# HG changeset patch
# User greg
# Date 1677881183 0
# Node ID 0a558f444c98160e03aed31d7dc157fd9301a9de
Uploaded
diff -r 000000000000 -r 0a558f444c98 .shed.yml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/.shed.yml Fri Mar 03 22:06:23 2023 +0000
@@ -0,0 +1,9 @@
+name: pima_report
+owner: greg
+description: Generates the PIMA analysis summary report
+long_description: Generates the PIMA analysis summary report
+categories:
+- Nanopore
+remote_repository_url: https://github.com/gregvonkuster/galaxy_tools/tree/master/tools/pima/pima_report
+homepage_url: https://github.com/gregvonkuster/galaxy_tools
+type: unrestricted
diff -r 000000000000 -r 0a558f444c98 macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Fri Mar 03 22:06:23 2023 +0000
@@ -0,0 +1,22 @@
+
+ 1.0.0
+ 0
+ 21.01
+
+
+ biopython
+ gawk
+ grep
+ mdutils
+ pandas
+ pypandoc
+ weasyprint
+
+
+
+
+ 10.1101/2020.01.09.900589
+
+
+
+
diff -r 000000000000 -r 0a558f444c98 pima.css
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pima.css Fri Mar 03 22:06:23 2023 +0000
@@ -0,0 +1,143 @@
+html {
+ line-height: 1.5;
+ font-family: Georgia, serif;
+ font-size: 20px;
+ color: #1a1a1a;
+ background-color: #fdfdfd;
+}
+body {
+ margin: 0 auto;
+ max-width: 50em;
+ padding-left: 20px;
+ padding-right: 20px;
+ padding-top: 20px;
+ padding-bottom: 20px;
+ hyphens: auto;
+ overflow-wrap: break-word;
+ font-kerning: normal;
+}
+@media print {
+ body {
+ background-color: transparent;
+ color: black;
+ font-size: 10pt;
+ }
+ p, h2, h3 {
+ orphans: 3;
+ widows: 3;
+ }
+ h2, h3, h4 {
+ page-break-after: avoid;
+ }
+}
+p {
+ margin: 1em 0;
+}
+a {
+ color: #3333FF;
+}
+a:visited {
+ color: #1a1a1a;
+}
+img {
+ max-width: 100%;
+}
+h1, h2, h3, h4, h5, h6 {
+ margin-top: 1.4em;
+}
+h5, h6 {
+ font-size: .8em;
+ font-style: italic;
+}
+h6 {
+ font-weight: normal;
+}
+ol, ul {
+ padding-left: 1.7em;
+ margin-top: 1em;
+}
+li > ol, li > ul {
+ margin-top: 0;
+}
+blockquote {
+ margin: 1em 0 1em 1.7em;
+ padding-left: 1em;
+ border-left: 2px solid #e6e6e6;
+ color: #606060;
+}
+code {
+ font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
+ font-size: 85%;
+ margin: 0;
+}
+pre {
+ margin: 1em 0;
+ overflow: auto;
+}
+pre code {
+ padding: 0;
+ overflow: visible;
+ overflow-wrap: normal;
+}
+.sourceCode {
+ background-color: transparent;
+ overflow: visible;
+}
+hr {
+ background-color: #1a1a1a;
+ border: none;
+ height: 1px;
+ margin: 1em 0;
+}
+table {
+ border-collapse: collapse;
+ font-variant-numeric: lining-nums tabular-nums;
+ /*
+ margin-left: auto;
+ margin-right: auto; */
+}
+
+table caption {
+ margin-bottom: 0.75em;
+}
+tbody {
+ margin-top: 0.5em;
+ border-top: 1px solid #1a1a1a;
+ border-bottom: 1px solid #1a1a1a;
+ text-align: center;
+}
+th {
+ border-top: 1px solid #1a1a1a;
+ padding: 0.25em 0.5em 0.25em 0.5em;
+}
+td {
+ padding: 0.125em 0.5em 0.25em 0.5em;
+
+}
+
+tr:nth-child(even) {background: #CCC}
+tr:nth-child(odd) {background: #FFF}
+
+header {
+ margin-bottom: 4em;
+ text-align: center;
+}
+#TOC li {
+ list-style: none;
+}
+#TOC ul {
+ padding-left: 1.3em;
+}
+#TOC > ul {
+ padding-left: 0;
+}
+#TOC a:not(:hover) {
+ text-decoration: none;
+}
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+span.underline{text-decoration: underline;}
+div.column{display: inline-block; vertical-align: top; width: 50%;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+.display.math{display: block; text-align: center; margin: 0.5rem auto;}
diff -r 000000000000 -r 0a558f444c98 pima_report.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pima_report.py Fri Mar 03 22:06:23 2023 +0000
@@ -0,0 +1,733 @@
+import argparse
+import os
+import pandas
+import pypandoc
+import re
+import subprocess
+import sys
+
+from Bio import SeqIO
+from datetime import date
+from mdutils.mdutils import MdUtils
+
+CDC_ADVISORY = 'The analysis and report presented here should be treated as preliminary. Please contact the CDC/BDRD with any results regarding _Bacillus anthracis_.'
