0
|
1 #!/usr/bin/env python
|
|
2
|
|
3 import argparse
|
|
4 import gzip
|
|
5 import multiprocessing
|
|
6 import numpy
|
|
7 import os
|
|
8 import pandas
|
|
9 import queue
|
|
10
|
|
11 INPUT_IDXSTATS_DIR = 'input_idxstats'
|
|
12 INPUT_METRICS_DIR = 'input_metrics'
|
|
13 INPUT_READS_DIR = 'input_reads'
|
|
14 OUTPUT_DIR = 'output'
|
|
15 QUALITYKEY = {'!':'0', '"':'1', '#':'2', '$':'3', '%':'4', '&':'5', "'":'6', '(':'7', ')':'8', '*':'9', '+':'10', ',':'11', '-':'12', '.':'13', '/':'14', '0':'15', '1':'16', '2':'17', '3':'18', '4':'19', '5':'20', '6':'21', '7':'22', '8':'23', '9':'24', ':':'25', ';':'26', '<':'27', '=':'28', '>':'29', '?':'30', '@':'31', 'A':'32', 'B':'33', 'C':'34', 'D':'35', 'E':'36', 'F':'37', 'G':'38', 'H':'39', 'I':'40', 'J':'41', 'K':'42', 'L':'43', 'M':'44', 'N':'45', 'O':'46', 'P':'47', 'Q':'48', 'R':'49', 'S':'50', 'T':'51', 'U':'52', 'V':'53', 'W':'54', 'X':'55', 'Y':'56', 'Z':'57', '_':'1', ']':'1', '[':'1', '\\':'1', '\n':'1', '`':'1', 'a':'1', 'b':'1', 'c':'1', 'd':'1', 'e':'1', 'f':'1', 'g':'1', 'h':'1', 'i':'1', 'j':'1', 'k':'1', 'l':'1', 'm':'1', 'n':'1', 'o':'1', 'p':'1', 'q':'1', 'r':'1', 's':'1', 't':'1', 'u':'1', 'v':'1', 'w':'1', 'x':'1', 'y':'1', 'z':'1', ' ':'1'}
|
|
16 READCOLUMNS = ['Sample', 'Reference', 'Fastq File', 'Size', 'Total Reads', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30']
|
|
17 SEP = "\t"
|
|
18
|
|
19
|
|
20 def get_base_file_name(file_path):
|
|
21 base_file_name = os.path.basename(file_path)
|
|
22 if base_file_name.find(".") > 0:
|
|
23 # Eliminate the extension.
|
|
24 return os.path.splitext(base_file_name)[0]
|
|
25 elif base_file_name.find("_") > 0:
|
|
26 # The dot extension was likely changed to
|
|
27 # the " character.
|
|
28 items = base_file_name.split("_")
|
|
29 return "_".join(items[0:-1])
|
|
30 else:
|
|
31 return base_file_name
|
|
32
|
|
33
|
|
34 def nice_size(size):
|
|
35 # Returns a readably formatted string with the size
|
|
36 words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB']
|
|
37 prefix = ''
|
|
38 try:
|
|
39 size = float(size)
|
|
40 if size < 0:
|
|
41 size = abs(size)
|
|
42 prefix = '-'
|
|
43 except Exception:
|
|
44 return '??? bytes'
|
|
45 for ind, word in enumerate(words):
|
|
46 step = 1024 ** (ind + 1)
|
|
47 if step > size:
|
|
48 size = size / float(1024 ** ind)
|
|
49 if word == 'bytes': # No decimals for bytes
|
|
50 return "%s%d bytes" % (prefix, size)
|
|
51 return "%s%.1f %s" % (prefix, size, word)
|
|
52 return '??? bytes'
|
|
53
|
|
54
|
|
55 def output_read_stats(gzipped, fastq_file, ofh, sampling_number=10000, output_sample=False, dbkey=None, collection=False):
|
|
56 file_name_base = os.path.basename(fastq_file)
|
|
57 # Output a 2-column file where column 1 is
|
|
58 # the labels and column 2 is the values.
|
|
59 if output_sample:
|
|
60 # The Sample and Reference columns should be
|
|
61 # output only once, so this block handles
|
|
62 # paired reads, where the columns are not
|
|
63 # output for Read2.
