# HG changeset patch
# User greg
# Date 1673383245 0
# Node ID f45c65e3fd18ed1ca1699e2e1f5cd899b18535f4
Uploaded
diff -r 000000000000 -r f45c65e3fd18 .shed.yml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/.shed.yml Tue Jan 10 20:40:45 2023 +0000
@@ -0,0 +1,9 @@
+name: p_chunks
+owner: greg
+description: Annotates plasmids
+long_description: Annotates plasmids
+categories:
+- Sequence Analysis
+remote_repository_url: https://github.com/gregvonkuster/galaxy_tools/tree/master/tools/pima/p_chunks
+homepage_url: https://github.com/gregvonkuster/galaxy_tools
+type: unrestricted
diff -r 000000000000 -r f45c65e3fd18 macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Tue Jan 10 20:40:45 2023 +0000
@@ -0,0 +1,22 @@
+
+ 1.0.0
+ 0
+ 21.01
+
+
+ blast
+ r-gridbase
+ r-gridextra
+ r-hash
+ r-optparse
+ r-parallelly
+ r-stringr
+
+
+
+
+ 10.1038/s41598-019-49700-1
+
+
+
+
diff -r 000000000000 -r f45c65e3fd18 p_chunks.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/p_chunks.R Tue Jan 10 20:40:45 2023 +0000
@@ -0,0 +1,643 @@
+#!/bin/env Rscript
+
+library(parallel)
+library(hash)
+library(stringr)
+library(grid)
+library(gridExtra)
+library(optparse)
+
+options(width = 180)
+
+printif = function(string = NULL, condition){
+ if (condition) {
+ print(string)
+ }
+}
+
+findPlasmids = function(plasmidPSLFile = NULL, plasmidDatabase = NULL,
+ amrPSLFile = NULL, amrDatabase, noAMR = FALSE,
+ incPSLFile = NULL, incDatabase, noInc = FALSE,
+ outputDirectory = NA, overwrite = TRUE,
+ maxTargetLength = 300000,
+ minQueryLength = 500,
+ makeCircos = FALSE,
+ minQueryCoverage = 1/2, minTargetCoverage = 1/2,
+ searchDepth = NULL,
+ verbosity = 0) {
+
+ ## Verify the arguments
+ argumentsGood = TRUE
+ if (minQueryCoverage < .1 || minQueryCoverage > 1) {
+ argumentsGood = FALSE
+ message(paste('Minimum query coverage', minQueryCoverage, 'is outside of the range 0.1 <= x <= 1'))
+ }
+ if (minTargetCoverage < 0.02 || minTargetCoverage > 1) {
+ argumentsGood = FALSE
+ message(paste('Minimum target coverage', minTargetCoverage, 'is outside of the range 0.1 <= x <= 1'))
+ }
+ if (!argumentsGood){
+ message('There is a problem with the arguments')
+ return()
+ }
+
+ printif(paste('Finding plasmids in', plasmidPSLFile), verbosity > 0)
+
+ ## Keep track of the total score in case we doing a grid search
+ totalPlasmidScore = 0
+
+ ## Check for the existence of the output directory, remove if it exists
+ if (file.exists(outputDirectory)) {
+ printif(paste('Removing existing output directory', outputDirectory), verbosity > 1)
+ unlink(outputDirectory, recursive = TRUE)
+ }
+ printif(paste('Making output directory', outputDirectory), verbosity > 1)
+ dir.create(outputDirectory)
+ outputPrefix = paste0(outputDirectory, "/plasmids")
+
+ ## Read in and filter the plasmid hits
+ plasmidHits = read.table(plasmidPSLFile, row.names = NULL, header = FALSE, sep = '\t', stringsAsFactors = FALSE, skip = 5)
+ colnames(plasmidHits) = c('match', 'mismatch', 'rep_m', 'Ns', 'tgap_c', 'tgap_b',
+ 'qgap_c', 'qgap_b', 'strand',
+ 'target', 'tlength', 'tstart', 'tstop',
+ 'query', 'qlength', 'qstart', 'qstop',
+ 'blocks', 'block_sizes', 'tstarts', 'qstarts')
+ printif(paste("Sequence-plasmid hits:", nrow(plasmidHits)), verbosity > 0)
+
+ plasmidHits = plasmidHits[order(plasmidHits[,'target'], -plasmidHits[,'qlength']), ]
+
+ ## Toss out any hits missing information
+ plasmidHits = plasmidHits[complete.cases(plasmidHits),]
+
+ ## Toss out very long plasmid sequences -- probably actually genome chunks labeled incorrectly
+ veryLongHits = sum(plasmidHits[,'tlength'] >= maxTargetLength)
+ printif(paste('Removing', veryLongHits, 'hits greater than', maxTargetLength), verbosity > 0)