+
+
+class PimaReport:
+
+ def __init__(self, analysis_name=None, assembly_fasta_file=None, assembly_name=None, feature_bed_files=None, feature_png_files=None,
+ contig_coverage_file=None, dbkey=None, gzipped=None, illumina_fastq_file=None, mutation_regions_bed_file=None,
+ mutation_regions_tsv_files=None, pima_css=None):
+ self.ofh = open("process_log.txt", "w")
+
+ self.ofh.write("analysis_name: %s\n" % str(analysis_name))
+ self.ofh.write("assembly_fasta_file: %s\n" % str(assembly_fasta_file))
+ self.ofh.write("assembly_name: %s\n" % str(assembly_name))
+ self.ofh.write("feature_bed_files: %s\n" % str(feature_bed_files))
+ self.ofh.write("feature_png_files: %s\n" % str(feature_png_files))
+ self.ofh.write("contig_coverage_file: %s\n" % str(contig_coverage_file))
+ self.ofh.write("dbkey: %s\n" % str(dbkey))
+ self.ofh.write("gzipped: %s\n" % str(gzipped))
+ self.ofh.write("illumina_fastq_file: %s\n" % str(illumina_fastq_file))
+ self.ofh.write("mutation_regions_bed_file: %s\n" % str(mutation_regions_bed_file))
+ self.ofh.write("mutation_regions_tsv_files: %s\n" % str(mutation_regions_tsv_files))
+ self.ofh.write("pima_css: %s\n" % str(pima_css))
+
+ # General
+ self.doc = None
+ self.report_md = 'pima_report.md'
+
+ # Inputs
+ self.analysis_name = analysis_name
+ self.assembly_fasta_file = assembly_fasta_file
+ self.assembly_name = assembly_name
+ self.feature_bed_files = feature_bed_files
+ self.feature_png_files = feature_png_files
+ self.contig_coverage_file = contig_coverage_file
+ self.dbkey = dbkey
+ self.gzipped = gzipped
+ self.illumina_fastq_file = illumina_fastq_file
+ self.mutation_regions_bed_file = mutation_regions_bed_file
+ self.mutation_regions_tsv_files = mutation_regions_tsv_files
+ self.read_type = 'Illumina'
+ self.ont_bases = None
+ self.ont_n50 = None
+ self.ont_read_count = None
+ self.pima_css = pima_css
+
+ # Titles
+ self.alignment_title = 'Comparison with reference'
+ self.alignment_notes_title = 'Alignment notes'
+ self.amr_matrix_title = 'AMR matrix'
+ self.assembly_methods_title = 'Assembly'
+ self.assembly_notes_title = 'Assembly notes'
+ self.basecalling_title = 'Basecalling'
+ self.basecalling_methods_title = 'Basecalling'
+ self.contamination_methods_title = 'Contamination check'
+ self.contig_alignment_title = 'Alignment vs. reference contigs'
+ self.feature_title = 'Features found in the assembly'
+ self.feature_methods_title = 'Feature annotation'
+ self.feature_plot_title = 'Feature annotation plots'
+ self.large_indel_title = 'Large insertions & deletions'
+ self.methods_title = 'Methods'
+ self.mutation_title = 'Mutations found in the sample'
+ self.mutation_methods_title = 'Mutation screening'
+ self.plasmid_methods_title = 'Plasmid annotation'
+ self.reference_methods_title = 'Reference comparison'
+ self.snp_indel_title = 'SNPs and small indels'
+ #self.summary_title = 'Summary'
+ self.summary_title = 'Analysis of %s' % analysis_name
+
+ # Methods
+ self.methods = pandas.Series(dtype='float64')
+ self.methods[self.contamination_methods_title] = pandas.Series(dtype='float64')
+ self.methods[self.assembly_methods_title] = pandas.Series(dtype='float64')
+ self.methods[self.reference_methods_title] = pandas.Series(dtype='float64')
+ self.methods[self.mutation_methods_title] = pandas.Series(dtype='float64')
+ self.methods[self.feature_methods_title] = pandas.Series(dtype='float64')
+ self.methods[self.plasmid_methods_title] = pandas.Series(dtype='float64')
+
+ # Contamination
+ self.kraken_fracs = pandas.Series(dtype=object)
+
+ # Notes
+ self.assembly_notes = pandas.Series(dtype=object)
+ self.alignment_notes = pandas.Series(dtype=object)
+ self.contig_alignment = pandas.Series(dtype=object)
+
+ # Values
+ self.assembly_size = 0
+ self.contig_info = None
+ self.did_flye_ont_fastq = False