|
|
64 try:
|
|
65 # Illumina read file names are something like:
|
|
66 # 13-1941-6_S4_L001_R1_600000_fastq_gz
|
|
67 sample = file_name_base.split("_")[0]
|
|
68 except Exception:
|
|
69 sample = ""
|
|
70 # Sample
|
|
71 ofh.write("Sample%s%s\n" % (SEP, sample))
|
|
72 ofh.write("Reference%s%s\n" % (SEP, dbkey))
|
|
73 if collection:
|
|
74 read = "Read"
|
|
75 else:
|
|
76 read = "Read1"
|
|
77 else:
|
|
78 read = "Read2"
|
|
79 # Read
|
|
80 ofh.write("%s File%s%s\n" % (read, SEP, file_name_base))
|
|
81 # File Size
|
|
82 ofh.write("%s File Size%s%s\n" % (read, SEP, nice_size(os.path.getsize(fastq_file))))
|
|
83 if gzipped.lower() == "true":
|
|
84 df = pandas.read_csv(gzip.open(fastq_file, "r"), header=None, sep="^")
|
|
85 else:
|
|
86 df = pandas.read_csv(open(fastq_file, "r"), header=None, sep="^")
|
|
87 total_read_count = int(len(df.index) / 4)
|
|
88 # Readx Total Reads
|
|
89 ofh.write("%s Total Reads%s%s\n" % (read, SEP, total_read_count))
|
|
90 # Mean Read Length
|
|
91 sampling_size = int(sampling_number)
|
|
92 if sampling_size > total_read_count:
|
|
93 sampling_size = total_read_count
|
|
94 df = df.iloc[3::4].sample(sampling_size)
|
|
95 dict_mean = {}
|
|
96 list_length = []
|
|
97 for index, row in df.iterrows():
|
|
98 base_qualities = []
|
|
99 for base in list(row.array[0]):
|
|
100 base_qualities.append(int(QUALITYKEY[base]))
|
|
101 dict_mean[index] = numpy.mean(base_qualities)
|
|
102 list_length.append(len(row.array[0]))
|
|
103 ofh.write("%s Mean Read Length%s%s\n" % (read, SEP, "%.1f" % numpy.mean(list_length)))
|
|
104 # Mean Read Quality
|
|
105 df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave'])
|
|
106 ofh.write("%s Mean Read Quality%s%s\n" % (read, SEP, "%.1f" % df_mean['ave'].mean()))
|
|
107 # Reads Passing Q30
|
|
108 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30])
|
|
109 reads_passing_q30 = "{:10.2f}".format(reads_gt_q30 / sampling_size)
|
|
110 ofh.write("%s reads passing Q30%s%s\n" % (read, SEP, reads_passing_q30))
|
|
111 return total_read_count
|
|
112
|
|
113
|
|
114 def output_statistics(task_queue, read2, collection, gzipped, dbkey, timeout):
|
|
115 while True:
|
|
116 try:
|
|
117 tup = task_queue.get(block=True, timeout=timeout)
|
|
118 except queue.Empty:
|
|
119 break
|
|
120 read_file, idxstats_file, metrics_file, output_file = tup
|
|
121 total_reads = 0
|
|
122 with open(output_file, "w") as ofh:
|
|
123 total_reads += output_read_stats(gzipped, read_file, ofh, output_sample=True, dbkey=dbkey, collection=collection)
|
|
124 if read2 is not None:
|
|
125 total_reads += output_read_stats(gzipped, read2, ofh)
|
|
126 ofh.write("Total Reads%s%d\n" % (SEP, total_reads))
|
|
127 with open(idxstats_file, "r") as ifh:
|
|
128 unmapped_reads = 0
|
|
129 for i, line in enumerate(ifh):
|
|
130 items = line.split("\t")
|
|
131 if i == 0:
|
|
132 # NC_002945.4 4349904 213570 4047
|
|
133 ofh.write("All Mapped Reads%s%s\n" % (SEP, items[2]))
|
|
134 elif i == 1:
|
|
135 # * 0 0 82774
|
|
136 unmapped_reads = int(items[3])
|
|
137 ofh.write("Unmapped Reads%s%d\n" % (SEP, unmapped_reads))
|
|
138 percent_str = "Unmapped Reads Percentage of Total"
|
|
139 if unmapped_reads > 0:
|
|
140 unmapped_reads_percentage = "{:10.2f}".format(unmapped_reads / total_reads)
|
|
141 ofh.write("%s%s%s\n" % (percent_str, SEP, unmapped_reads_percentage))
|
|
142 else:
|
|
143 ofh.write("%s%s0\n" % (percent_str, SEP))
|
|
144 with open(metrics_file, "r") as ifh:
|
|
145 for i, line in enumerate(ifh):
|
|
146 if i == 0:
|
|
147 # Skip comments.