+ plasmidHits = plasmidHits[plasmidHits[,'tlength'] <= maxTargetLength, ]
+ printif(paste("Sequence-plasmid hits after removing very long plasmids:", nrow(plasmidHits)), verbosity > 0)
+
+ ## Toss out very short query sequences -- probably junk or repeats
+ veryShortQuery = sum(plasmidHits[,'qlength'] >= minQueryLength)
+ printif(paste('Removing', veryShortQuery, 'queries less than', minQueryLength), verbosity > 0)
+ plasmidHits = plasmidHits[plasmidHits[,'qlength'] >= minQueryLength, ]
+ printif(paste("Sequence-plasmid hits after removing very short queries:", nrow(plasmidHits)), verbosity > 0)
+
+ ## Toss out sequece-plasmid pairs below the coverage cutoff
+ sequenceMatches = aggregate(x = plasmidHits[,'match',drop = FALSE],
+ by = list(plasmidHits[,'query'], plasmidHits[,'target']), FUN = sum)
+ printif(head(sequenceMatches), verbosity > 1)
+ printif(paste('Sequence-plasmid pair matches:', paste(dim(sequenceMatches), collapse = 'x')), verbosity > 1)
+
+ sequenceLengths = aggregate(x = plasmidHits[,'qlength', drop = FALSE],
+ by = list(plasmidHits[,'query'], plasmidHits[,'target']), FUN = max)
+ printif(head(sequenceLengths), verbosity > 1)
+ printif(paste('Sequence-plasmid pair lengths:', paste(dim(sequenceLengths), collapse = 'x')), verbosity > 1)
+
+ matchingFractions = cbind(sequenceMatches[,c(1,2)], sequenceMatches[,3] / sequenceLengths[,3])
+ colnames(matchingFractions) = c('query', 'target', 'fraction')
+ printif(head(matchingFractions), verbosity > 1)
+ printif(paste('Sequence-plasmid pair fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
+
+ matchingFractions = matchingFractions[matchingFractions[,'fraction'] >= minQueryCoverage,]
+ printif(head(matchingFractions), verbosity > 1)
+ printif(paste('Passing sequence-plasmid pair fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
+
+ aboveMinCoverage = apply(matchingFractions, 1, function(i){paste0(i['query'], '|', i['target'])})
+ plasmidHits = plasmidHits[apply(plasmidHits, 1, function(i){paste0(i['query'], '|', i['target'])}) %in% aboveMinCoverage, ]
+ printif(paste("Sequence-plasmid hits after removing low-coverage hits:", nrow(plasmidHits)), verbosity > 0)
+
+ ## Toss out plasmid sequences below the coverage cutoff
+ targetMatches = aggregate(x = plasmidHits[,'match',drop = FALSE],
+ by = list(plasmidHits[,'target']), FUN = sum)
+ printif(head(targetMatches), verbosity > 1)
+ printif(paste('Plasmid matches:', paste(dim(targetMatches), collapse = 'x')), verbosity > 1)
+
+ targetLengths = aggregate(x = plasmidHits[,'tlength', drop = FALSE],
+ by = list(plasmidHits[,'target']), FUN = max)
+ printif(head(targetLengths), verbosity > 1)
+ printif(paste('Plasmid lengths:', paste(dim(targetLengths), collapse = 'x')), verbosity > 1)
+
+ matchingFractions = cbind(targetMatches[,1], targetMatches[,2] / targetLengths[,2])
+ colnames(matchingFractions) = c('target', 'fraction')
+ printif(head(matchingFractions), verbosity > 1)
+ printif(paste('Plasmid fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
+
+ matchingFractions = matchingFractions[matchingFractions[,'fraction'] >= minTargetCoverage,]
+ printif(head(matchingFractions), verbosity > 1)
+ printif(paste('Passing plasmid fractions:', paste(dim(matchingFractions), collapse = 'x')), verbosity > 1)
+
+ aboveMinCoverage = matchingFractions[, 'target']
+ plasmidHits = plasmidHits[plasmidHits[, 'target'] %in% aboveMinCoverage, ]
+ printif(paste("Sequence-plasmid hits after removing low-coverage hits:", nrow(plasmidHits)), verbosity > 0)
+
+
+ ## If we're out of sequece-plasmid hits, then stop here
+ if (nrow(plasmidHits) == 0) {
+ message(paste('Not hits found'))
+ return
+ }
+
+ ## Find out how much of each query (contig) is covered by each target (plasmid).