+ self.did_medaka_ont_assembly = False
+ self.feature_hits = pandas.Series(dtype='float64')
+ self.illumina_length_mean = 0
+ self.illumina_read_count = 0
+ self.illumina_bases = 0
+ self.mean_coverage = 0
+ self.num_assembly_contigs = 0
+
+ # Actions
+ self.did_guppy_ont_fast5 = False
+ self.did_qcat_ont_fastq = False
+ self.info_illumina_fastq()
+ self.load_contig_info()
+
+ def run_command(self, command):
+ self.ofh.write("\nXXXXXX In run_command, command:\n%s\n\n" % str(command))
+ try:
+ return re.split('\\n', subprocess.check_output(command, shell=True).decode('utf-8'))
+ except Exception:
+ message = 'Command %s failed: exiting...' % command
+ sys.exit(message)
+
+ def format_kmg(self, number, decimals=0):
+ self.ofh.write("\nXXXXXX In format_kmg, number:\n%s\n" % str(number))
+ self.ofh.write("XXXXXX In format_kmg, decimals:\n%s\n\n" % str(decimals))
+ if number == 0:
+ return '0'
+ magnitude_powers = [10**9, 10**6, 10**3, 1]
+ magnitude_units = ['G', 'M', 'K', '']
+ for i in range(len(magnitude_units)):
+ if number >= magnitude_powers[i]:
+ magnitude_power = magnitude_powers[i]
+ magnitude_unit = magnitude_units[i]
+ return ('{:0.' + str(decimals) + 'f}').format(number / magnitude_power) + magnitude_unit
+
+ def load_contig_info(self):
+ self.contig_info = pandas.Series(dtype=object)
+ self.contig_info[self.read_type] = pandas.read_csv(self.contig_coverage_file, header=None, index_col=None, sep='\t').sort_values(1, axis=0, ascending=False)
+ self.contig_info[self.read_type].columns = ['contig', 'size', 'coverage']
+ self.mean_coverage = (self.contig_info[self.read_type].iloc[:, 1] * self.contig_info[self.read_type].iloc[:, 2]).sum() / self.contig_info[self.read_type].iloc[:, 1].sum()
+
+ def load_fasta(self, fasta):
+ sequence = pandas.Series(dtype=object)
+ for contig in SeqIO.parse(fasta, 'fasta'):
+ sequence[contig.id] = contig
+ return sequence
+
+ def load_assembly(self):
+ self.assembly = self.load_fasta(self.assembly_fasta_file)
+ self.num_assembly_contigs = len(self.assembly)
+ for i in self.assembly:
+ self.assembly_size += len(i.seq)
+ self.assembly_size = self.format_kmg(self.assembly_size, decimals=1)
+
+ def info_illumina_fastq(self):
+ self.ofh.write("\nXXXXXX In info_illumina_fastq\n\n")
+ if self.gzipped:
+ opener = 'gunzip -c'
+ else:
+ opener = 'cat'
+ command = ' '.join([opener,
+ self.illumina_fastq_file,
+ '| awk \'{getline;s += length($1);getline;getline;}END{print s/(NR/4)"\t"(NR/4)"\t"s}\''])
+ output = self.run_command(command)
+ self.ofh.write("output:\n%s\n" % str(output))
+ self.ofh.write("re.split('\\t', self.run_command(command)[0]:\n%s\n" % str(re.split('\\t', self.run_command(command)[0])))
+ values = []
+ for i in re.split('\\t', self.run_command(command)[0]):
+ if i == '':
+ values.append(float('nan'))
+ else:
+ values.append(float(i))
+ self.ofh.write("values:\n%s\n" % str(values))
+ self.ofh.write("values[0]:\n%s\n" % str(values[0]))
+ self.illumina_length_mean += values[0]
+ self.ofh.write("values[1]:\n%s\n" % str(values[1]))
+ self.illumina_read_count += int(values[1])
+ self.ofh.write("values[2]:\n%s\n" % str(values[2]))
+ self.illumina_bases += int(values[2])
+ # The original PIMA code inserts self.illumina_fastq into
+ # a list for no apparent reason. We don't do that here.
+ # self.illumina_length_mean /= len(self.illumina_fastq)
+ self.illumina_length_mean /= 1
+ self.illumina_bases = self.format_kmg(self.illumina_bases, decimals=1)
+
+ def start_doc(self):
+ #header_text = 'Analysis of %s' % self.analysis_name
+ self.doc = MdUtils(file_name=self.report_md, title='')
+
+ def add_run_information(self):
+ self.ofh.write("\nXXXXXX In add_run_information\n\n")
+ self.doc.new_line()
+ self.doc.new_header(1, 'Run information')
+ # Tables in md.utils are implemented as a wrapping function.
