Mercurial > repos > guerler > springsuite
comparison spring_package/tmalign/TMalign.cpp @ 17:c790d25086dc draft
"planemo upload commit b0ede77caf410ab69043d33a44e190054024d340-dirty"
author | guerler |
---|---|
date | Wed, 28 Oct 2020 05:11:56 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
16:16eb2acaaa20 | 17:c790d25086dc |
---|---|
1 /* TM-align: sequence-independent structure alignment of monomer proteins by | |
2 * TM-score superposition. Please report issues to yangzhanglab@umich.edu | |
3 * | |
4 * References to cite: | |
5 * Y Zhang, J Skolnick. Nucl Acids Res 33, 2302-9 (2005) | |
6 * | |
7 * DISCLAIMER: | |
8 * Permission to use, copy, modify, and distribute the Software for any | |
9 * purpose, with or without fee, is hereby granted, provided that the | |
10 * notices on the head, the reference information, and this copyright | |
11 * notice appear in all copies or substantial portions of the Software. | |
12 * It is provided "as is" without express or implied warranty. | |
13 * | |
14 * ========================== | |
15 * How to install the program | |
16 * ========================== | |
17 * The following command compiles the program in your Linux computer: | |
18 * | |
19 * g++ -static -O3 -ffast-math -lm -o TMalign TMalign.cpp | |
20 * | |
21 * The '-static' flag should be removed on Mac OS, which does not support | |
22 * building static executables. | |
23 * | |
24 * ====================== | |
25 * How to use the program | |
26 * ====================== | |
27 * You can run the program without argument to obtain the document. | |
28 * Briefly, you can compare two structures by: | |
29 * | |
30 * ./TMalign structure1.pdb structure2.pdb | |
31 * | |
32 * ============== | |
33 * Update history | |
34 * ============== | |
35 * 2012/01/24: A C/C++ code of TM-align was constructed by Jianyi Yang | |
36 * 2016/05/21: Several updates of this program were made by Jianji Wu: | |
37 * (1) fixed several compiling bugs | |
38 * (2) made I/O of C/C++ version consistent with the Fortran version | |
39 * (3) added outputs including full-atom and ligand structures | |
40 * (4) added options of '-i', '-I' and '-m' | |
41 * 2016/05/25: Fixed a bug on PDB file reading | |
42 * 2018/06/04: Several updates were made by Chengxin Zhang, including | |
43 * (1) Fixed bug in reading PDB files with negative residue index, | |
44 * (2) Implemented the fTM-align algorithm (by the '-fast' option) | |
45 * as described in R Dong, S Pan, Z Peng, Y Zhang, J Yang | |
46 * (2018) Nucleic acids research. gky430. | |
47 * (3) Included option to perform TM-align against a whole | |
48 * folder of PDB files. A full list of options not available | |
49 * in the Fortran version can be explored by TMalign -h | |
50 * 2018/07/27: Added the -byresi option for TM-score superposition without | |
51 * re-alignment as in TMscore and TMscore -c | |
52 * 2018/08/07: Added the -dir option | |
53 * 2018/08/14: Added the -split option | |
54 * 2018/08/16: Added the -infmt1, -infmt2 options. | |
55 * 2019/01/07: Added support for PDBx/mmCIF format. | |
56 * 2019/02/09: Fixed asymmetric alignment bug. | |
57 * 2019/03/17: Added the -cp option for circular permutation | |
58 * 2019/07/23: Supported RasMol output by '-o' option | |
59 * 2019/07/24: Fixed bug on PyMOL format output by '-o' option with mmCIF input | |
60 * 2019/08/18: Fixed bug on RasMol format output file *_atm. Removed excessive | |
61 * circular permutation alignment by -cp | |
62 * 2019/08/20: Clarified PyMOL syntax. | |
63 * 2019/08/22: Added four additional PyMOL scripts. | |
64 */ | |
65 #include <math.h> | |
66 #include <stdio.h> | |
67 #include <stdlib.h> | |
68 #include <time.h> | |
69 #include <string.h> | |
70 #include <malloc/malloc.h> | |
71 #include <sstream> | |
72 #include <iostream> | |
73 #include <iomanip> | |
74 #include <fstream> | |
75 #include <vector> | |
76 #include <iterator> | |
77 #include <algorithm> | |
78 #include <string> | |
79 #include <map> | |
80 | |
81 using namespace std; | |
82 | |
83 void print_version() | |
84 { | |
85 cout << | |
86 "\n" | |
87 " *********************************************************************\n" | |
88 " * TM-align (Version 20190822): protein structure alignment *\n" | |
89 " * References: Y Zhang, J Skolnick. Nucl Acids Res 33, 2302-9 (2005) *\n" | |
90 " * Please email comments and suggestions to yangzhanglab@umich.edu *\n" | |
91 " *********************************************************************" | |
92 << endl; | |
93 } | |
94 | |
95 void print_extra_help() | |
96 { | |
97 cout << | |
98 "Additional options:\n" | |
99 " -dir Perform all-against-all alignment among the list of PDB\n" | |
100 " chains listed by 'chain_list' under 'chain_folder'. Note\n" | |
101 " that the slash is necessary.\n" | |
102 " $ TMalign -dir chain_folder/ chain_list\n" | |
103 "\n" | |
104 " -dir1 Use chain2 to search a list of PDB chains listed by 'chain1_list'\n" | |
105 " under 'chain1_folder'. Note that the slash is necessary.\n" | |
106 " $ TMalign -dir1 chain1_folder/ chain1_list chain2\n" | |
107 "\n" | |
108 " -dir2 Use chain1 to search a list of PDB chains listed by 'chain2_list'\n" | |
109 " under 'chain2_folder'\n" | |
110 " $ TMalign chain1 -dir2 chain2_folder/ chain2_list\n" | |
111 "\n" | |
112 " -suffix (Only when -dir1 and/or -dir2 are set, default is empty)\n" | |
113 " add file name suffix to files listed by chain1_list or chain2_list\n" | |
114 "\n" | |
115 " -atom 4-character atom name used to represent a residue.\n" | |