+ ## Query coverage is constant and does not change as we assign contigs to plasmids
+ queryCoverage = hash()
+ queryMismatches = hash()
+ for (i in 1:nrow(plasmidHits)) {
+ if (!(i %% 1000)) {
+ printif(paste('Processing hit', i, '/', nrow(plasmidHits)), verbosity > 0)
+ }
+
+ query = plasmidHits[i,'query']
+ target = plasmidHits[i, 'target']
+
+ ## Represent each sequence-plasmid hit as a series of 0/1 vectors that
+ if (!has.key(query, queryCoverage)) {
+ queryCoverage[[query]] = hash()
+ queryMismatches[[query]] = hash()
+ }
+ if (!has.key(target, queryCoverage[[query]])) {
+ queryCoverage[[query]][[target]] = rep(0, times = plasmidHits[i, 'qlength'])
+ queryMismatches[[query]][[target]] = 0
+ }
+
+ blockSizes = as.numeric(unlist(strsplit(x = plasmidHits[i,'block_sizes'], ',')))
+ qBlockStarts = as.numeric(unlist(strsplit(x = plasmidHits[i,'qstarts'], ',')))
+
+ for (j in 1:length(blockSizes)) {
+ queryCoverage[[query]][[target]][qBlockStarts[j]:(qBlockStarts[j]+blockSizes[j])] = 1
+ }
+ queryMismatches[[query]][[target]] = queryMismatches[[query]][[target]] + plasmidHits[i,'mismatch']
+ }
+
+
+ ## Pull the full plasmid names from the blast database because BLAT/minimap2 doesn't report them, just the ID's
+ targetIDs = plasmidHits[,'target']
+ targetIDs = gsub("\\|$", "", targetIDs)
+ targetIDs = gsub(".*(\\|.*)$", "\\1", targetIDs)
+ noDotIDs = gsub("\\|", "", targetIDs)
+ noDotIDs = gsub("(^H[^.]+).[0-9]+$", "\\1", noDotIDs)
+ noDotIDs = cbind(noDotIDs)
+
+ targetFile = paste0(outputDirectory, '/targets.tsv', sep = '')
+ write.table(file = targetFile, x = noDotIDs, quote = FALSE, row.names = FALSE, col.names = FALSE)
+ command = paste('blastdbcmd -db', plasmidDatabase,
+ '-entry_batch', targetFile,
+ '| grep ">"')
+ targetNames = system(command, intern = TRUE)
+ printif(paste('Found', length(targetNames), 'target names for', length(targetIDs), 'targets.'), verbosity > 0)
+
+ targetNames = gsub('^>.*\\| ', '', targetNames)
+ targetNames = gsub('^>[^ ]+', '', targetNames)
+ plasmidHits = cbind(plasmidHits, targetIDs, targetNames)
+ printif(paste('Named hits:', nrow(plasmidHits)), verbosity > 1)
+
+ #Pull just the plasmids out of the larget set of hits, i.e, make sure it has the word 'plasmid' in the description.
+ plasmidHits = plasmidHits[grep('plasmid|vector', plasmidHits[,'targetNames'], ignore.case = TRUE), ,drop = FALSE]
+ plasmidHits = plasmidHits[!grepl('tig0000|unnamed', plasmidHits[,'targetNames'], ignore.case = TRUE), , drop = FALSE]
+ printif(paste("Sequece-plasmid hits after screening by name:", paste(dim(plasmidHits), collapse = 'x')), verbosity > 1)
+
+ ## Stop if there is nothing left
+ if (is.null(plasmidHits)) {
+ message('Not hits found')
+ return()
+ }
+ if (nrow(plasmidHits) == 0) {
+ message('Not hits found')
+ return()
+ }
+
+ ## Clean up the plasmid names -- they look like crap by default.
