Mercurial > repos > greg > vsnp_statistics
view vsnp_statistics.py @ 0:c21d338dbdc4 draft
Uploaded
author | greg |
---|---|
date | Tue, 21 Apr 2020 10:19:53 -0400 |
parents | |
children | 14e29f7d59ca |
line wrap: on
line source
#!/usr/bin/env python import argparse import gzip import multiprocessing import numpy import os import pandas import queue INPUT_IDXSTATS_DIR = 'input_idxstats' INPUT_METRICS_DIR = 'input_metrics' INPUT_READS_DIR = 'input_reads' OUTPUT_DIR = 'output' QUALITYKEY = {'!':'0', '"':'1', '#':'2', '$':'3', '%':'4', '&':'5', "'":'6', '(':'7', ')':'8', '*':'9', '+':'10', ',':'11', '-':'12', '.':'13', '/':'14', '0':'15', '1':'16', '2':'17', '3':'18', '4':'19', '5':'20', '6':'21', '7':'22', '8':'23', '9':'24', ':':'25', ';':'26', '<':'27', '=':'28', '>':'29', '?':'30', '@':'31', 'A':'32', 'B':'33', 'C':'34', 'D':'35', 'E':'36', 'F':'37', 'G':'38', 'H':'39', 'I':'40', 'J':'41', 'K':'42', 'L':'43', 'M':'44', 'N':'45', 'O':'46', 'P':'47', 'Q':'48', 'R':'49', 'S':'50', 'T':'51', 'U':'52', 'V':'53', 'W':'54', 'X':'55', 'Y':'56', 'Z':'57', '_':'1', ']':'1', '[':'1', '\\':'1', '\n':'1', '`':'1', 'a':'1', 'b':'1', 'c':'1', 'd':'1', 'e':'1', 'f':'1', 'g':'1', 'h':'1', 'i':'1', 'j':'1', 'k':'1', 'l':'1', 'm':'1', 'n':'1', 'o':'1', 'p':'1', 'q':'1', 'r':'1', 's':'1', 't':'1', 'u':'1', 'v':'1', 'w':'1', 'x':'1', 'y':'1', 'z':'1', ' ':'1'} READCOLUMNS = ['Sample', 'Reference', 'Fastq File', 'Size', 'Total Reads', 'Mean Read Length', 'Mean Read Quality', 'Reads Passing Q30'] SEP = "\t" def get_base_file_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] elif base_file_name.find("_") > 0: # The dot extension was likely changed to # the " character. items = base_file_name.split("_") return "_".join(items[0:-1]) else: return base_file_name def nice_size(size): # Returns a readably formatted string with the size words = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] prefix = '' try: size = float(size) if size < 0: size = abs(size) prefix = '-' except Exception: return '??? bytes' for ind, word in enumerate(words): step = 1024 ** (ind + 1) if step > size: size = size / float(1024 ** ind) if word == 'bytes': # No decimals for bytes return "%s%d bytes" % (prefix, size) return "%s%.1f %s" % (prefix, size, word) return '??? bytes' def output_read_stats(gzipped, fastq_file, ofh, sampling_number=10000, output_sample=False, dbkey=None, collection=False): file_name_base = os.path.basename(fastq_file) # Output a 2-column file where column 1 is # the labels and column 2 is the values. if output_sample: # The Sample and Reference columns should be # output only once, so this block handles # paired reads, where the columns are not # output for Read2. try: # Illumina read file names are something like: # 13-1941-6_S4_L001_R1_600000_fastq_gz sample = file_name_base.split("_")[0] except Exception: sample = "" # Sample ofh.write("Sample%s%s\n" % (SEP, sample)) ofh.write("Reference%s%s\n" % (SEP, dbkey)) if collection: read = "Read" else: read = "Read1" else: read = "Read2" # Read ofh.write("%s File%s%s\n" % (read, SEP, file_name_base)) # File Size ofh.write("%s File Size%s%s\n" % (read, SEP, nice_size(os.path.getsize(fastq_file)))) if gzipped.lower() == "true": df = pandas.read_csv(gzip.open(fastq_file, "r"), header=None, sep="^") else: df = pandas.read_csv(open(fastq_file, "r"), header=None, sep="^") total_read_count = int(len(df.index) / 4) # Readx Total Reads ofh.write("%s Total Reads%s%s\n" % (read, SEP, total_read_count)) # Mean Read Length sampling_size = int(sampling_number) if sampling_size > total_read_count: sampling_size = total_read_count df = df.iloc[3::4].sample(sampling_size) dict_mean = {} list_length = [] for index, row in df.iterrows(): base_qualities = [] for base in list(row.array[0]): base_qualities.append(int(QUALITYKEY[base])) dict_mean[index] = numpy.mean(base_qualities) list_length.append(len(row.array[0])) ofh.write("%s Mean Read Length%s%s\n" % (read, SEP, "%.1f" % numpy.mean(list_length))) # Mean Read Quality df_mean = pandas.DataFrame.from_dict(dict_mean, orient='index', columns=['ave']) ofh.write("%s Mean Read Quality%s%s\n" % (read, SEP, "%.1f" % df_mean['ave'].mean())) # Reads Passing Q30 reads_gt_q30 = len(df_mean[df_mean['ave'] >= 30]) reads_passing_q30 = "{:10.2f}".format(reads_gt_q30 / sampling_size) ofh.write("%s reads passing Q30%s%s\n" % (read, SEP, reads_passing_q30)) return total_read_count def output_statistics(task_queue, read2, collection, gzipped, dbkey, timeout): while