116 " Default is \" CA \" for proteins\n" | |
117 " (note the spaces before and after CA).\n" | |
118 "\n" | |
119 " -ter Strings to mark the end of a chain\n" | |
120 " 3: (default) TER, ENDMDL, END or different chain ID\n" | |
121 " 2: ENDMDL, END, or different chain ID\n" | |
122 " 1: ENDMDL or END\n" | |
123 " 0: (default in the first C++ TMalign) end of file\n" | |
124 "\n" | |
125 " -split Whether to split PDB file into multiple chains\n" | |
126 " 0: (default) treat the whole structure as one single chain\n" | |
127 " 1: treat each MODEL as a separate chain (-ter should be 0)\n" | |
128 " 2: treat each chain as a seperate chain (-ter should be <=1)\n" | |
129 "\n" | |
130 " -outfmt Output format\n" | |
131 " 0: (default) full output\n" | |
132 " 1: fasta format compact output\n" | |
133 " 2: tabular format very compact output\n" | |
134 " -1: full output, but without version or citation information\n" | |
135 "\n" | |
136 " -byresi Whether to assume residue index correspondence between the\n" | |
137 " two structures.\n" | |
138 " 0: (default) sequence independent alignment\n" | |
139 " 1: (same as TMscore program) sequence-dependent superposition,\n" | |
140 " i.e. align by residue index\n" | |
141 " 2: (same as TMscore -c, should be used with -ter <=1)\n" | |
142 " align by residue index and chain ID\n" | |
143 " 3: (similar to TMscore -c, should be used with -ter <=1)\n" | |
144 " align by residue index and order of chain\n" | |
145 "\n" | |
146 " -TMcut -1: (default) do not consider TMcut\n" | |
147 " Values in [0.5,1): Do not proceed with TM-align for this\n" | |
148 " structure pair if TM-score is unlikely to reach TMcut.\n" | |
149 " TMcut is normalized is set by -a option:\n" | |
150 " -2: normalized by longer structure length\n" | |
151 " -1: normalized by shorter structure length\n" | |
152 " 0: (default, same as F) normalized by second structure\n" | |
153 " 1: same as T, normalized by average structure length\n" | |
154 "\n" | |
155 " -mirror Whether to align the mirror image of input structure\n" | |
156 " 0: (default) do not align mirrored structure\n" | |
157 " 1: align mirror of chain1 to origin chain2\n" | |
158 "\n" | |
159 " -het Whether to align residues marked as 'HETATM' in addition to 'ATOM '\n" | |
160 " 0: (default) only align 'ATOM ' residues\n" | |
161 " 1: align both 'ATOM ' and 'HETATM' residues\n" | |
162 "\n" | |
163 " -infmt1 Input format for chain1\n" | |
164 " -infmt2 Input format for chain2\n" | |
165 " -1: (default) automatically detect PDB or PDBx/mmCIF format\n" | |
166 " 0: PDB format\n" | |
167 " 1: SPICKER format\n" | |
168 " 2: xyz format\n" | |
169 " 3: PDBx/mmCIF format\n" | |
170 <<endl; | |
171 } | |
172 | |
173 void print_help(bool h_opt=false) | |
174 { | |
175 print_version(); | |
176 cout << | |
177 "\n" | |
178 "Usage: TMalign PDB1.pdb PDB2.pdb [Options]\n" | |
179 "\n" | |
180 "Options:\n" | |
181 " -u TM-score normalized by user assigned length (the same as -L)\n" | |
182 " warning: it should be >= minimum length of the two structures\n" | |
183 " otherwise, TM-score may be >1\n" | |
184 "\n" | |
185 " -a TM-score normalized by the average length of two structures\n" | |
186 " T or F, (default F)\n" | |
187 "\n" | |
188 " -i Start with an alignment specified in fasta file 'align.txt'\n" | |
189 "\n" | |
190 " -I Stick to the alignment specified in 'align.txt'\n" | |
191 "\n" | |
192 " -m Output TM-align rotation matrix\n" | |
193 "\n" | |
194 " -d TM-score scaled by an assigned d0, e.g. 5 Angstroms\n" | |
195 "\n" | |
196 " -o Output the superposition to 'TM_sup*'\n" | |
197 " $ TMalign PDB1.pdb PDB2.pdb -o TM_sup\n" | |
198 " View superposed C-alpha traces of aligned regions by RasMol or PyMOL:\n" | |
199 " $ rasmol -script TM_sup\n" | |
200 " $ pymol -d @TM_sup.pml\n" | |
201 " View superposed C-alpha traces of all regions:\n" | |
202 " $ rasmol -script TM_sup_all\n" | |
203 " $ pymol -d @TM_sup_all.pml\n" | |
204 " View superposed full-atom structures of aligned regions:\n" | |
205 " $ rasmol -script TM_sup_atm\n" | |
206 " $ pymol -d @TM_sup_atm.pml\n" | |
207 " View superposed full-atom structures of all regions:\n" | |
208 " $ rasmol -script TM_sup_all_atm\n" | |
209 " $ pymol -d @TM_sup_all_atm.pml\n" | |
210 " View superposed full-atom structures and ligands of all regions\n" | |
211 " $ rasmol -script TM_sup_all_atm_lig\n" | |
212 " $ pymol -d @TM_sup_all_atm_lig.pml\n" | |
213 "\n" | |
214 " -fast Fast but slightly inaccurate alignment by fTM-align algorithm\n" | |
215 "\n" | |
216 " -cp Alignment with circular permutation\n" | |
217 "\n" | |
218 " -v Print the version of TM-align\n" | |
219 "\n" | |
220 " -h Print the full help message, including additional options\n" | |
221 "\n" | |
222 " (Options -u, -a, -d, -o will not change the final structure alignment)\n\n" | |
223 "Example usages:\n" | |
224 " TMalign PDB1.pdb PDB2.pdb\n" | |
225 " TMalign PDB1.pdb PDB2.pdb -u 100 -d 5.0\n" | |
226 " TMalign PDB1.pdb PDB2.pdb -a T -o PDB1.sup\n" | |
227 " TMalign PDB1.pdb PDB2.pdb -i align.txt\n" | |
228 " TMalign PDB1.pdb PDB2.pdb -m matrix.txt\n" | |
229 " TMalign PDB1.pdb PDB2.pdb -fast\n" | |
230 " TMalign PDB1.pdb PDB2.pdb -cp\n" | |
231 <<endl; | |
232 | |
233 if (h_opt) print_extra_help(); | |
234 | |
235 exit(EXIT_SUCCESS); | |
236 } | |
237 | |
238 | |
239 /* Functions for the core TMalign algorithm, including the entry function | |
240 * TMalign_main */ | |
241 | |
