Mercurial > repos > greg > vsnp_build_tables
comparison vsnp_build_tables.py @ 3:abfb861df879 draft
Uploaded
| author | greg |
|---|---|
| date | Sun, 03 Jan 2021 16:21:29 +0000 |
| parents | b60858c3eb91 |
| children | f641e52353e8 |
comparison
equal
deleted
inserted
replaced
| 2:85384a9bfba2 | 3:abfb861df879 |
|---|---|
| 1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
| 2 | 2 |
| 3 import argparse | 3 import argparse |
| 4 import multiprocessing | |
| 5 import os | 4 import os |
| 5 import re | |
| 6 | |
| 6 import pandas | 7 import pandas |
| 7 import queue | |
| 8 import pandas.io.formats.excel | 8 import pandas.io.formats.excel |
| 9 import re | |
| 10 from Bio import SeqIO | 9 from Bio import SeqIO |
| 11 | 10 |
| 12 INPUT_JSON_AVG_MQ_DIR = 'input_json_avg_mq_dir' | |
| 13 INPUT_JSON_DIR = 'input_json_dir' | |
| 14 INPUT_NEWICK_DIR = 'input_newick_dir' | |
| 15 # Maximum columns allowed in a LibreOffice | 11 # Maximum columns allowed in a LibreOffice |
| 16 # spreadsheet is 1024. Excel allows for | 12 # spreadsheet is 1024. Excel allows for |
| 17 # 16,384 columns, but we'll set the lower | 13 # 16,384 columns, but we'll set the lower |
| 18 # number as the maximum. Some browsers | 14 # number as the maximum. Some browsers |
| 19 # (e.g., Firefox on Linux) are configured | 15 # (e.g., Firefox on Linux) are configured |
| 30 all_ref = ref_df[ref_df['reference'] == gbk_chrome] | 26 all_ref = ref_df[ref_df['reference'] == gbk_chrome] |
| 31 positions = all_ref.position.to_frame() | 27 positions = all_ref.position.to_frame() |
| 32 # Create an annotation file. | 28 # Create an annotation file. |
| 33 annotation_file = "%s_annotations.csv" % group | 29 annotation_file = "%s_annotations.csv" % group |
| 34 with open(annotation_file, "a") as fh: | 30 with open(annotation_file, "a") as fh: |
| 35 for index, row in positions.iterrows(): | 31 for _, row in positions.iterrows(): |
| 36 pos = row.position | 32 pos = row.position |
| 37 try: | 33 try: |
| 38 aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] | 34 aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] |
| 39 try: | 35 try: |
| 40 chrom, name, locus, tag = aaa.values[0] | 36 chrom, name, locus, tag = aaa.values[0] |
| 142 pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') | 138 pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') |
| 143 annotation_dict[chromosome] = pro | 139 annotation_dict[chromosome] = pro |
| 144 return annotation_dict | 140 return annotation_dict |
| 145 | 141 |
| 146 | 142 |
| 147 def get_base_file_name(file_path): | 143 def get_sample_name(file_path): |
| 148 base_file_name = os.path.basename(file_path) | 144 base_file_name = os.path.basename(file_path) |
| 149 if base_file_name.find(".") > 0: | 145 if base_file_name.find(".") > 0: |
| 150 # Eliminate the extension. | 146 # Eliminate the extension. |
| 151 return os.path.splitext(base_file_name)[0] | 147 return os.path.splitext(base_file_name)[0] |
| 152 elif base_file_name.find("_") > 0: | 148 return base_file_name |
| 153 # The dot extension was likely changed to | |
| 154 # the " character. | |
| 155 items = base_file_name.split("_") | |
| 156 return "_".join(items[0:-1]) | |
| 157 else: | |
| 158 return base_file_name | |
| 159 | 149 |
| 160 | 150 |
| 161 def output_cascade_table(cascade_order, mqdf, group, annotation_dict): | 151 def output_cascade_table(cascade_order, mqdf, group, annotation_dict): |
| 162 cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') | 152 cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') |
| 163 output_table(cascade_order_mq, "cascade", group, annotation_dict) | 153 output_table(cascade_order_mq, "cascade", group, annotation_dict) |
| 166 def output_excel(df, type_str, group, annotation_dict, count=None): | 156 def output_excel(df, type_str, group, annotation_dict, count=None): |
| 167 # Output the temporary json file that | 157 # Output the temporary json file that |