+ Table_list = [
+ "Category",
+ "Information",
+ "Date",
+ date.today(),
+ "ONT FAST5",
+ "N/A",
+ "ONT FASTQ",
+ "N/A",
+ "Illumina FASTQ",
+ self.wordwrap_markdown(self.analysis_name),
+ "Assembly",
+ self.wordwrap_markdown(self.assembly_name),
+ "Reference",
+ self.wordwrap_markdown(self.dbkey),
+ ]
+ self.doc.new_table(columns=2, rows=7, text=Table_list, text_align='left')
+ self.doc.new_line()
+ self.doc.new_line()
+
+ def add_ont_library_information(self):
+ self.ofh.write("\nXXXXXX In add_ont_library_information\n\n")
+ if self.ont_n50 is None:
+ return
+ self.doc.new_line()
+ self.doc.new_header(2, 'ONT library statistics')
+ Table_List = [
+ "Category",
+ "Quantity",
+ "ONT N50",
+ '{:,}'.format(self.ont_n50),
+ "ONT reads",
+ '{:,}'.format(self.ont_read_count),
+ "ONT bases",
+ '{:s}'.format(self.ont_bases),
+ "Illumina FASTQ",
+ self.wordwrap_markdown(self.illumina_fastq_file),
+ "Assembly",
+ self.wordwrap_markdown(self.assembly_name),
+ "Reference",
+ self.wordwrap_markdown(self.dbkey),
+ ]
+ self.doc.new_table(columns=2, rows=7, text=Table_List, text_align='left')
+ self.doc.new_line()
+
+ def add_illumina_library_information(self):
+ self.ofh.write("\nXXXXXX In add_illumina_library_information\n\n")
+ if self.illumina_length_mean is None:
+ return
+ self.doc.new_line()
+ self.doc.new_header(2, 'Illumina library statistics')
+ Table_List = [
+ "Illumina Info.",
+ "Quantity",
+ 'Illumina mean length',
+ '{:.1f}'.format(self.illumina_length_mean),
+ 'Illumina reads',
+ '{:,}'.format(self.illumina_read_count),
+ 'Illumina bases',
+ '{:s}'.format(self.illumina_bases)
+ ]
+ self.doc.new_table(columns=2, rows=4, text=Table_List, text_align='left')
+
+ def add_assembly_information(self):
+ self.ofh.write("\nXXXXXX In add_assembly_information\n\n")
+ if self.assembly_fasta_file is None:
+ return
+ self.load_assembly()
+ self.doc.new_line()
+ self.doc.new_header(2, 'Assembly statistics')
+ Table_List = [
+ "Category",
+ "Information",
+ "Contigs",
+ str(self.num_assembly_contigs),
+ "Assembly size",
+ str(self.assembly_size),
+ ]
+ self.doc.new_table(columns=2, rows=3, text=Table_List, text_align='left')
+
+ def info_ont_fastq(self, fastq_file):
+ self.ofh.write("\nXXXXXX In info_ont_fastq, fastq_file:\n%s\n\n" % str(fastq_file))
+ opener = 'cat'
+ if self.gzipped:
+ opener = 'gunzip -c'
+ else:
+ opener = 'cat'
+ command = ' '.join([opener,
+ fastq_file,
+ '| awk \'{getline;print length($0);s += length($1);getline;getline;}END{print "+"s}\'',
+ '| sort -gr',
+ '| awk \'BEGIN{bp = 0;f = 0}',
+ '{if(NR == 1){sub(/+/, "", $1);s=$1}else{bp += $1;if(bp > s / 2 && f == 0){n50 = $1;f = 1}}}',
+ 'END{printf "%d\\t%d\\t%d\\n", n50, (NR - 1), s;exit}\''])
+ result = list(re.split('\\t', self.run_command(command)[0]))
+ if result[1] == '0':
+ self.error_out('No ONT reads found')
+ ont_n50, ont_read_count, ont_raw_bases = [int(i) for i in result]
+
+ command = ' '.join([opener,
+ fastq_file,
+ '| awk \'{getline;print length($0);getline;getline;}\''])
+ result = self.run_command(command)
+ result = list(filter(lambda x: x != '', result))
+ ont_read_lengths = [int(i) for i in result]
+
+ return ([ont_n50, ont_read_count, ont_raw_bases, ont_read_lengths])
+
+ def wordwrap_markdown(self, string):
+ if string:
+ if len(string) < 35:
+ return string
+ else:
+ if '/' in string:
+ adjust = string.split('/')
+ out = ''
+ max = 35
+ for i in adjust:
+ out = out + '/' + i
+ if len(out) > max:
+ out += '
'
+ max += 35
+ return out
+ else:
+ out = [string[i:i + 35] for i in range(0, len(string), 50)]
+ return '
'.join(out)
+ else:
+ return string
+
+ def add_contig_info(self):
+ self.ofh.write("\nXXXXXX In add_contig_info\n\n")
+ if self.contig_info is None:
+ return
+ for method in ['ONT', 'Illumina']:
+ if method not in self.contig_info.index:
+ continue
+ self.doc.new_line()
+ self.doc.new_header(2, 'Assembly coverage by ' + method)
+ Table_List = ["Contig", "Length (bp)", "Coverage (X)"]
+ formatted = self.contig_info[method].copy()
+ formatted.iloc[:, 1] = formatted.iloc[:, 1].apply(lambda x: '{:,}'.format(x))
+ for i in range(self.contig_info[method].shape[0]):
+ Table_List = Table_List + formatted.iloc[i, :].values.tolist()
+ row_count = int(len(Table_List) / 3)
+ self.doc.new_table(columns=3, rows=row_count, text=Table_List, text_align='left')
+
+ def add_assembly_notes(self):
+ self.ofh.write("\nXXXXXX In add_assembly_notes\n\n")
+ if len(self.assembly_notes) == 0:
+ return
+ self.doc.new_line()
+ self.doc.new_line('
')
+ self.doc.new_line()
+ self.doc.new_header(2, self.assembly_notes_title)
+ #for note in self.analysis.assembly_notes:
+ # self.doc.new_line(note)
+
+ def add_contamination(self):
+ self.ofh.write("\nXXXXXX In add_contamination\n\n")
+ if len(self.kraken_fracs) == 0:
+ return
+ self.doc.new_line()
+ self.doc.new_header(2, 'Contamination check')
+ for read_type, kraken_fracs in self.kraken_fracs.iteritems():
+ self.doc.new_line(read_type + ' classifications')
+ self.doc.new_line()
+ Table_List = ["Percent of Reads", "Reads", "Level", "Label"]
+ for index, row in kraken_fracs.iterrows():
+ Table_List = Table_List + row.tolist()
+ row_count = int(len(Table_List) / 4)
+ self.doc.new_table(columns=4, rows=row_count, text=Table_List, text_align='left')
+ if self.contamination_methods_title not in self.methods:
+ self.methods[self.contamination_methods_title] = ''
+ method = 'Kraken2 was used to assign the raw reads into taxa.'