242 void PrintErrorAndQuit(const string sErrorString) | |
243 { | |
244 cout << sErrorString << endl; | |
245 exit(1); | |
246 } | |
247 | |
248 template <typename T> inline T getmin(const T &a, const T &b) | |
249 { | |
250 return b<a?b:a; | |
251 } | |
252 | |
253 template <class A> void NewArray(A *** array, int Narray1, int Narray2) | |
254 { | |
255 *array=new A* [Narray1]; | |
256 for(int i=0; i<Narray1; i++) *(*array+i)=new A [Narray2]; | |
257 } | |
258 | |
259 template <class A> void DeleteArray(A *** array, int Narray) | |
260 { | |
261 for(int i=0; i<Narray; i++) | |
262 if(*(*array+i)) delete [] *(*array+i); | |
263 if(Narray) delete [] (*array); | |
264 (*array)=NULL; | |
265 } | |
266 | |
267 string AAmap(char A) | |
268 { | |
269 if (A=='A') return "ALA"; | |
270 if (A=='B') return "ASX"; | |
271 if (A=='C') return "CYS"; | |
272 if (A=='D') return "ASP"; | |
273 if (A=='E') return "GLU"; | |
274 if (A=='F') return "PHE"; | |
275 if (A=='G') return "GLY"; | |
276 if (A=='H') return "HIS"; | |
277 if (A=='I') return "ILE"; | |
278 if (A=='K') return "LYS"; | |
279 if (A=='L') return "LEU"; | |
280 if (A=='M') return "MET"; | |
281 if (A=='N') return "ASN"; | |
282 if (A=='O') return "PYL"; | |
283 if (A=='P') return "PRO"; | |
284 if (A=='Q') return "GLN"; | |
285 if (A=='R') return "ARG"; | |
286 if (A=='S') return "SER"; | |
287 if (A=='T') return "THR"; | |
288 if (A=='U') return "SEC"; | |
289 if (A=='V') return "VAL"; | |
290 if (A=='W') return "TRP"; | |
291 if (A=='Y') return "TYR"; | |
292 if (A=='Z') return "GLX"; | |
293 return "UNK"; | |
294 } | |
295 | |
296 char AAmap(const string &AA) | |
297 { | |
298 if (AA.compare("ALA")==0 || AA.compare("DAL")==0) return 'A'; | |
299 if (AA.compare("ASX")==0) return 'B'; | |
300 if (AA.compare("CYS")==0 || AA.compare("DCY")==0) return 'C'; | |
301 if (AA.compare("ASP")==0 || AA.compare("DAS")==0) return 'D'; | |
302 if (AA.compare("GLU")==0 || AA.compare("DGL")==0) return 'E'; | |
303 if (AA.compare("PHE")==0 || AA.compare("DPN")==0) return 'F'; | |
304 if (AA.compare("GLY")==0) return 'G'; | |
305 if (AA.compare("HIS")==0 || AA.compare("DHI")==0) return 'H'; | |
306 if (AA.compare("ILE")==0 || AA.compare("DIL")==0) return 'I'; | |
307 if (AA.compare("LYS")==0 || AA.compare("DLY")==0) return 'K'; | |
308 if (AA.compare("LEU")==0 || AA.compare("DLE")==0) return 'L'; | |
309 if (AA.compare("MET")==0 || AA.compare("MED")==0 || | |
310 AA.compare("MSE")==0) return 'M'; | |
311 if (AA.compare("ASN")==0 || AA.compare("DSG")==0) return 'N'; | |
312 if (AA.compare("PYL")==0) return 'O'; | |
313 if (AA.compare("PRO")==0 || AA.compare("DPR")==0) return 'P'; | |
314 if (AA.compare("GLN")==0 || AA.compare("DGN")==0) return 'Q'; | |
315 if (AA.compare("ARG")==0 || AA.compare("DAR")==0) return 'R'; | |
316 if (AA.compare("SER")==0 || AA.compare("DSN")==0) return 'S'; | |
317 if (AA.compare("THR")==0 || AA.compare("DTH")==0) return 'T'; | |
318 if (AA.compare("SEC")==0) return 'U'; | |
319 if (AA.compare("VAL")==0 || AA.compare("DVA")==0) return 'V'; | |
320 if (AA.compare("TRP")==0 || AA.compare("DTR")==0) return 'W'; | |
321 if (AA.compare("TYR")==0 || AA.compare("DTY")==0) return 'Y'; | |
322 if (AA.compare("GLX")==0) return 'Z'; | |
323 return 'X'; | |
324 } | |
325 | |
326 /* split a long string into vectors by whitespace | |
327 * line - input string | |
328 * line_vec - output vector | |
329 * delimiter - delimiter */ | |
330 void split(const string &line, vector<string> &line_vec, | |
331 const char delimiter=' ') | |
332 { | |
333 bool within_word = false; | |
334 for (int pos=0;pos<line.size();pos++) | |
335 { | |
336 if (line[pos]==delimiter) | |
337 { | |
338 within_word = false; | |
339 continue; | |
340 } | |
341 if (!within_word) | |
342 { | |
343 within_word = true; | |
344 line_vec.push_back(""); | |
345 } | |
346 line_vec.back()+=line[pos]; | |
347 } | |
348 } | |
349 | |
350 /* split a long string into vectors by whitespace, return both whitespaces | |
351 * and non-whitespaces | |
352 * line - input string | |
353 * line_vec - output vector | |
354 * space_vec - output vector | |
355 * delimiter - delimiter */ | |
356 void split_white(const string &line, vector<string> &line_vec, | |
357 vector<string>&white_vec, const char delimiter=' ') | |
358 { | |
359 bool within_word = false; | |
360 for (int pos=0;pos<line.size();pos++) | |
361 { | |
362 if (line[pos]==delimiter) | |
363 { | |
364 if (within_word==true) | |
365 { | |
366 white_vec.push_back(""); | |
367 within_word = false; | |
368 } | |
369 white_vec.back()+=delimiter; | |
370 } | |
371 else | |
372 { | |
373 if (within_word==false) | |
374 { | |
375 line_vec.push_back(""); | |
376 within_word = true; | |
377 } | |
378 line_vec.back()+=line[pos]; | |
379 } | |
380 } | |
381 } | |
382 | |
383 size_t get_PDB_lines(const string filename, | |
384 vector<vector<string> >&PDB_lines, vector<string> &chainID_list, | |
385 vector<int> &mol_vec, const int ter_opt, const int infmt_opt, | |
386 const string atom_opt, const int split_opt, const int het_opt) | |
387 { | |
388 size_t i=0; // resi i.e. atom index | |
389 string line; | |
390 char chainID=0; | |
391 string resi=""; | |
392 bool select_atom=false; | |
393 size_t model_idx=0; | |
394 vector<string> tmp_str_vec; | |
395 | |
396 ifstream fin; | |
397 fin.open(filename.c_str()); | |
398 | |
399 if (infmt_opt==0||infmt_opt==-1) // PDB format | |
400 { | |
401 while (fin.good()) | |
402 { | |
403 getline(fin, line); | |
