar = '<PSL_FILE>'),
614 make_option('--plasmid_database', type = 'character', default = NULL,
615 help = 'Plasmid database', metavar = '<PLASMID_FASTA>'),
616 make_option('--amr_database', type = 'character', default = NULL,
617 help = 'AMR database', metavar = '<AMR_FASTA>'),
618 make_option('--amr_blast', type = 'character', default = NULL,
619 help = 'AMR blast output', metavar = '<BLAST_6>'),
620 make_option('--output', type = 'character', default = NULL,
621 help = 'Output dir', metavar = '<OUTPUT_DIR>'),
622 make_option('--threads', type = 'numeric', default = NULL,
623 help = 'Output dir', metavar = '<OUTPUT_DIR>'),
624 make_option('--no_amr', action = 'store_true', default = FALSE,
625 help = 'Don\'t run AMR'),
626 make_option('--no_inc', action = 'store_true', default = FALSE,
627 help = 'Don\'t run incompatibility groups')
628 )
629
630 optParser = OptionParser(option_list = optionList)
631 opt = parse_args(optParser)
632 print(opt)
633 pChunks(plasmidPSLFile = opt$'plasmid_psl', plasmidDatabase = opt$'plasmid_database',
634 amrPSLFile = opt$'amr_blast', amrDatabase = opt$'amr_database',
635 outputDirectory = opt$output,
636 threads = opt$threads,
637 # searchDepth = c(1,1),
638 searchDepth = c(5,5),
639 noAMR = TRUE, noInc = TRUE,
640 verbosity = 2)
641
642
643