+ self.methods[self.contamination_methods_title] = self.methods[self.contamination_methods_title].append(pandas.Series(method))
+
+ def add_alignment(self):
+ self.ofh.write("\nXXXXXX In add_alignment\n\n")
+ # TODO: implement the draw_circos function for this.
+ if len(self.contig_alignment) > 0:
+ alignments = self.contig_alignment
+ else:
+ return
+ self.doc.new_line()
+ self.doc.new_header(level=2, title=self.alignment_title)
+ self.doc.new_line()
+ self.doc.new_header(level=3, title=self.snp_indel_title)
+ Table_1 = [
+ "Category",
+ "Quantity",
+ 'SNPs',
+ #'{:,}'.format(self.analysis.quast_mismatches),
+ 'NA'
+ 'Small indels',
+ #'{:,}'.format(self.analysis.quast_indels)
+ 'NA'
+ ]
+ self.doc.new_table(columns=2, rows=3, text=Table_1, text_align='left')
+ self.doc.new_line('')
+ self.doc.new_line()
+ if len(self.alignment_notes) > 0:
+ self.doc.new_header(level=3, title=self.alignment_notes_title)
+ for note in self.alignment_notes:
+ self.doc.new_line(note)
+ for contig in alignments.index.tolist():
+ contig_title = 'Alignment to %s' % contig
+ image_png = alignments[contig]
+ self.doc.new_line()
+ self.doc.new_header(level=3, title=contig_title)
+ self.doc.new_line(self.doc.new_inline_image(text='contig_title', path=os.path.abspath(image_png)))
+ self.doc.new_line('')
+ self.doc.new_line()
+ method = 'The genome assembly was aligned against the reference sequencing using dnadiff.'
+ self.methods[self.reference_methods_title] = self.methods[self.reference_methods_title].append(pandas.Series(method))
+
+ def add_features(self):
+ self.ofh.write("\nXXXXXX In add_features\n\n")
+ if len(self.feature_bed_files) == 0:
+ return
+ for bbf in self.feature_bed_files:
+ if os.path.getsize(bbf) > 0:
+ best = pandas.read_csv(filepath_or_buffer=bbf, sep='\t', header=None)
+ self.feature_hits[os.path.basename(bbf)] = best
+ if len(self.feature_hits) == 0:
+ return
+ self.ofh.write("self.feature_hits: %s\n" % str(self.feature_hits))
+ self.doc.new_line()
+ self.doc.new_header(level=2, title=self.feature_title)
+ for feature_name in self.feature_hits.index.tolist():
+ self.ofh.write("feature_name: %s\n" % str(feature_name))
+ features = self.feature_hits[feature_name].copy()
+ self.ofh.write("features: %s\n" % str(features))
+ if features.shape[0] == 0:
+ continue
+ features.iloc[:, 1] = features.iloc[:, 1].apply(lambda x: '{:,}'.format(x))
+ features.iloc[:, 2] = features.iloc[:, 2].apply(lambda x: '{:,}'.format(x))
+ self.doc.new_line()
+ self.doc.new_header(level=3, title=feature_name)
+ if (features.shape[0] == 0):
+ continue
+ for contig in pandas.unique(features.iloc[:, 0]):
+ self.ofh.write("contig: %s\n" % str(contig))
+ self.doc.new_line(contig)
+ contig_features = features.loc[(features.iloc[:, 0] == contig), :]
+ self.ofh.write("contig_features: %s\n" % str(contig_features))
+ Table_List = ['Start', 'Stop', 'Feature', 'Identity (%)', 'Strand']
+ for i in range(contig_features.shape[0]):
+ self.ofh.write("i: %s\n" % str(i))
+ feature = contig_features.iloc[i, :].copy(deep=True)
+ self.ofh.write("feature: %s\n" % str(feature))
+ feature[4] = '{:.3f}'.format(feature[4])
+ Table_List = Table_List + feature[1:].values.tolist()
+ self.ofh.write("Table_List: %s\n" % str(Table_List))
+ row_count = int(len(Table_List) / 5)
+ self.ofh.write("row_count: %s\n" % str(row_count))
+ self.doc.new_line()
+ self.doc.new_table(columns=7, rows=row_count, text=Table_List, text_align='left')
+ blastn_version = 'The genome assembly was queried for features using blastn.'