404 if (infmt_opt==-1 && line.compare(0,5,"loop_")==0) // PDBx/mmCIF | |
405 return get_PDB_lines(filename,PDB_lines,chainID_list, | |
406 mol_vec, ter_opt, 3, atom_opt, split_opt,het_opt); | |
407 if (i > 0) | |
408 { | |
409 if (ter_opt>=1 && line.compare(0,3,"END")==0) break; | |
410 else if (ter_opt>=3 && line.compare(0,3,"TER")==0) break; | |
411 } | |
412 if (split_opt && line.compare(0,3,"END")==0) chainID=0; | |
413 if ((line.compare(0, 6, "ATOM ")==0 || | |
414 (line.compare(0, 6, "HETATM")==0 && het_opt)) | |
415 && line.size()>=54 && (line[16]==' ' || line[16]=='A')) | |
416 { | |
417 if (atom_opt=="auto") | |
418 select_atom=(line.compare(12,4," CA ")==0); | |
419 else select_atom=(line.compare(12,4,atom_opt)==0); | |
420 if (select_atom) | |
421 { | |
422 if (!chainID) | |
423 { | |
424 chainID=line[21]; | |
425 model_idx++; | |
426 stringstream i8_stream; | |
427 i=0; | |
428 if (split_opt==2) // split by chain | |
429 { | |
430 if (chainID==' ') | |
431 { | |
432 if (ter_opt>=1) i8_stream << ":_"; | |
433 else i8_stream<<':'<<model_idx<<":_"; | |
434 } | |
435 else | |
436 { | |
437 if (ter_opt>=1) i8_stream << ':' << chainID; | |
438 else i8_stream<<':'<<model_idx<<':'<<chainID; | |
439 } | |
440 chainID_list.push_back(i8_stream.str()); | |
441 } | |
442 else if (split_opt==1) // split by model | |
443 { | |
444 i8_stream << ':' << model_idx; | |
445 chainID_list.push_back(i8_stream.str()); | |
446 } | |
447 PDB_lines.push_back(tmp_str_vec); | |
448 mol_vec.push_back(0); | |
449 } | |
450 else if (ter_opt>=2 && chainID!=line[21]) break; | |
451 if (split_opt==2 && chainID!=line[21]) | |
452 { | |
453 chainID=line[21]; | |
454 i=0; | |
455 stringstream i8_stream; | |
456 if (chainID==' ') | |
457 { | |
458 if (ter_opt>=1) i8_stream << ":_"; | |
459 else i8_stream<<':'<<model_idx<<":_"; | |
460 } | |
461 else | |
462 { | |
463 if (ter_opt>=1) i8_stream << ':' << chainID; | |
464 else i8_stream<<':'<<model_idx<<':'<<chainID; | |
465 } | |
466 chainID_list.push_back(i8_stream.str()); | |
467 PDB_lines.push_back(tmp_str_vec); | |
468 mol_vec.push_back(0); | |
469 } | |
470 | |
471 if (resi==line.substr(22,5)) | |
472 cerr<<"Warning! Duplicated residue "<<resi<<endl; | |
473 resi=line.substr(22,5); // including insertion code | |
474 | |
475 PDB_lines.back().push_back(line); | |
476 if (line[17]==' ' && (line[18]=='D'||line[18]==' ')) mol_vec.back()++; | |
477 else mol_vec.back()--; | |
478 i++; | |
479 } | |
480 } | |
481 } | |
482 } | |
483 else if (infmt_opt==1) // SPICKER format | |
484 { | |
485 int L=0; | |
486 float x,y,z; | |
487 stringstream i8_stream; | |
488 while (fin.good()) | |
489 { | |
490 fin >>L>>x>>y>>z; | |
491 getline(fin, line); | |
492 if (!fin.good()) break; | |
493 model_idx++; | |
494 stringstream i8_stream; | |
495 i8_stream << ':' << model_idx; | |
496 chainID_list.push_back(i8_stream.str()); | |
497 PDB_lines.push_back(tmp_str_vec); | |
498 mol_vec.push_back(0); | |
499 for (i=0;i<L;i++) | |
500 { | |
501 fin >>x>>y>>z; | |
502 i8_stream<<"ATOM "<<setw(4)<<i+1<<" CA UNK "<<setw(4) | |
503 <<i+1<<" "<<setiosflags(ios::fixed)<<setprecision(3) | |
504 <<setw(8)<<x<<setw(8)<<y<<setw(8)<<z; | |
505 line=i8_stream.str(); | |
506 i8_stream.str(string()); | |
507 PDB_lines.back().push_back(line); | |
508 } | |
509 getline(fin, line); | |
510 } | |
511 } | |
512 else if (infmt_opt==2) // xyz format | |
513 { | |
514 int L=0; | |
515 char A; | |
516 stringstream i8_stream; | |
517 while (fin.good()) | |
518 { | |
519 getline(fin, line); | |
520 L=atoi(line.c_str()); | |
521 getline(fin, line); | |
522 for (i=0;i<line.size();i++) | |
523 if (line[i]==' '||line[i]=='\t') break; | |
524 if (!fin.good()) break; | |
525 chainID_list.push_back(':'+line.substr(0,i)); | |
526 PDB_lines.push_back(tmp_str_vec); | |
527 mol_vec.push_back(0); | |
528 for (i=0;i<L;i++) | |
529 { | |
530 getline(fin, line); | |
531 i8_stream<<"ATOM "<<setw(4)<<i+1<<" CA " | |
532 <<AAmap(line[0])<<" "<<setw(4)<<i+1<<" " | |
533 <<line.substr(2,8)<<line.substr(11,8)<<line.substr(20,8); | |
534 line=i8_stream.str(); | |
535 i8_stream.str(string()); | |
536 PDB_lines.back().push_back(line); | |
537 if (line[0]>='a' && line[0]<='z') mol_vec.back()++; // RNA | |
538 else mol_vec.back()--; | |
539 } | |
540 } | |
541 } | |
542 else if (infmt_opt==3) // PDBx/mmCIF format | |
543 { | |
544 bool loop_ = false; // not reading following content | |
545 map<string,int> _atom_site; | |
546 int atom_site_pos; | |
547 vector<string> line_vec; | |
548 string alt_id="."; // alternative location indicator | |
549 string asym_id="."; // this is similar to chainID, except that | |
550 // chainID is char while asym_id is a string | |
551 // with possibly multiple char | |
552 string prev_asym_id=""; | |
553 string AA=""; // residue name | |
554 string atom=""; | |
555 string prev_resi=""; | |
556 string model_index=""; // the same as model_idx but type is string | |
557 stringstream i8_stream; | |
558 while (fin.good()) | |
559 { | |
560 getline(fin, line); | |
561 if (line.size()==0) continue; | |
562 if (loop_) loop_ = line.compare(0,2,"# "); | |
563 if (!loop_) | |
564 { | |
565 if (line.compare(0,5,"loop_")) continue; | |
566 while(1) | |
567 { | |
568 if (fin.good()) getline(fin, line); | |
569 else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); | |
570 if (line.size()) break; | |
571 } | |
572 if (line.compare(0,11,"_atom_site.")) continue; | |
573 | |
574 loop_=true; | |
575 _atom_site.clear(); | |
576 atom_site_pos=0; | |