| 168 # is used by the excel_formatter. | 158 # is used by the excel_formatter. |
| 169 if count is None: | 159 if count is None: |
| 170 if group is None: | 160 if group is None: |
| 171 json_file_name = "%s_order_mq.json" % type_str | 161 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq.json" % type_str) |
| 172 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) | 162 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) |
| 173 else: | 163 else: |
| 174 json_file_name = "%s_%s_order_mq.json" % (group, type_str) | 164 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq.json" % (group, type_str)) |
| 175 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) | 165 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) |
| 176 else: | 166 else: |
| 167 # The table has more columns than is allowed by the | |
| 168 # MAXCOLS setting, so multiple files will be produced | |
| 169 # as an output collection. | |
| 177 if group is None: | 170 if group is None: |
| 178 json_file_name = "%s_order_mq_%d.json" % (type_str, count) | 171 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq_%d.json" % (type_str, count)) |
| 179 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) | 172 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) |
| 180 else: | 173 else: |
| 181 json_file_name = "%s_%s_order_mq_%d.json" % (group, type_str, count) | 174 json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq_%d.json" % (group, type_str, count)) |
| 182 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) | 175 excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) |
| 183 df.to_json(json_file_name, orient='split') | 176 df.to_json(json_file_name, orient='split') |
| 184 # Output the Excel file. | 177 # Output the Excel file. |
| 185 excel_formatter(json_file_name, excel_file_name, group, annotation_dict) | 178 excel_formatter(json_file_name, excel_file_name, group, annotation_dict) |
| 186 | 179 |
| 226 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) | 219 output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) |
| 227 else: | 220 else: |
| 228 output_excel(df, type_str, group_str, annotation_dict) | 221 output_excel(df, type_str, group_str, annotation_dict) |
| 229 | 222 |
| 230 | 223 |
| 231 def preprocess_tables(task_queue, annotation_dict, timeout): | 224 def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict): |
| 232 while True: | 225 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') |
| 233 try: | 226 # Map quality to dataframe. |
| 234 tup = task_queue.get(block=True, timeout=timeout) | 227 mqdf = avg_mq_series.to_frame(name='MQ') |
| 235 except queue.Empty: | 228 mqdf = mqdf.T |
| 236 break | 229 # Get the group. |
| 237 newick_file, json_file, json_avg_mq_file = tup | 230 group = get_sample_name(newick_file) |
| 238 avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') | 231 snps_df = pandas.read_json(json_file, orient='split') |
| 239 # Map quality to dataframe. | 232 with open(newick_file, 'r') as fh: |
| 240 mqdf = avg_mq_series.to_frame(name='MQ') | 233 for line in fh: |
| 241 mqdf = mqdf.T | 234 line = re.sub('[:,]', '\n', line) |
| 242 # Get the group. | 235 line = re.sub('[)(]', '', line) |
| 243 group = get_base_file_name(newick_file) | 236 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) |
| 244 snps_df = pandas.read_json(json_file, orient='split') | 237 line = re.sub('root\n', '', line) |
| 245 with open(newick_file, 'r') as fh: | 238 sample_order = line.split('\n') |
| 246 for line in fh: | 239 sample_order = list([_f for _f in sample_order if _f]) |
| 247 line = re.sub('[:,]', '\n', line) | 240 sample_order.insert(0, 'root') |
| 248 line = re.sub('[)(]', '', line) | 241 tree_order = snps_df.loc[sample_order] |
| 249 line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) | 242 # Count number of SNPs in each column. |