+ bedtools_version = 'Feature hits were clustered using bedtools and the highest scoring hit for each cluster was reported.'
+ method = '%s %s' % (blastn_version, bedtools_version)
+ self.methods[self.feature_methods_title] = self.methods[self.feature_methods_title].append(pandas.Series(method))
+
+ def add_feature_plots(self):
+ self.ofh.write("\nXXXXXX In add_feature_plots\n\n")
+ if len(self.feature_png_files) == 0:
+ return
+ self.doc.new_line()
+ self.doc.new_header(level=2, title='Feature Plots')
+ self.doc.new_paragraph('Only contigs with features are shown')
+ for feature_png_file in self.feature_png_files:
+ self.doc.new_line(self.doc.new_inline_image(text='Analysis', path=os.path.abspath(feature_png_file)))
+
+ def add_mutations(self):
+ self.ofh.write("\nXXXXXX In add_mutations\n\n")
+ if len(self.mutation_regions_tsv_files) == 0:
+ return
+ try:
+ mutation_regions = pandas.read_csv(self.mutation_regions_bed_file, sep='\t', header=0, index_col=False)
+ except Exception:
+ # Likely an empty file.
+ return
+ amr_mutations = pandas.Series(dtype=object)
+ for region_i in range(mutation_regions.shape[0]):
+ region = mutation_regions.iloc[region_i, :]
+ region_name = str(region['name'])
+ self.ofh.write("Processing mutations for region %s\n" % region_name)
+ region_mutations_tsv_name = '%s_mutations.tsv' % region_name
+ if region_mutations_tsv_name not in self.mutation_regions_tsv_files:
+ continue
+ region_mutations_tsv = self.mutation_regions_tsv_files[region_mutations_tsv_name]
+ try:
+ region_mutations = pandas.read_csv(region_mutations_tsv, sep='\t', header=0, index_col=False)
+ except Exception:
+ region_mutations = pandas.DataFrame()
+ if region_mutations.shape[0] == 0:
+ continue
+ # Figure out what kind of mutations are in this region
+ region_mutation_types = pandas.Series(['snp'] * region_mutations.shape[0], name='TYPE', index=region_mutations.index)
+ region_mutation_types[region_mutations['REF'].str.len() != region_mutations['ALT'].str.len()] = 'small-indel'
+ region_mutation_drugs = pandas.Series(region['drug'] * region_mutations.shape[0], name='DRUG', index=region_mutations.index)
+ region_notes = pandas.Series(region['note'] * region_mutations.shape[0], name='NOTE', index=region_mutations.index)
+ region_mutations = pandas.concat([region_mutations, region_mutation_types, region_mutation_drugs, region_notes], axis=1)
+ region_mutations = region_mutations[['#CHROM', 'POS', 'TYPE', 'REF', 'ALT', 'DRUG', 'NOTE']]
+ amr_mutations[region['name']] = region_mutations
+ # Report the mutations.
+ self.doc.new_line()
+ self.doc.new_header(level=2, title=self.mutation_title)
+ for region_name in amr_mutations.index.tolist():
+ region_mutations = amr_mutations[region_name].copy()
+ self.doc.new_line()
+ self.doc.new_header(level=3, title=region_name)
+ if (region_mutations.shape[0] == 0):
+ self.doc.append('None')
+ continue
+ region_mutations.iloc[:, 1] = region_mutations.iloc[:, 1].apply(lambda x: '{:,}'.format(x))
+ Table_List = ['Reference contig', 'Position', 'Reference', 'Alternate', 'Drug', 'Note']
+ for i in range(region_mutations.shape[0]):
+ Table_List = Table_List + region_mutations.iloc[i, [0, 1, 3, 4, 5, 6]].values.tolist()
+ row_count = int(len(Table_List) / 6)
+ self.doc.new_table(columns=6, rows=row_count, text=Table_List, text_align='left')
+ method = '%s reads were mapped to the reference sequence using minimap2.' % self.read_type
+ self.methods[self.mutation_methods_title] = self.methods[self.mutation_methods_title].append(pandas.Series(method))
+ method = 'Mutations were identified using samtools mpileup and varscan.'
+ self.methods[self.mutation_methods_title] = self.methods[self.mutation_methods_title].append(pandas.Series(method))
+
+ def add_amr_matrix(self):
+ self.ofh.write("\nXXXXXX In add_amr_matrix\n\n")
+ # Make sure that we have an AMR matrix to plot
+ #if not getattr(self.analysis, 'did_draw_amr_matrix', False):
+ # return
+ #amr_matrix_png = self.analysis.amr_matrix_png
+ #self.doc.new_line()
+ #self.doc.new_header(level=2, title=self.amr_matrix_title)
+ #self.doc.new_line('AMR genes and mutations with their corresponding drugs.')