True: try: tup = task_queue.get(block=True, timeout=timeout) except queue.Empty: break read_file, idxstats_file, metrics_file, output_file = tup total_reads = 0 with open(output_file, "w") as ofh: total_reads += output_read_stats(gzipped, read_file, ofh, output_sample=True, dbkey=dbkey, collection=collection) if read2 is not None: total_reads += output_read_stats(gzipped, read2, ofh) ofh.write("Total Reads%s%d\n" % (SEP, total_reads)) with open(idxstats_file, "r") as ifh: unmapped_reads = 0 for i, line in enumerate(ifh): items = line.split("\t") if i == 0: # NC_002945.4 4349904 213570 4047 ofh.write("All Mapped Reads%s%s\n" % (SEP, items[2])) elif i == 1: # * 0 0 82774 unmapped_reads = int(items[3]) ofh.write("Unmapped Reads%s%d\n" % (SEP, unmapped_reads)) percent_str = "Unmapped Reads Percentage of Total" if unmapped_reads > 0: unmapped_reads_percentage = "{:10.2f}".format(unmapped_reads / total_reads) ofh.write("%s%s%s\n" % (percent_str, SEP, unmapped_reads_percentage)) else: ofh.write("%s%s0\n" % (percent_str, SEP)) with open(metrics_file, "r") as ifh: for i, line in enumerate(ifh): if i == 0: # Skip comments. continue items = line.split("\t") if i == 1: # MarkDuplicates 10.338671 98.74% ofh.write("Average Depth of Coverage%s%s\n" % (SEP, items[2])) ofh.write("Reference with Coverage%s%s\n" % (SEP, items[3])) elif i == 2: # VCFfilter 611 ofh.write("Good SNP Count%s%s\n" % (SEP, items[1])) task_queue.task_done() def set_num_cpus(num_files, processes): num_cpus = int(multiprocessing.cpu_count()) if num_files < num_cpus and num_files < processes: return num_files if num_cpus < processes: half_cpus = int(num_cpus / 2) if num_files < half_cpus: return num_files return half_cpus return processes if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--read1', action='store', dest='read1', required=False, default=None, help='Required: single read') parser.add_argument('--read2', action='store', dest='read2', required=False, default=None, help='Optional: paired read') parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference dbkey') parser.add_argument('--gzipped', action='store', dest='gzipped', help='Input files are gzipped') parser.add_argument('--samtools_idxstats', action='store', dest='samtools_idxstats', required=False, default=None, help='Output of samtools_idxstats') parser.add_argument('--output', action='store', dest='output', required=False, default=None, help='Output statisticsfile') parser.add_argument('--vsnp_azc', action='store', dest='vsnp_azc', required=False, default=None, help='Output of vsnp_add_zero_coverage') parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') args = parser.parse_args() reads_files = [] idxstats_files = [] metrics_files = [] output_files = [] if args.output is not None: # The inputs were not dataset collections, so # read1, read2 (possibly) and vsnp_azc will also # not be None. collection = False reads_files.append(args.read1) idxstats_files.append(args.samtools_idxstats) metrics_files.append(args.vsnp_azc) output_files.append(args.output) else: collection = True for file_name in sorted(os.listdir(INPUT_READS_DIR)): file_path = os.path.abspath(os.path.join(INPUT_READS_DIR, file_name)) reads_files.append(file_path) base_file_name = get_base_file_name(file_path) output_files.append(os.path.abspath(os.path.join(OUTPUT_DIR, "%s.tabular" % base_file_name))) for file_name in sorted(os.listdir(INPUT_IDXSTATS_DIR)): file_path = os.path.abspath(os.path.join(INPUT_IDXSTATS_DIR, file_name)) idxstats_files.append(file_path) for file_name in sorted(os.listdir(INPUT_METRICS_DIR)): file_path = os.path.abspath(os.path.join(INPUT_METRICS_DIR, file_name)) metrics_files.append(file_path) multiprocessing.set_start_method('spawn') queue1 = multiprocessing.JoinableQueue() num_files = len(output_files) cpus = set_num_cpus(num_files, args.processes) # Set a timeout for get()s in the queue. timeout = 0.05 for i, output_file in enumerate(output_files): read_file = reads_files[i] idxstats_file = idxstats_files[i] metrics_file = metrics_files[i] queue1.put((read_file, idxstats_file, metrics_file, output_file)) # Complete the output_statistics task. processes = [multiprocessing.Process(target=output_statistics, args=(queue1, args.read2, collection, args.gzipped, args.dbkey, timeout, )) for _ in range(cpus)] for p in processes: p.start() for p in processes: p.join() queue1.join() if queue1.empty(): queue1.close() queue1.join_thread()