| 250 line = re.sub('root\n', '', line) | 243 snp_per_column = [] |
| 251 sample_order = line.split('\n') | 244 for column_header in tree_order: |
| 252 sample_order = list([_f for _f in sample_order if _f]) | 245 count = 0 |
| 253 sample_order.insert(0, 'root') | 246 column = tree_order[column_header] |
| 254 tree_order = snps_df.loc[sample_order] | 247 for element in column: |
| 255 # Count number of SNPs in each column. | 248 if element != column[0]: |
| 256 snp_per_column = [] | 249 count = count + 1 |
| 257 for column_header in tree_order: | 250 snp_per_column.append(count) |
| 258 count = 0 | 251 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") |
| 259 column = tree_order[column_header] | 252 # Count number of SNPS from the |
| 260 for element in column: | 253 # top of each column in the table. |
| 261 if element != column[0]: | 254 snp_from_top = [] |
| 262 count = count + 1 | 255 for column_header in tree_order: |
| 263 snp_per_column.append(count) | 256 count = 0 |
| 264 row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") | 257 column = tree_order[column_header] |
| 265 # Count number of SNPS from the | 258 # for each element in the column |
| 266 # top of each column in the table. | 259 # skip the first element |
| 267 snp_from_top = [] | 260 for element in column[1:]: |
| 268 for column_header in tree_order: | 261 if element == column[0]: |
| 269 count = 0 | 262 count = count + 1 |
| 270 column = tree_order[column_header] | 263 else: |
| 271 # for each element in the column | 264 break |
| 272 # skip the first element | 265 snp_from_top.append(count) |
| 273 for element in column[1:]: | 266 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") |
| 274 if element == column[0]: | 267 tree_order = tree_order.append([row1]) |
| 275 count = count + 1 | 268 tree_order = tree_order.append([row2]) |
| 276 else: | 269 # In pandas=0.18.1 even this does not work: |
| 277 break | 270 # abc = row1.to_frame() |
| 278 snp_from_top.append(count) | 271 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) |
| 279 row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") | 272 # tree_order.append(abc) |
| 280 tree_order = tree_order.append([row1]) | 273 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" |
| 281 tree_order = tree_order.append([row2]) | 274 tree_order = tree_order.T |
| 282 # In pandas=0.18.1 even this does not work: | 275 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) |
| 283 # abc = row1.to_frame() | 276 tree_order = tree_order.T |
| 284 # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) | 277 # Remove snp_per_column and snp_from_top rows. |
| 285 # tree_order.append(abc) | 278 cascade_order = tree_order[:-2] |
| 286 # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" | 279 # Output the cascade table. |
| 287 tree_order = tree_order.T | 280 output_cascade_table(cascade_order, mqdf, group, annotation_dict) |
| 288 tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) | 281 # Output the sorted table. |
| 289 tree_order = tree_order.T | 282 output_sort_table(cascade_order, mqdf, group, annotation_dict) |
| 290 # Remove snp_per_column and snp_from_top rows. | |
| 291 cascade_order = tree_order[:-2] | |
| 292 # Output the cascade table. | |
| 293 output_cascade_table(cascade_order, mqdf, group, annotation_dict) | |
| 294 # Output the sorted table. | |
| 295 output_sort_table(cascade_order, mqdf, group, annotation_dict) | |
| 296 task_queue.task_done() | |
| 297 | |
| 298 | |
| 299 def set_num_cpus(num_files, processes): | |
| 300 num_cpus = int(multiprocessing.cpu_count()) | |
| 301 if num_files < num_cpus and num_files < processes: | |
| 302 return num_files | |
| 303 if num_cpus < processes: | |
| 304 half_cpus = int(num_cpus / 2) | |
| 305 if num_files < half_cpus: | |
| 306 return num_files | |
| 307 return half_cpus | |
| 308 return processes | |
| 309 | 283 |
| 310 | 284 |
| 311 if __name__ == '__main__': | 285 if __name__ == '__main__': |