+ #self.doc.new_line(
+ # self.doc.new_inline_image(
+ # text='AMR genes and mutations with their corresponding drugs',
+ # path=amr_matrix_png
+ # )
+ #)
+ pass
+
+ def add_large_indels(self):
+ self.ofh.write("\nXXXXXX In add_large_indels\n\n")
+ # Make sure we looked for mutations
+ #if len(self.analysis.large_indels) == 0:
+ # return
+ #large_indels = self.analysis.large_indels
+ #self.doc.new_line()
+ #self.doc.new_header(level=2, title=self.large_indel_title)
+ #for genome in ['Reference insertions', 'Query insertions']:
+ # genome_indels = large_indels[genome].copy()
+ # self.doc.new_line()
+ # self.doc.new_header(level=3, title=genome)
+ # if (genome_indels.shape[0] == 0):
+ # continue
+ # genome_indels.iloc[:, 1] = genome_indels.iloc[:, 1].apply(lambda x: '{:,}'.format(x))
+ # genome_indels.iloc[:, 2] = genome_indels.iloc[:, 2].apply(lambda x: '{:,}'.format(x))
+ # genome_indels.iloc[:, 3] = genome_indels.iloc[:, 3].apply(lambda x: '{:,}'.format(x))
+ # Table_List = [
+ # 'Reference contig', 'Start', 'Stop', 'Size (bp)'
+ # ]
+ # for i in range(genome_indels.shape[0]):
+ # Table_List = Table_List + genome_indels.iloc[i, :].values.tolist()
+ # row_count = int(len(Table_List) / 4)
+ # self.doc.new_table(columns=4, rows=row_count, text=Table_List, text_align='left')
+ #method = 'Large insertions or deletions were found as the complement of aligned regions using bedtools.'
+ #self.methods[self.reference_methods_title] = self.methods[self.reference_methods_title].append(
+ # pandas.Series(method))
+ #self.doc.new_line()
+ #self.doc.new_line('')
+ #self.doc.new_line()
+ pass
+
+ def add_plasmids(self):
+ self.ofh.write("\nXXXXXX In add_plasmids\n\n")
+ """
+ if not getattr(self.analysis, 'did_call_plasmids', False):
+ return
+ # Make sure we looked for mutations
+ #plasmids = self.analysis.plasmids
+ if plasmids is None:
+ return
+ plasmids = plasmids.copy()
+ self.doc.new_line()
+ #self.doc.new_header(level=2, title=self.analysis.plasmid_title)
+ if (plasmids.shape[0] == 0):
+ self.doc.new_line('None')
+ return
+ plasmids.iloc[:, 3] = plasmids.iloc[:, 3].apply(lambda x: '{:,}'.format(x))
+ plasmids.iloc[:, 4] = plasmids.iloc[:, 4].apply(lambda x: '{:,}'.format(x))
+ plasmids.iloc[:, 5] = plasmids.iloc[:, 5].apply(lambda x: '{:,}'.format(x))
+ Table_List = [
+ 'Genome contig',
+ 'Plasmid hit',
+ 'Plasmid acc.',
+ 'Contig size',
+ 'Aliged',
+ 'Plasmid size'
+ ]
+ for i in range(plasmids.shape[0]):
+ Table_List = Table_List + plasmids.iloc[i, 0:6].values.tolist()
+ row_count = int(len(Table_List) / 6)
+ self.doc.new_table(columns=6, rows=row_count, text=Table_List, text_align='left')
+ method = 'The plasmid reference database was queried against the genome assembly using minimap2.'
+ self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method))
+ method = 'The resulting SAM was converted to a PSL using a custom version of sam2psl.'
+ self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method))
+ method = 'Plasmid-to-genome hits were resolved using the pChunks algorithm.'
+ self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method))
+ """
+ pass
+
+ def add_methods(self):
+ self.ofh.write("\nXXXXXX In add_methods\n\n")
+ self.doc.new_line('')
+ self.doc.new_line()
+ if len(self.methods) == 0:
+ return
+ self.doc.new_line()
+ self.doc.new_header(level=2, title=self.methods_title)
+
+ for methods_section in self.methods.index.tolist():
+ if self.methods[methods_section] is None or len(self.methods[methods_section]) == 0:
+ continue
+ self.doc.new_line()
+ self.doc.new_header(level=3, title=methods_section)
+ self.doc.new_paragraph(' '.join(self.methods[methods_section]))
+
+ def add_summary(self):
+ self.ofh.write("\nXXXXXX In add_summary\n\n")
+ # Add summary title
+ self.doc.new_header(level=1, title=self.summary_title)
+ # First section of Summary
+ self.doc.new_header(level=1, title='CDC Advisory')
+ self.doc.new_paragraph(CDC_ADVISORY)
+ self.doc.new_line()
+ self.add_run_information()
+ self.add_ont_library_information()
+ methods = []
+ if self.did_guppy_ont_fast5:
+ methods += ['ONT reads were basecalled using guppy']
+ if self.did_qcat_ont_fastq:
+ methods += ['ONT reads were demultiplexed and trimmed using qcat']
+ self.methods[self.basecalling_methods_title] = pandas.Series(methods)
+ self.add_illumina_library_information()
+ self.add_assembly_information()
+ self.add_contig_info()
+ self.add_assembly_notes()
+ if self.did_flye_ont_fastq:
+ method = 'ONT reads were assembled using Flye.'