+ plasmidNames = plasmidHits[,'targetNames']
+ plasmidNames = gsub(', comp.*', '', plasmidNames)
+ plasmidNames = gsub(', contig.*', '', plasmidNames)
+ plasmidNames = gsub(', partial.*', '', plasmidNames)
+ plasmidNames = gsub('strain ', '', plasmidNames)
+ plasmidNames = gsub('^ *', '', plasmidNames)
+ plasmidNames = sub('^(cl\\|)(.*?) ', '', plasmidNames)
+ plasmidNames = sub('subsp. (.*?) ', '', plasmidNames)
+ plasmidNames = sub('serovar (.*?) ', '', plasmidNames)
+ plasmidNames = sub('strain ', '', plasmidNames)
+ plasmidNames = sub('plasmid$', '', plasmidNames)
+ plasmidHits[,'targetNames'] = plasmidNames
+
+ ## Just take the best hit for each plasmid, hence the head, 1 in the agg
+ plasmidNames = aggregate(plasmidHits, by = list(plasmidHits[,'query']), FUN = head, 1)
+ plasmidNames = plasmidNames[, 'targetNames', drop = FALSE]
+
+ ## Find the set of plasmid coverage hits for each itteration
+ usedContigs = c()
+ plasmidMismatches = c()
+
+ ## Order hits by the plasmid ID and the query length
+ plasmidHits = plasmidHits[order(plasmidHits[,'target'], -plasmidHits[,'qlength']), ]
+
+ ## Iterate, finding plasmids until we run out of usable sequence-plasmid its
+ plasmidNumber = 0
+ plasmidResults = c()
+ while (1) {
+
+ ## Keep track of how many plasmids we have gone over
+ plasmidNumber = plasmidNumber + 1
+
+ printif(paste('Sequence-plasmid hits left:', nrow(plasmidHits)), verbosity > 1)
+ contigToPlasmid = hash()
+ plasmidToContig = hash()
+ plasmidCoverage = hash()
+ plasmidCoverageWithRepeats = hash()
+ contigCoverage = hash()
+
+ ##Find contig/plasmid plasmid/contig pairs
+ if (is.null(plasmidHits)) {
+ break
+ }
+ if (nrow(plasmidHits) == 0) {
+ break
+ }
+ repLengths = c()
+
+
+ ## Find the coverage of each plasmid in the possible set by the contigs
+ for (i in 1:nrow(plasmidHits)) {
+
+ query = plasmidHits[i,'query']
+ target = plasmidHits[i,'target']
+ matches = plasmidHits[i,'match']
+ mismatches = plasmidHits[i,'mismatch']
+ score = matches - mismatches
+ queryLength = plasmidHits[i,'qlength']
+ blockSizes = as.numeric(unlist(strsplit(plasmidHits[i, 'block_sizes'], ',')))
+ queryStarts = as.numeric(unlist(strsplit(plasmidHits[i, 'qstarts'], ',')))
+ targetStarts = as.numeric(unlist(strsplit(plasmidHits[i, 'tstarts'], ',')))
+
+ ## Skip matches which have less than 50% of the bases from the contig on the plasmid -- probably not a good match
+ if ((sum(queryCoverage[[query]][[target]]) - queryMismatches[[query]][[target]]) / queryLength <= minQueryCoverage) {
+ next
+ }
+
+ targetLength = plasmidHits[i, 'tlength']; targetStart = plasmidHits[i, 'tstart']; targetStop = plasmidHits[i, 'tstop']
+
+ ## Relate this contig to this plasmid
+ if (!has.key(query, contigToPlasmid)) {
+ contigToPlasmid[[query]] = hash()
+ contigCoverage[[query]] = hash()
+ }
+ if (!has.key(target, contigToPlasmid[[query]])) {
+ contigToPlasmid[[query]][[target]] = score
+ contigCoverage[[query]][[target]] = rep(0, queryLength)
+ } else {
+ contigToPlasmid[[query]][[target]] = contigToPlasmid[[query]][[target]] + score
+ }
+
+ ## Keep track of target(plasmid) coverage by the contigs
+ if (!has.key(target, plasmidCoverage)) {
+ plasmidCoverage[[target]] = rep(0, targetLength)
+ plasmidCoverageWithRepeats[[target]] = rep(0, targetLength)
+ plasmidToContig[[target]] = hash()
+ plasmidMismatches[target] = 0
+ }
+
+ penalized = FALSE
+ for (j in 1:length(blockSizes)) {
+
+ ## Keep track of all contig alignments to this plasmid, even with repeats
+ plasmidCoverageWithRepeats[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])] = 1
+
+ ## Skip if this region of the query sequence has already been assigned to this plasmid
+ if (sum(contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0) <= 50) {
+ printif(paste('Sequence', query, 'already used for', target,
+ '. ', paste0(queryStarts[j], '-', queryStarts[j] + blockSizes[j])), verbosity > 2)