577 _atom_site[line.substr(11,line.size()-12)]=atom_site_pos; | |
578 | |
579 while(1) | |
580 { | |
581 if (fin.good()) getline(fin, line); | |
582 else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); | |
583 if (line.size()==0) continue; | |
584 if (line.compare(0,11,"_atom_site.")) break; | |
585 _atom_site[line.substr(11,line.size()-12)]=++atom_site_pos; | |
586 } | |
587 | |
588 | |
589 if (_atom_site.count("group_PDB")* | |
590 _atom_site.count("label_atom_id")* | |
591 _atom_site.count("label_comp_id")* | |
592 (_atom_site.count("auth_asym_id")+ | |
593 _atom_site.count("label_asym_id"))* | |
594 (_atom_site.count("auth_seq_id")+ | |
595 _atom_site.count("label_seq_id"))* | |
596 _atom_site.count("Cartn_x")* | |
597 _atom_site.count("Cartn_y")* | |
598 _atom_site.count("Cartn_z")==0) | |
599 { | |
600 loop_ = false; | |
601 cerr<<"Warning! Missing one of the following _atom_site data items: group_PDB, label_atom_id, label_atom_id, auth_asym_id/label_asym_id, auth_seq_id/label_seq_id, Cartn_x, Cartn_y, Cartn_z"<<endl; | |
602 continue; | |
603 } | |
604 } | |
605 | |
606 line_vec.clear(); | |
607 split(line,line_vec); | |
608 if (line_vec[_atom_site["group_PDB"]]!="ATOM" && (het_opt==0 || | |
609 line_vec[_atom_site["group_PDB"]]!="HETATM")) continue; | |
610 | |
611 alt_id="."; | |
612 if (_atom_site.count("label_alt_id")) // in 39.4 % of entries | |
613 alt_id=line_vec[_atom_site["label_alt_id"]]; | |
614 if (alt_id!="." && alt_id!="A") continue; | |
615 | |
616 atom=line_vec[_atom_site["label_atom_id"]]; | |
617 if (atom[0]=='"') atom=atom.substr(1); | |
618 if (atom.size() && atom[atom.size()-1]=='"') | |
619 atom=atom.substr(0,atom.size()-1); | |
620 if (atom.size()==0) continue; | |
621 if (atom.size()==1) atom=" "+atom+" "; | |
622 else if (atom.size()==2) atom=" "+atom+" "; // wrong for sidechain H | |
623 else if (atom.size()==3) atom=" "+atom; | |
624 else if (atom.size()>=5) continue; | |
625 | |
626 AA=line_vec[_atom_site["label_comp_id"]]; // residue name | |
627 if (AA.size()==1) AA=" "+AA; | |
628 else if (AA.size()==2) AA=" " +AA; | |
629 else if (AA.size()>=4) continue; | |
630 | |
631 if (atom_opt=="auto") | |
632 select_atom=(atom==" CA "); | |
633 else select_atom=(atom==atom_opt); | |
634 | |
635 if (!select_atom) continue; | |
636 | |
637 if (_atom_site.count("auth_asym_id")) | |
638 asym_id=line_vec[_atom_site["auth_asym_id"]]; | |
639 else asym_id=line_vec[_atom_site["label_asym_id"]]; | |
640 if (asym_id==".") asym_id=" "; | |
641 | |
642 if (_atom_site.count("pdbx_PDB_model_num") && | |
643 model_index!=line_vec[_atom_site["pdbx_PDB_model_num"]]) | |
644 { | |
645 model_index=line_vec[_atom_site["pdbx_PDB_model_num"]]; | |
646 if (PDB_lines.size() && ter_opt>=1) break; | |
647 if (PDB_lines.size()==0 || split_opt>=1) | |
648 { | |
649 PDB_lines.push_back(tmp_str_vec); | |
650 mol_vec.push_back(0); | |
651 prev_asym_id=asym_id; | |
652 | |
653 if (split_opt==1 && ter_opt==0) chainID_list.push_back( | |
654 ':'+model_index); | |
655 else if (split_opt==2 && ter_opt==0) | |
656 chainID_list.push_back(':'+model_index+':'+asym_id); | |
657 else if (split_opt==2 && ter_opt==1) | |
658 chainID_list.push_back(':'+asym_id); | |
659 } | |
660 } | |
661 | |
662 if (prev_asym_id!=asym_id) | |
663 { | |
664 if (prev_asym_id!="" && ter_opt>=2) break; | |
665 if (split_opt>=2) | |
666 { | |
667 PDB_lines.push_back(tmp_str_vec); | |
668 mol_vec.push_back(0); | |
669 | |
670 if (split_opt==1 && ter_opt==0) chainID_list.push_back( | |
671 ':'+model_index); | |
672 else if (split_opt==2 && ter_opt==0) | |
673 chainID_list.push_back(':'+model_index+':'+asym_id); | |
674 else if (split_opt==2 && ter_opt==1) | |
675 chainID_list.push_back(':'+asym_id); | |
676 } | |
677 } | |
678 if (prev_asym_id!=asym_id) prev_asym_id=asym_id; | |
679 | |
680 if (AA[0]==' ' && (AA[1]=='D'||AA[1]==' ')) mol_vec.back()++; | |
681 else mol_vec.back()--; | |
682 | |
683 if (_atom_site.count("auth_seq_id")) | |
684 resi=line_vec[_atom_site["auth_seq_id"]]; | |
685 else resi=line_vec[_atom_site["label_seq_id"]]; | |
686 if (_atom_site.count("pdbx_PDB_ins_code") && | |
687 line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") | |
688 resi+=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; | |
689 else resi+=" "; | |
690 | |
691 if (prev_resi==resi) | |
692 cerr<<"Warning! Duplicated residue "<<resi<<endl; | |
693 prev_resi=resi; | |
694 | |
695 i++; | |
696 i8_stream<<"ATOM " | |
697 <<setw(5)<<i<<" "<<atom<<" "<<AA<<" "<<asym_id[0] | |
698 <<setw(5)<<resi.substr(0,5)<<" " | |
699 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
700 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
701 <<setw(8)<<line_vec[_atom_site["Cartn_z"]]; | |
702 PDB_lines.back().push_back(i8_stream.str()); | |
703 i8_stream.str(string()); | |
704 } | |
705 _atom_site.clear(); | |
706 line_vec.clear(); | |
707 alt_id.clear(); | |
708 asym_id.clear(); | |
709 AA.clear(); | |
710 } | |
711 | |
712 fin.close(); | |
713 line.clear(); | |
714 if (!split_opt) chainID_list.push_back(""); | |
715 return PDB_lines.size(); | |
716 } | |
717 | |
718 /* read fasta file from filename. sequence is stored into FASTA_lines | |
719 * while sequence name is stored into chainID_list. | |
720 * if ter_opt >=1, only read the first sequence. | |
721 * if ter_opt ==0, read all sequences. | |
722 * if split_opt >=1 and ter_opt ==0, each sequence is a separate entry. | |
723 * if split_opt ==0 and ter_opt ==0, all sequences are combined into one */ | |