+ self.methods[self.assembly_methods_title] = self.methods[self.assembly_methods_title].append(pandas.Series(method))
+ if self.did_medaka_ont_assembly:
+ method = 'the genome assembly was polished using ont reads and medaka.'
+ self.methods[self.assembly_methods_title] = self.methods[self.assembly_methods_title].append(pandas.series(method))
+
+ def make_tex(self):
+ self.doc.new_table_of_contents(table_title='detailed run information', depth=2, marker="tableofcontents")
+ text = self.doc.file_data_text
+ text = text.replace("##--[", "")
+ text = text.replace("]--##", "")
+ self.doc.file_data_text = text
+ self.doc.create_md_file()
+
+ def make_report(self):
+ self.ofh.write("\nXXXXXX In make_report\n\n")
+ self.start_doc()
+ self.add_summary()
+ self.add_contamination()
+ self.add_alignment()
+ self.add_features()
+ self.add_feature_plots()
+ self.add_mutations()
+ # TODO stuff working to here...
+ self.add_large_indels()
+ self.add_plasmids()
+ self.add_amr_matrix()
+ # self.add_snps()
+ self.add_methods()
+ self.make_tex()
+ # It took me quite a long time to find out that the value of the -t
+ # (implied) argument in the following command must be 'html' instead of
+ # the more logical 'pdf'. see the answer from snsn in this thread:
+ # https://github.com/jessicategner/pypandoc/issues/186
+ self.ofh.write("\nXXXXX In make_report, calling pypandoc.convert_file...\n\n")
+ pypandoc.convert_file(self.report_md,
+ 'html',
+ extra_args=['--pdf-engine=weasyprint', '-V', '-css=%s' % self.pima_css],
+ outputfile='pima_report.pdf')
+ self.ofh.close()
+
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('--analysis_name', action='store', dest='analysis_name', help='Sample identifier')
+parser.add_argument('--assembly_fasta_file', action='store', dest='assembly_fasta_file', help='Assembly fasta file')
+parser.add_argument('--assembly_name', action='store', dest='assembly_name', help='Assembly identifier')
+parser.add_argument('--feature_bed_dir', action='store', dest='feature_bed_dir', help='Directory of best feature hits bed files')
+parser.add_argument('--feature_png_dir', action='store', dest='feature_png_dir', help='Directory of best feature hits png files')
+parser.add_argument('--contig_coverage_file', action='store', dest='contig_coverage_file', help='Contig coverage TSV file')
+parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference genome')
+parser.add_argument('--gzipped', action='store_true', dest='gzipped', default=False, help='Input sample is gzipped')
+parser.add_argument('--illumina_fastq_file', action='store', dest='illumina_fastq_file', help='Input sample')
+parser.add_argument('--mutation_regions_bed_file', action='store', dest='mutation_regions_bed_file', help='AMR mutation regions BRD file')
+parser.add_argument('--mutation_regions_dir', action='store', dest='mutation_regions_dir', help='Directory of mutation regions TSV files')
+parser.add_argument('--pima_css', action='store', dest='pima_css', help='PIMA css stypesheet')
+
+args = parser.parse_args()
+
+# Prepare the features BED files.
+feature_bed_files = []
+for file_name in sorted(os.listdir(args.feature_bed_dir)):
+ file_path = os.path.abspath(os.path.join(args.feature_bed_dir, file_name))
+ feature_bed_files.append(file_path)
+# Prepare the features PNG files.
+feature_png_files = []
+for file_name in sorted(os.listdir(args.feature_png_dir)):
+ file_path = os.path.abspath(os.path.join(args.feature_png_dir, file_name))
+ feature_png_files.append(file_path)
+# Prepare the mutation regions TSV files.
+mutation_regions_files = []
+for file_name in sorted(os.listdir(args.mutation_regions_dir)):
+ file_path = os.path.abspath(os.path.join(args.feature_png_dir, file_name))
+ mutation_regions_files.append(file_path)
+
+markdown_report = PimaReport(args.analysis_name,
+ args.assembly_fasta_file,
+ args.assembly_name,
+ feature_bed_files,
+ feature_png_files,
+ args.contig_coverage_file,
+ args.dbkey,
+ args.gzipped,
+ args.illumina_fastq_file,
+ args.mutation_regions_bed_file,
+ mutation_regions_files,
+ args.pima_css)
+markdown_report.make_report()
diff -r 000000000000 -r 0a558f444c98 pima_report.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/pima_report.xml Fri Mar 03 22:06:23 2023 +0000
@@ -0,0 +1,80 @@
+
+
+
+ macros.xml
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+Generates the PIMA analysis summary report.
+
+
+
+