+ next
+ }
+ if (!penalized) {
+ ## Penalty for every gap, only penalize once per match
+ ## TODO: Penalize for gap length, not just once per gap
+ #plasmidMismatches[target] = plasmidMismatches[target] + (length(blockSizes) - 1) * 100
+ plasmidMismatches[target] = plasmidMismatches[target] + mismatches * 5
+ penalized = TRUE
+ }
+
+ plasmidCoverage[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])][contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0] =
+ plasmidCoverage[[target]][targetStarts[j]:(targetStarts[j] + blockSizes[j])][contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] == 0] + 1
+ contigCoverage[[query]][[target]][queryStarts[j]:(queryStarts[j] + blockSizes[j])] = 1
+ }
+
+ ## Relate this plasmid to this contig
+ if (!has.key(query, plasmidToContig[[target]])) {
+ plasmidToContig[[target]][[query]] = score
+ } else {
+ plasmidToContig[[target]][[query]] = plasmidToContig[[target]][[query]] + score
+ }
+ if (target == 'NZ_GG692894.1' && query == 'contig_3_0') {
+ print('NZ_GG692894.1')
+ print(sum(plasmidCoverage[[target]]))
+ print(sum(contigCoverage[[query]][[target]]))
+ }
+
+ }
+
+ ## Get the best set of plasmids out, i.e., the set with the most bases matching between the contig and plasmid
+ plasmidScores = c()
+ for (thisPlasmid in keys(plasmidCoverage)){
+ thisPlasmidScore = sum(plasmidCoverage[[thisPlasmid]])
+ plasmidScores = c(plasmidScores, thisPlasmidScore)
+ names(plasmidScores)[length(plasmidScores)] = thisPlasmid
+ }
+ plasmidScores = sort(plasmidScores - plasmidMismatches[names(plasmidScores)], dec = TRUE)
+
+ if (length(plasmidScores) > 0) {
+ printif('Highest scoring plasmids', verbosity > 1)
+ printif(head(cbind(plasmidScores), 20), verbosity > 1)
+ }
+
+ ## Stop searching for plasmids if nothing matches well or we're out of hits
+ if (length(plasmidScores) == 0) {
+ printif('Out of plasmids', verbosity > 0)
+ break
+ } else if (max(plasmidScores) < 500) {
+ printif('Out of min-scoring plasmids', verbosity > 0)
+ break
+ }
+
+ ## For each matching plasmid, ordered by total bases matching the assembly, find the set of corresponding contigs
+ plasmidToUse = 1
+ if (!is.null(searchDepth) && plasmidNumber <= length(searchDepth)) {
+ plasmidToUse = searchDepth[plasmidNumber]
+ }
+ if (plasmidToUse > length(plasmidScores)) {
+ plasmidToUse = length(plasmidScores)
+ }
+
+ plasmid = names(plasmidScores)[plasmidToUse]
+ print(paste('Plasmid picked', plasmid))
+ totalPlasmidScore = totalPlasmidScore + plasmidScores[plasmid]
+ printif(paste("Pulling sequences for", plasmid), verbosity > 0)
+
+ ## Find contigs what haven't already been given to another plasmid so we can assign them next round
+ plasmidContigs = keys(plasmidToContig[[plasmid]])
+ unusedContigs = plasmidContigs[!(plasmidContigs %in% usedContigs)]
+
+ ## If no unused contigs that also map to this plasmid then skip it
+ if (length(unusedContigs) == 0) {
+ printif(paste("No unused sequences for", plasmid), verbosity > 1)
+ next
+ }
+
+ ## Keep just the rows for this plasmid and which haven't already been used by another plasmid
+ plasmidRows = plasmidHits[plasmidHits[,'target'] == plasmid,]
+ plasmidRows = plasmidRows[plasmidRows[,'query'] %in% unusedContigs,,drop = FALSE]
+ plasmidName = plasmidRows[1, 'targetNames']
+ plasmidID = plasmidRows[1, 'targetIDs']
+ ## Get the plasmid length
+ command = paste('blastdbcmd -db', plasmidDatabase,
+ '-entry', plasmidID,
+ '-outfmt "%l"')
+ plasmidLength = system(command, intern = TRUE)
+ plasmidLength = rep(plasmidLength, nrow(plasmidRows))
+
+ ## How many bases from the plasmid are uncovered?
+ plasmidMissing = rep(sum(plasmidCoverageWithRepeats[[as.character(plasmidID)]] == 0), nrow(plasmidRows))
+
+ ## Keep track of all of the contigs included
+ usedContigs = c(usedContigs, unusedContigs)
+
+ ## How many matching bases for each query sequence?