724 size_t get_FASTA_lines(const string filename, | |
725 vector<vector<string> >&FASTA_lines, vector<string> &chainID_list, | |
726 vector<int> &mol_vec, const int ter_opt=3, const int split_opt=0) | |
727 { | |
728 string line; | |
729 vector<string> tmp_str_vec; | |
730 int l; | |
731 | |
732 ifstream fin; | |
733 fin.open(filename.c_str()); | |
734 | |
735 while (fin.good()) | |
736 { | |
737 getline(fin, line); | |
738 if (line.size()==0 || line[0]=='#') continue; | |
739 | |
740 if (line[0]=='>') | |
741 { | |
742 if (FASTA_lines.size()) | |
743 { | |
744 if (ter_opt) break; | |
745 if (split_opt==0) continue; | |
746 } | |
747 FASTA_lines.push_back(tmp_str_vec); | |
748 FASTA_lines.back().push_back(""); | |
749 mol_vec.push_back(0); | |
750 if (ter_opt==0 && split_opt) | |
751 { | |
752 line[0]=':'; | |
753 chainID_list.push_back(line); | |
754 } | |
755 else chainID_list.push_back(""); | |
756 } | |
757 else | |
758 { | |
759 FASTA_lines.back()[0]+=line; | |
760 for (l=0;l<line.size();l++) mol_vec.back()+= | |
761 ('a'<=line[l] && line[l]<='z')-('A'<=line[l] && line[l]<='Z'); | |
762 } | |
763 } | |
764 | |
765 line.clear(); | |
766 fin.close(); | |
767 return FASTA_lines.size(); | |
768 } | |
769 | |
770 | |
771 /* extract pairwise sequence alignment from residue index vectors, | |
772 * assuming that "sequence" contains two empty strings. | |
773 * return length of alignment, including gap. */ | |
774 int extract_aln_from_resi(vector<string> &sequence, char *seqx, char *seqy, | |
775 const vector<string> resi_vec1, const vector<string> resi_vec2, | |
776 const int byresi_opt) | |
777 { | |
778 sequence.clear(); | |
779 sequence.push_back(""); | |
780 sequence.push_back(""); | |
781 | |
782 int i1=0; // positions in resi_vec1 | |
783 int i2=0; // positions in resi_vec2 | |
784 int xlen=resi_vec1.size(); | |
785 int ylen=resi_vec2.size(); | |
786 map<char,int> chainID_map1; | |
787 map<char,int> chainID_map2; | |
788 if (byresi_opt==3) | |
789 { | |
790 vector<char> chainID_vec; | |
791 char chainID; | |
792 int i; | |
793 for (i=0;i<xlen;i++) | |
794 { | |
795 chainID=resi_vec1[i][5]; | |
796 if (!chainID_vec.size()|| chainID_vec.back()!=chainID) | |
797 { | |
798 chainID_vec.push_back(chainID); | |
799 chainID_map1[chainID]=chainID_vec.size(); | |
800 } | |
801 } | |
802 chainID_vec.clear(); | |
803 for (i=0;i<ylen;i++) | |
804 { | |
805 chainID=resi_vec2[i][5]; | |
806 if (!chainID_vec.size()|| chainID_vec.back()!=chainID) | |
807 { | |
808 chainID_vec.push_back(chainID); | |
809 chainID_map2[chainID]=chainID_vec.size(); | |
810 } | |
811 } | |
812 chainID_vec.clear(); | |
813 } | |
814 while(i1<xlen && i2<ylen) | |
815 { | |
816 if ((byresi_opt<=2 && resi_vec1[i1]==resi_vec2[i2]) || (byresi_opt==3 | |
817 && resi_vec1[i1].substr(0,5)==resi_vec2[i2].substr(0,5) | |
818 && chainID_map1[resi_vec1[i1][5]]==chainID_map2[resi_vec2[i2][5]])) | |
819 { | |
820 sequence[0]+=seqx[i1++]; | |
821 sequence[1]+=seqy[i2++]; | |
822 } | |
823 else if (atoi(resi_vec1[i1].substr(0,4).c_str())<= | |
824 atoi(resi_vec2[i2].substr(0,4).c_str())) | |
825 { | |
826 sequence[0]+=seqx[i1++]; | |
827 sequence[1]+='-'; | |
828 } | |
829 else | |
830 { | |
831 sequence[0]+='-'; | |
832 sequence[1]+=seqy[i2++]; | |
833 } | |
834 } | |
835 chainID_map1.clear(); | |
836 chainID_map2.clear(); | |
837 return sequence[0].size(); | |
838 } | |
839 | |
840 int read_PDB(const vector<string> &PDB_lines, double **a, char *seq, | |
841 vector<string> &resi_vec, const int byresi_opt) | |
842 { | |
843 int i; | |
844 for (i=0;i<PDB_lines.size();i++) | |
845 { | |
846 a[i][0] = atof(PDB_lines[i].substr(30, 8).c_str()); | |
847 a[i][1] = atof(PDB_lines[i].substr(38, 8).c_str()); | |
848 a[i][2] = atof(PDB_lines[i].substr(46, 8).c_str()); | |
849 seq[i] = AAmap(PDB_lines[i].substr(17, 3)); | |
850 | |
851 if (byresi_opt>=2) resi_vec.push_back(PDB_lines[i].substr(22,5)+ | |
852 PDB_lines[i][21]); | |
853 if (byresi_opt==1) resi_vec.push_back(PDB_lines[i].substr(22,5)); | |
854 } | |
855 seq[i]='\0'; | |
856 return i; | |
857 } | |
858 | |
859 double dist(double x[3], double y[3]) | |
860 { | |
861 double d1=x[0]-y[0]; | |
862 double d2=x[1]-y[1]; | |
863 double d3=x[2]-y[2]; | |
864 | |
865 return (d1*d1 + d2*d2 + d3*d3); | |
866 } | |
867 | |
868 double dot(double *a, double *b) | |
869 { | |
870 return (a[0] * b[0] + a[1] * b[1] + a[2] * b[2]); | |
871 } | |
872 | |
873 void transform(double t[3], double u[3][3], double *x, double *x1) | |
874 { | |
875 x1[0]=t[0]+dot(&u[0][0], x); | |
876 x1[1]=t[1]+dot(&u[1][0], x); | |
877 x1[2]=t[2]+dot(&u[2][0], x); | |
878 } | |
879 | |
880 void do_rotation(double **x, double **x1, int len, double t[3], double u[3][3]) | |
881 { | |
882 for(int i=0; i<len; i++) | |
883 { | |
884 transform(t, u, &x[i][0], &x1[i][0]); | |
885 } | |
886 } | |
887 | |
888 /* strip white space at the begining or end of string */ | |
889 string Trim(const string &inputString) | |
890 { | |
891 string result = inputString; | |
892 int idxBegin = inputString.find_first_not_of(" \n\r\t"); | |
893 int idxEnd = inputString.find_last_not_of(" \n\r\t"); | |
894 if (idxBegin >= 0 && idxEnd >= 0) | |
895 result = inputString.substr(idxBegin, idxEnd + 1 - idxBegin); | |
896 return result; | |
897 } | |
898 | |
899 /* read user specified pairwise alignment from 'fname_lign' to 'sequence'. | |
900 * This function should only be called by main function, as it will | |