| 312 parser = argparse.ArgumentParser() | 286 parser = argparse.ArgumentParser() |
| 313 | 287 |
| 314 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', required=False, default=None, help='Average MQ json file') | |
| 315 parser.add_argument('--input_newick', action='store', dest='input_newick', required=False, default=None, help='Newick file') | |
| 316 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', required=False, default=None, help='SNPs json file') | |
| 317 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), | 288 parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), |
| 318 parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') | 289 parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file') |
| 290 parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file') | |
| 291 parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file') | |
| 319 | 292 |
| 320 args = parser.parse_args() | 293 args = parser.parse_args() |
| 321 | 294 |
| 322 if args.gbk_file is not None: | 295 if args.gbk_file is not None: |
| 323 # Create the annotation_dict for annotating | 296 # Create the annotation_dict for annotating |
| 324 # the Excel tables. | 297 # the Excel tables. |
| 325 annotation_dict = get_annotation_dict(args.gbk_file) | 298 annotation_dict = get_annotation_dict(args.gbk_file) |
| 326 else: | 299 else: |
| 327 annotation_dict = None | 300 annotation_dict = None |
| 328 | 301 |
| 329 # The assumption here is that the list of files | 302 preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict) |
| 330 # in both INPUT_NEWICK_DIR and INPUT_JSON_DIR are | |
| 331 # named such that they are properly matched if | |
| 332 # the directories contain more than 1 file (i.e., | |
| 333 # hopefully the newick file names and json file names | |
| 334 # will be something like Mbovis-01D6_* so they can be | |
| 335 # sorted and properly associated with each other). | |
| 336 if args.input_newick is not None: | |
| 337 newick_files = [args.input_newick] | |
| 338 else: | |
| 339 newick_files = [] | |
| 340 for file_name in sorted(os.listdir(INPUT_NEWICK_DIR)): | |
| 341 file_path = os.path.abspath(os.path.join(INPUT_NEWICK_DIR, file_name)) | |
| 342 newick_files.append(file_path) | |
| 343 if args.input_snps_json is not None: | |
| 344 json_files = [args.input_snps_json] | |
| 345 else: | |
| 346 json_files = [] | |
| 347 for file_name in sorted(os.listdir(INPUT_JSON_DIR)): | |
| 348 file_path = os.path.abspath(os.path.join(INPUT_JSON_DIR, file_name)) | |
| 349 json_files.append(file_path) | |
| 350 if args.input_avg_mq_json is not None: | |
| 351 json_avg_mq_files = [args.input_avg_mq_json] | |
| 352 else: | |
| 353 json_avg_mq_files = [] | |
| 354 for file_name in sorted(os.listdir(INPUT_JSON_AVG_MQ_DIR)): | |
| 355 file_path = os.path.abspath(os.path.join(INPUT_JSON_AVG_MQ_DIR, file_name)) | |
| 356 json_avg_mq_files.append(file_path) | |
| 357 | |
| 358 multiprocessing.set_start_method('spawn') | |
| 359 queue1 = multiprocessing.JoinableQueue() | |
| 360 queue2 = multiprocessing.JoinableQueue() | |
| 361 num_files = len(newick_files) | |
| 362 cpus = set_num_cpus(num_files, args.processes) | |
| 363 # Set a timeout for get()s in the queue. | |
| 364 timeout = 0.05 | |
| 365 | |
| 366 for i, newick_file in enumerate(newick_files): | |
| 367 json_file = json_files[i] | |
| 368 json_avg_mq_file = json_avg_mq_files[i] | |
| 369 queue1.put((newick_file, json_file, json_avg_mq_file)) | |
| 370 | |
| 371 # Complete the preprocess_tables task. | |
| 372 processes = [multiprocessing.Process(target=preprocess_tables, args=(queue1, annotation_dict, timeout, )) for _ in range(cpus)] | |
| 373 for p in processes: | |
| 374 p.start() | |
| 375 for p in processes: | |
| 376 p.join() | |
| 377 queue1.join() | |
| 378 | |
| 379 if queue1.empty(): | |
| 380 queue1.close() | |
| 381 queue1.join_thread() |