+ thisPlasmidQuerySizes = c()
+ thisPlasmidMatches = c()
+ for (contig in unusedContigs) {
+ thisPlasmidQuerySizes = c(thisPlasmidQuerySizes, length(queryCoverage[[contig]][[plasmid]]))
+ thisPlasmidMatches = c(thisPlasmidMatches, sum(queryCoverage[[contig]][[plasmid]]))
+ }
+
+ ## Add this plasmid's hits onto the growing list of sequence-plasmid hits
+ thisPlasmidResults = cbind(unusedContigs, plasmidName, as.character(plasmidID), thisPlasmidQuerySizes, thisPlasmidMatches, plasmidLength, plasmidMissing)
+ colnames(thisPlasmidResults) = c('query.name', 'plasmid.name', 'plasmid.accession', 'query.size', 'aligned.bases', 'plasmid.size', 'plasmid.missing')
+ thisPlasmidResults = thisPlasmidResults[order(-thisPlasmidMatches), ]
+ plasmidResults = rbind(plasmidResults, thisPlasmidResults)
+
+ ## Remove the contigs added to this plasmid from the list of plasmid/contig BLAT hits
+ plasmidHits = plasmidHits[!(plasmidHits[,'query'] %in% usedContigs),]
+ plasmidHits = plasmidHits[!(plasmidHits[,'target'] == plasmid),]
+ }
+
+ rownames(plasmidResults) = plasmidResults[,1]
+
+ ## Check for the presence of AMR genes in this file
+ if (!noAMR) {
+ amrBEDFile = paste0(outputDirectory, '/amrMapping.bed')
+ command = paste('cat', amrPSLFile,
+ '| awk -F \'\\t\' \'($3 >= 80) && ($4 / $14 >= .95){OFS = "\t"; print $2,($9 < $10 ? $9 : $10),($9 < $10 ? $10 : $9),$1,$3/100,($9 < $10 ? "+" : "-")}\'',
+ '| sort -k 1,1 -k 2,2n >', amrBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+ ## Find local overlapping regions
+ amrMergedBEDFile = paste0(outputDirectory, '/amrMergedMapping.bed')
+ command = paste('bedtools merge -d -30 -i', amrBEDFile, '>', amrMergedBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+ ## Find the best AMR gene for each region
+ amrFinalBEDFile = paste0(outputDirectory, '/amrFinal.bed')
+ command = paste('bedtools intersect',
+ '-a', amrBEDFile,
+ '-b', amrMergedBEDFile,
+ '-f .9 -F .9',
+ '-wao',
+ '| awk \'$7 != "."\'',
+ '| awk \'{OFS="\t";locus=$7"\t"$8"\t"$9; if($5 > s[locus]){s[locus]=$5;b[locus] = $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6}}END{for(i in b){print i,b[i]}}\'',
+ '>', amrFinalBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+
+ ## Read the AMR results in and add them to the plasmid contigs
+ amrResults = read.table(file = amrFinalBEDFile, header = FALSE, row.names = NULL, stringsAsFactors = FALSE, quote = '')
+ amrResults[,7] = gsub('(_.*$)|(.*\\|)', '', amrResults[,7])
+ amrResults = aggregate(amrResults[ , 7, drop = FALSE], by = list(amrResults[,1]), function(i){paste(i, collapse = ', ')})
+ rownames(amrResults) = amrResults[,1]
+ amrResults = amrResults[ , 2, drop = FALSE]
+ print(amrResults)
+
+ plasmidResults = cbind(plasmidResults, rep('', nrow(plasmidResults)))
+ colnames(plasmidResults)[ncol(plasmidResults)] = 'amr'
+ plasmidResults[rownames(plasmidResults) %in% rownames(amrResults), 'amr'] =
+ amrResults[rownames(plasmidResults)[rownames(plasmidResults) %in% rownames(amrResults)], 1]
+
+ }
+
+ ## Check for the presence of incompatibility groups in this file
+ if (!noInc) {
+ incBEDFile = paste0(outputDirectory, '/incMapping.bed')
+ command = paste('cat', incPSLFile,
+ '| awk -F \'\\t\' \'($3 >= 80) && ($4 / $14 >= .95){OFS = "\t"; print $2,($9 < $10 ? $9 : $10),($9 < $10 ? $10 : $9),$1,$3/100,($9 < $10 ? "+" : "-")}\'',
+ '| sort -k 1,1 -k 2,2n >', incBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+ ## Find local overlapping regions
+ incMergedBEDFile = paste0(outputDirectory, '/incMergedMapping.bed')