901 * terminate a program if wrong alignment is given */ | |
902 void read_user_alignment(vector<string>&sequence, const string &fname_lign, | |
903 const int i_opt) | |
904 { | |
905 if (fname_lign == "") | |
906 PrintErrorAndQuit("Please provide a file name for option -i!"); | |
907 // open alignment file | |
908 int n_p = 0;// number of structures in alignment file | |
909 string line; | |
910 | |
911 ifstream fileIn(fname_lign.c_str()); | |
912 if (fileIn.is_open()) | |
913 { | |
914 while (fileIn.good()) | |
915 { | |
916 getline(fileIn, line); | |
917 if (line.compare(0, 1, ">") == 0)// Flag for a new structure | |
918 { | |
919 if (n_p >= 2) break; | |
920 sequence.push_back(""); | |
921 n_p++; | |
922 } | |
923 else if (n_p > 0 && line!="") sequence.back()+=line; | |
924 } | |
925 fileIn.close(); | |
926 } | |
927 else PrintErrorAndQuit("ERROR! Alignment file does not exist."); | |
928 | |
929 if (n_p < 2) | |
930 PrintErrorAndQuit("ERROR: Fasta format is wrong, two proteins should be included."); | |
931 if (sequence[0].size() != sequence[1].size()) | |
932 PrintErrorAndQuit("ERROR! FASTA file is wrong. The length in alignment should be equal for the two aligned proteins."); | |
933 if (i_opt==3) | |
934 { | |
935 int aligned_resNum=0; | |
936 for (int i=0;i<sequence[0].size();i++) | |
937 aligned_resNum+=(sequence[0][i]!='-' && sequence[1][i]!='-'); | |
938 if (aligned_resNum<3) | |
939 PrintErrorAndQuit("ERROR! Superposition is undefined for <3 aligned residues."); | |
940 } | |
941 line.clear(); | |
942 return; | |
943 } | |
944 | |
945 /* read list of entries from 'name' to 'chain_list'. | |
946 * dir_opt is the folder name (prefix). | |
947 * suffix_opt is the file name extension (suffix_opt). | |
948 * This function should only be called by main function, as it will | |
949 * terminate a program if wrong alignment is given */ | |
950 void file2chainlist(vector<string>&chain_list, const string &name, | |
951 const string &dir_opt, const string &suffix_opt) | |
952 { | |
953 ifstream fp(name.c_str()); | |
954 if (! fp.is_open()) | |
955 PrintErrorAndQuit(("Can not open file: "+name+'\n').c_str()); | |
956 string line; | |
957 while (fp.good()) | |
958 { | |
959 getline(fp, line); | |
960 if (! line.size()) continue; | |
961 chain_list.push_back(dir_opt+Trim(line)+suffix_opt); | |
962 } | |
963 fp.close(); | |
964 line.clear(); | |
965 } | |
966 | |
967 /************************************************************************** | |
968 Implemetation of Kabsch algoritm for finding the best rotation matrix | |
969 --------------------------------------------------------------------------- | |
970 x - x(i,m) are coordinates of atom m in set x (input) | |
971 y - y(i,m) are coordinates of atom m in set y (input) | |
972 n - n is number of atom pairs (input) | |
973 mode - 0:calculate rms only (input) | |
974 1:calculate u,t only (takes medium) | |
975 2:calculate rms,u,t (takes longer) | |
976 rms - sum of w*(ux+t-y)**2 over all atom pairs (output) | |
977 u - u(i,j) is rotation matrix for best superposition (output) | |
978 t - t(i) is translation vector for best superposition (output) | |
979 **************************************************************************/ | |
980 bool Kabsch(double **x, double **y, int n, int mode, double *rms, | |
981 double t[3], double u[3][3]) | |
982 { | |
983 int i, j, m, m1, l, k; | |
984 double e0, rms1, d, h, g; | |
985 double cth, sth, sqrth, p, det, sigma; | |
986 double xc[3], yc[3]; | |
987 double a[3][3], b[3][3], r[3][3], e[3], rr[6], ss[6]; | |
988 double sqrt3 = 1.73205080756888, tol = 0.01; | |
989 int ip[] = { 0, 1, 3, 1, 2, 4, 3, 4, 5 }; | |
990 int ip2312[] = { 1, 2, 0, 1 }; | |
991 | |
992 int a_failed = 0, b_failed = 0; | |
993 double epsilon = 0.00000001; | |
994 | |
995 //initializtation | |
996 *rms = 0; | |
997 rms1 = 0; | |
998 e0 = 0; | |
999 double c1[3], c2[3]; | |
1000 double s1[3], s2[3]; | |
1001 double sx[3], sy[3], sz[3]; | |
1002 for (i = 0; i < 3; i++) | |
1003 { | |
1004 s1[i] = 0.0; | |
1005 s2[i] = 0.0; | |
1006 | |
1007 sx[i] = 0.0; | |
1008 sy[i] = 0.0; | |
1009 sz[i] = 0.0; | |
1010 } | |
1011 | |
1012 for (i = 0; i<3; i++) | |
1013 { | |
1014 xc[i] = 0.0; | |
1015 yc[i] = 0.0; | |
1016 t[i] = 0.0; | |
1017 for (j = 0; j<3; j++) | |
1018 { | |
1019 u[i][j] = 0.0; | |
1020 r[i][j] = 0.0; | |
1021 a[i][j] = 0.0; | |
1022 if (i == j) | |
1023 { | |
1024 u[i][j] = 1.0; | |
1025 a[i][j] = 1.0; | |
1026 } | |
1027 } | |
1028 } | |
1029 | |
1030 if (n<1) return false; | |
1031 | |
1032 //compute centers for vector sets x, y | |
1033 for (i = 0; i<n; i++) | |
1034 { | |
1035 for (j = 0; j < 3; j++) | |
1036 { | |
1037 c1[j] = x[i][j]; | |
1038 c2[j] = y[i][j]; | |
1039 | |
1040 s1[j] += c1[j]; | |
1041 s2[j] += c2[j]; | |
1042 } | |
1043 | |
1044 for (j = 0; j < 3; j++) | |
1045 { | |
1046 sx[j] += c1[0] * c2[j]; | |
1047 sy[j] += c1[1] * c2[j]; | |
1048 sz[j] += c1[2] * c2[j]; | |
1049 } | |
1050 } | |
1051 for (i = 0; i < 3; i++) | |
1052 { | |
1053 xc[i] = s1[i] / n; | |
1054 yc[i] = s2[i] / n; | |
1055 } | |
1056 if (mode == 2 || mode == 0) | |
1057 for (int mm = 0; mm < n; mm++) | |
1058 for (int nn = 0; nn < 3; nn++) | |
1059 e0 += (x[mm][nn] - xc[nn]) * (x[mm][nn] - xc[nn]) + | |
1060 (y[mm][nn] - yc[nn]) * (y[mm][nn] - yc[nn]); | |
1061 for (j = 0; j < 3; j++) | |
1062 { | |
1063 r[j][0] = sx[j] - s1[0] * s2[j] / n; | |
1064 r[j][1] = sy[j] - s1[1] * s2[j] / n; | |
1065 r[j][2] = sz[j] - s1[2] * s2[j] / n; | |
1066 } | |
1067 | |