|
|
148 continue
|
|
149 items = line.split("\t")
|
|
150 if i == 1:
|
|
151 # MarkDuplicates 10.338671 98.74%
|
|
152 ofh.write("Average Depth of Coverage%s%s\n" % (SEP, items[2]))
|
|
153 ofh.write("Reference with Coverage%s%s\n" % (SEP, items[3]))
|
|
154 elif i == 2:
|
|
155 # VCFfilter 611
|
|
156 ofh.write("Good SNP Count%s%s\n" % (SEP, items[1]))
|
|
157 task_queue.task_done()
|
|
158
|
|
159
|
|
160 def set_num_cpus(num_files, processes):
|
|
161 num_cpus = int(multiprocessing.cpu_count())
|
|
162 if num_files < num_cpus and num_files < processes:
|
|
163 return num_files
|
|
164 if num_cpus < processes:
|
|
165 half_cpus = int(num_cpus / 2)
|
|
166 if num_files < half_cpus:
|
|
167 return num_files
|
|
168 return half_cpus
|
|
169 return processes
|
|
170
|
|
171
|
|
172 if __name__ == '__main__':
|
|
173 parser = argparse.ArgumentParser()
|
|
174
|
|
175 parser.add_argument('--read1', action='store', dest='read1', required=False, default=None, help='Required: single read')
|
|
176 parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read')
|
|
177 parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey')
|
|
178 parser.add_argument('--gzipped', action='store', dest='gzipped', help='Input files are gzipped')
|
|
179 parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', required=False, default=None, help='Output of samtools_idxstats')
|
|
180 parser.add_argument('--output', action='store', dest='output', required=False, default=None, help='Output statisticsfile')
|
|
181 parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', required=False, default=None, help='Output of vsnp_add_zero_coverage')
|
|
182 parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting')
|
|
183
|
|
184 args = parser.parse_args()
|
|
185
|
|
186 reads_files = []
|
|
187 idxstats_files = []
|
|
188 metrics_files = []
|
|
189 output_files = []
|
|
190 if args.output is not None:
|
|
191 # The inputs were not dataset collections, so
|
|
192 # read1, read2 (possibly) and vsnp_azc will also
|
|
193 # not be None.
|
|
194 collection = False
|
|
195 reads_files.append(args.read1)
|
|
196 idxstats_files.append(args.samtools_idxstats)
|
|
197 metrics_files.append(args.vsnp_azc)
|
|
198 output_files.append(args.output)
|
|
199 else:
|
|
200 collection = True
|
|
201 for file_name in sorted(os.listdir(INPUT_READS_DIR)):
|
|
202 file_path = os.path.abspath(os.path.join(INPUT_READS_DIR, file_name))
|
|
203 reads_files.append(file_path)
|
|
204 base_file_name = get_base_file_name(file_path)
|
|
205 output_files.append(os.path.abspath(os.path.join(OUTPUT_DIR, "%s.tabular" % base_file_name)))
|
|
206 for file_name in sorted(os.listdir(INPUT_IDXSTATS_DIR)):
|
|
207 file_path = os.path.abspath(os.path.join(INPUT_IDXSTATS_DIR, file_name))
|
|
208 idxstats_files.append(file_path)
|
|
209 for file_name in sorted(os.listdir(INPUT_METRICS_DIR)):
|
|
210 file_path = os.path.abspath(os.path.join(INPUT_METRICS_DIR, file_name))
|
|
211 metrics_files.append(file_path)
|
|
212
|
|
213 multiprocessing.set_start_method('spawn')
|
|
214 queue1 = multiprocessing.JoinableQueue()
|
|
215 num_files = len(output_files)
|
|
216 cpus = set_num_cpus(num_files, args.processes)
|
|
217 # Set a timeout for get()s in the queue.
|
|
218 timeout = 0.05
|
|
219
|
|
220 for i, output_file in enumerate(output_files):
|
|
221 read_file = reads_files[i]
|
|
222 idxstats_file = idxstats_files[i]
|
|
223 metrics_file = metrics_files[i]
|
|
224 queue1.put((read_file, idxstats_file, metrics_file, output_file))
|
|
225
|
|
226 # Complete the output_statistics task.
|
|
227 processes = [multiprocessing.Process(target=output_statistics, args=(queue1, args.read2, collection, args.gzipped, args.dbkey, timeout, )) for _ in range(cpus)]
|
|
228 for p in processes:
|
|
229 p.start()
|
|
230 for p in processes:
|
|
231 p.join()
|
|
232 queue1.join()
|
|
233
|
|
234 if queue1.empty():
|
|
235 queue1.close()
|
|
236 queue1.join_thread()
|