+ command = paste('bedtools merge -d -30 -i', incBEDFile, '>', incMergedBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+ ## Find the best INC group for each region
+ incFinalBEDFile = paste0(outputDirectory, '/incFinal.bed')
+ command = paste('bedtools intersect',
+ '-a', incBEDFile,
+ '-b', incMergedBEDFile,
+ '-f .9 -F .9',
+ '-wao',
+ '| awk \'$7 != "."\'',
+ '| awk \'{OFS="\t";locus=$7"\t"$8"\t"$9; if($5 > s[locus]){s[locus]=$5;b[locus] = $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6}}END{for(i in b){print i,b[i]}}\'',
+ '>', incFinalBEDFile)
+ printif(command, verbosity > 1)
+ system(command)
+
+ ## Read the inc group results in and add them to the plasmid contigs
+ incResults = read.table(file = incFinalBEDFile, header = FALSE, row.names = NULL, stringsAsFactors = FALSE, quote = '')
+ incResults[,7] = gsub('(_.*$)|(.*\\|)', '', incResults[,7])
+ incResults = aggregate(incResults[ , 7, drop = FALSE], by = list(incResults[,1]), function(i){paste(i, collapse = ', ')})
+ rownames(incResults) = incResults[,1]
+ incResults = incResults[ , 2, drop = FALSE]
+ print(incResults)
+
+ plasmidResults = cbind(plasmidResults, rep('', nrow(plasmidResults)))
+ colnames(plasmidResults)[ncol(plasmidResults)] = 'inc'
+ plasmidResults[rownames(plasmidResults) %in% rownames(incResults), 'inc'] =
+ incResults[rownames(plasmidResults)[rownames(plasmidResults) %in% rownames(incResults)], 1]
+ }
+
+ ## Write the plasmid results to file
+ plasmidChunksFile = paste0(outputDirectory, '/plasmids.tsv')
+ write.table(file = plasmidChunksFile, x = plasmidResults, quote = FALSE, sep = '\t', row.names = FALSE, col.names = TRUE)
+
+ ## Dump a sequence file of potential plasmid contigs
+ plasmidSequenceFile = paste0(outputPrefix, '.fna')
+ system(paste0('echo "" >', plasmidSequenceFile))
+ for (contig in plasmidResults[,'query.name']) {
+ command = paste('faidx', paste0('assembly.fasta'), contig, '>>', plasmidSequenceFile)
+ print(command)
+ #system(command)
+ }
+
+
+ ## Return the total score of this round, in case we are doing a search
+ return(totalPlasmidScore)
+
+}
+
+pChunks = function(plasmidPSLFile = NULL, plasmidDatabase = NULL,
+ amrPSLFile = NULL, amrDatabase, noAMR = FALSE,
+ incPSLFile = NULL, incDatabase, noInc = FALSE,
+ outputDirectory = NA, overwrite = TRUE,
+ maxTargetLength = 300000,
+ minQueryLength = 200,
+ makeCircos = FALSE,
+ minQueryCoverage = 1/2, minTargetCoverage = 1/2,
+ searchDepth = c(1),
+ threads = 1,
+ verbosity = 2) {
+
+ print(plasmidDatabase)
+
+ ## Verify the arguments
+ argumentsGood = TRUE
+ if (!file.exists(plasmidPSLFile)) {
+ argumentsGood = FALSE
+ message(paste('Plasmid PSL file', plasmidPSLFile, 'not found'))
+ }
+ if (is.na(outputDirectory)) {
+ argumentsGood = FALSE
+ message('Output directory not given')
+ }
+ if (file.exists(outputDirectory) && !overwrite) {
+ argumentsGood = FALSE
+ message(paste('Output directory', outputDirectory, 'already exists. Add overwrite = TRUE'))
+ }
+ if (minQueryCoverage < .1 || minQueryCoverage > 1) {
+ argumentsGood = FALSE
+ message(paste('Minimum query coverage', minQueryCoverage, 'is outside of the range 0.1 <= x <= 1'))
+ }
+ if (minTargetCoverage < 0.02 || minTargetCoverage > 1) {
+ argumentsGood = FALSE
+ message(paste('Minimum target coverage', minTargetCoverage, 'is outside of the range 0.1 <= x <= 1'))
+ }
+ if (!argumentsGood){
+ message('There is a problem with the arguments')
+ return()
+ }
+
+ ## Check for the existence of the output directory, remove if it exists
+ if (file.exists(outputDirectory)) {
+ printif(paste('Removing existing output directory', outputDirectory), verbosity > 1)
+ unlink(outputDirectory, recursive = TRUE)
+ }
+ printif(paste('Making output directory', outputDirectory), verbosity > 1)
+ dir.create(outputDirectory)
+
+ ## Default to c(1) for the plasmid search depth
+ searchDepths = lapply(searchDepth, function(i){seq(i, 1)})
+ searchDepths = as.matrix(expand.grid(searchDepths))
+ print(searchDepths)
+
+ plasmidScores = mclapply(1:nrow(searchDepths), function(i) {
+ findPlasmids(plasmidPSLFile = plasmidPSLFile, plasmidDatabase = plasmidDatabase,
+ amrPSLFile = amrPSLFile, amrDatabase, noAMR = noAMR,
+ incPSLFile = incPSLFile, incDatabase, noInc = noInc,
+ outputDirectory = paste0(outputDirectory, '/plasmids_', paste(searchDepths[i,], collapse = '_')), overwrite = overwrite,
+ maxTargetLength = 300000,
+ minQueryLength = 200,
+ makeCircos = makeCircos,
+ minQueryCoverage = 1/2, minTargetCoverage = 1/2,
+ searchDepth = searchDepths[i,], ## Search depth i
+ verbosity = verbosity)
+ },
+ mc.cores = threads)
+ plasmidScores = unlist(plasmidScores)
+
+ print(cbind(searchDepths, plasmidScores))
+
+ ## Pick out the best set, penalizing for not taking the first
+ penalties = (unlist(apply(searchDepths, 1, sum)) - ncol(searchDepths)) * 2500
+ print(penalties)
+ plasmidScores = plasmidScores - penalties
+ print(cbind(searchDepths, plasmidScores))
+ bestScoring = which.max(plasmidScores)
+ bestScoringDirectory = paste0(outputDirectory, '/plasmids_', paste(searchDepths[bestScoring,], collapse = '_'))
+
+ ## Link to the best scoring files
+ files = c('plasmids.tsv', 'amrFinal.bed')
+ commands = paste('ln -s ', paste0('"', bestScoringDirectory, '/', files, '"'),
+ paste0(outputDirectory, '/', files))
+ printif(commands, verbosity >= 2)
+ lapply(commands, system)
+
+}
+
+
+optionList = list(
+ make_option('--plasmid_psl', type = 'character', default = NULL,
+ help = 'Plasmid PSL database-v-contig output', metavar = ''),
+ make_option('--plasmid_database', type = 'character', default = NULL,
+ help = 'Plasmid database', metavar = ''),
+ make_option('--amr_database', type = 'character', default = NULL,
+ help = 'AMR database', metavar = ''),
+ make_option('--amr_blast', type = 'character', default = NULL,
+ help = 'AMR blast output', metavar = ''),
+ make_option('--output', type = 'character', default = NULL,
+ help = 'Output dir', metavar = ''),
+ make_option('--threads', type = 'numeric', default = NULL,
+ help = 'Output dir', metavar = ''),
+ make_option('--no_amr', action = 'store_true', default = FALSE,
+ help = 'Don\'t run AMR'),
+ make_option('--no_inc', action = 'store_true', default = FALSE,
+ help = 'Don\'t run incompatibility groups')
+ )
+
+optParser = OptionParser(option_list = optionList)
+opt = parse_args(optParser)
+print(opt)
+pChunks(plasmidPSLFile = opt$'plasmid_psl', plasmidDatabase = opt$'plasmid_database',
+ amrPSLFile = opt$'amr_blast', amrDatabase = opt$'amr_database',
+ outputDirectory = opt$output,
+ threads = opt$threads,
+# searchDepth = c(1,1),
+ searchDepth = c(5,5),
+ noAMR = TRUE, noInc = TRUE,
+ verbosity = 2)
+
+
+
diff -r 000000000000 -r f45c65e3fd18 p_chunks.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/p_chunks.xml Tue Jan 10 20:40:45 2023 +0000
@@ -0,0 +1,42 @@
+
+
+
+ macros.xml
+
+
+ '$output_plasmids'
+ ]]>
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+Accepts a PSL file and a BLAST database of the associated plasmid sequences and produces a tabular file containing query name,
+plasmid name, plasmid accession, query size, aligned bases, plasmid size and missing plasmids.
+
+
+
+