1068 //compute determinat of matrix r | |
1069 det = r[0][0] * (r[1][1] * r[2][2] - r[1][2] * r[2][1])\ | |
1070 - r[0][1] * (r[1][0] * r[2][2] - r[1][2] * r[2][0])\ | |
1071 + r[0][2] * (r[1][0] * r[2][1] - r[1][1] * r[2][0]); | |
1072 sigma = det; | |
1073 | |
1074 //compute tras(r)*r | |
1075 m = 0; | |
1076 for (j = 0; j<3; j++) | |
1077 { | |
1078 for (i = 0; i <= j; i++) | |
1079 { | |
1080 rr[m] = r[0][i] * r[0][j] + r[1][i] * r[1][j] + r[2][i] * r[2][j]; | |
1081 m++; | |
1082 } | |
1083 } | |
1084 | |
1085 double spur = (rr[0] + rr[2] + rr[5]) / 3.0; | |
1086 double cof = (((((rr[2] * rr[5] - rr[4] * rr[4]) + rr[0] * rr[5])\ | |
1087 - rr[3] * rr[3]) + rr[0] * rr[2]) - rr[1] * rr[1]) / 3.0; | |
1088 det = det*det; | |
1089 | |
1090 for (i = 0; i<3; i++) e[i] = spur; | |
1091 | |
1092 if (spur>0) | |
1093 { | |
1094 d = spur*spur; | |
1095 h = d - cof; | |
1096 g = (spur*cof - det) / 2.0 - spur*h; | |
1097 | |
1098 if (h>0) | |
1099 { | |
1100 sqrth = sqrt(h); | |
1101 d = h*h*h - g*g; | |
1102 if (d<0.0) d = 0.0; | |
1103 d = atan2(sqrt(d), -g) / 3.0; | |
1104 cth = sqrth * cos(d); | |
1105 sth = sqrth*sqrt3*sin(d); | |
1106 e[0] = (spur + cth) + cth; | |
1107 e[1] = (spur - cth) + sth; | |
1108 e[2] = (spur - cth) - sth; | |
1109 | |
1110 if (mode != 0) | |
1111 {//compute a | |
1112 for (l = 0; l<3; l = l + 2) | |
1113 { | |
1114 d = e[l]; | |
1115 ss[0] = (d - rr[2]) * (d - rr[5]) - rr[4] * rr[4]; | |
1116 ss[1] = (d - rr[5]) * rr[1] + rr[3] * rr[4]; | |
1117 ss[2] = (d - rr[0]) * (d - rr[5]) - rr[3] * rr[3]; | |
1118 ss[3] = (d - rr[2]) * rr[3] + rr[1] * rr[4]; | |
1119 ss[4] = (d - rr[0]) * rr[4] + rr[1] * rr[3]; | |
1120 ss[5] = (d - rr[0]) * (d - rr[2]) - rr[1] * rr[1]; | |
1121 | |
1122 if (fabs(ss[0]) <= epsilon) ss[0] = 0.0; | |
1123 if (fabs(ss[1]) <= epsilon) ss[1] = 0.0; | |
1124 if (fabs(ss[2]) <= epsilon) ss[2] = 0.0; | |
1125 if (fabs(ss[3]) <= epsilon) ss[3] = 0.0; | |
1126 if (fabs(ss[4]) <= epsilon) ss[4] = 0.0; | |
1127 if (fabs(ss[5]) <= epsilon) ss[5] = 0.0; | |
1128 | |
1129 if (fabs(ss[0]) >= fabs(ss[2])) | |
1130 { | |
1131 j = 0; | |
1132 if (fabs(ss[0]) < fabs(ss[5])) j = 2; | |
1133 } | |
1134 else if (fabs(ss[2]) >= fabs(ss[5])) j = 1; | |
1135 else j = 2; | |
1136 | |
1137 d = 0.0; | |
1138 j = 3 * j; | |
1139 for (i = 0; i<3; i++) | |
1140 { | |
1141 k = ip[i + j]; | |
1142 a[i][l] = ss[k]; | |
1143 d = d + ss[k] * ss[k]; | |
1144 } | |
1145 | |
1146 | |
1147 //if( d > 0.0 ) d = 1.0 / sqrt(d); | |
1148 if (d > epsilon) d = 1.0 / sqrt(d); | |
1149 else d = 0.0; | |
1150 for (i = 0; i<3; i++) a[i][l] = a[i][l] * d; | |
1151 }//for l | |
1152 | |
1153 d = a[0][0] * a[0][2] + a[1][0] * a[1][2] + a[2][0] * a[2][2]; | |
1154 if ((e[0] - e[1]) >(e[1] - e[2])) | |
1155 { | |
1156 m1 = 2; | |
1157 m = 0; | |
1158 } | |
1159 else | |
1160 { | |
1161 m1 = 0; | |
1162 m = 2; | |
1163 } | |
1164 p = 0; | |
1165 for (i = 0; i<3; i++) | |
1166 { | |
1167 a[i][m1] = a[i][m1] - d*a[i][m]; | |
1168 p = p + a[i][m1] * a[i][m1]; | |
1169 } | |
1170 if (p <= tol) | |
1171 { | |
1172 p = 1.0; | |
1173 for (i = 0; i<3; i++) | |
1174 { | |
1175 if (p < fabs(a[i][m])) continue; | |
1176 p = fabs(a[i][m]); | |
1177 j = i; | |
1178 } | |
1179 k = ip2312[j]; | |
1180 l = ip2312[j + 1]; | |
1181 p = sqrt(a[k][m] * a[k][m] + a[l][m] * a[l][m]); | |
1182 if (p > tol) | |
1183 { | |
1184 a[j][m1] = 0.0; | |
1185 a[k][m1] = -a[l][m] / p; | |
1186 a[l][m1] = a[k][m] / p; | |
1187 } | |
1188 else a_failed = 1; | |
1189 }//if p<=tol | |
1190 else | |
1191 { | |
1192 p = 1.0 / sqrt(p); | |
1193 for (i = 0; i<3; i++) a[i][m1] = a[i][m1] * p; | |
1194 }//else p<=tol | |
1195 if (a_failed != 1) | |
1196 { | |
1197 a[0][1] = a[1][2] * a[2][0] - a[1][0] * a[2][2]; | |
1198 a[1][1] = a[2][2] * a[0][0] - a[2][0] * a[0][2]; | |
1199 a[2][1] = a[0][2] * a[1][0] - a[0][0] * a[1][2]; | |
1200 } | |
1201 }//if(mode!=0) | |
1202 }//h>0 | |
1203 | |
1204 //compute b anyway | |
1205 if (mode != 0 && a_failed != 1)//a is computed correctly | |
1206 { | |
1207 //compute b | |
1208 for (l = 0; l<2; l++) | |
1209 { | |
1210 d = 0.0; | |
1211 for (i = 0; i<3; i++) | |
1212 { | |
1213 b[i][l] = r[i][0] * a[0][l] + | |
1214 r[i][1] * a[1][l] + r[i][2] * a[2][l]; | |
1215 d = d + b[i][l] * b[i][l]; | |
1216 } | |
1217 //if( d > 0 ) d = 1.0 / sqrt(d); | |
1218 if (d > epsilon) d = 1.0 / sqrt(d); | |
1219 else d = 0.0; | |
1220 for (i = 0; i<3; i++) b[i][l] = b[i][l] * d; | |
1221 } | |
1222 d = b[0][0] * b[0][1] + b[1][0] * b[1][1] + b[2][0] * b[2][1]; | |
1223 p = 0.0; | |
1224 | |
1225 for (i = 0; i<3; i++) | |
1226 { | |
1227 b[i][1] = b[i][1] - d*b[i][0]; | |
1228 p += b[i][1] * b[i][1]; | |
1229 } | |
1230 | |
1231 if (p <= tol) | |
1232 { | |
1233 p = 1.0; | |
1234 for (i = 0; i<3; i++) | |
1235 { | |
1236 if (p<fabs(b[i][0])) continue; | |
1237 p = fabs(b[i][0]); | |
1238 j = i; | |
1239 } | |
1240 k = ip2312[j]; | |
1241 l = ip2312[j + 1]; | |
1242 p = sqrt(b[k][0] * b[k][0] + b[l][0] * b[l][0]); | |
1243 if (p > tol) | |
1244 { | |
1245 b[j][1] = 0.0; | |
1246 b[k][1] = -b[l][0] / p; | |
1247 b[l][1] = b[k][0] / p; | |
1248 } | |
1249 else b_failed = 1; | |
1250 }//if( p <= tol ) | |
1251 else | |
1252 { | |
1253 p = 1.0 / sqrt(p); | |
1254 for (i = 0; i<3; i++) b[i][1] = b[i][1] * p; | |
1255 } | |
1256 if (b_failed != 1) | |
1257 { | |
1258 b[0][2] = b[1][0] * b[2][1] - b[1][1] * b[2][0]; | |
1259 b[1][2] = b[2][0] * b[0][1] - b[2][1] * b[0][0]; | |
1260 b[2][2] = b[0][0] * b[1][1] - b[0][1] * b[1][0]; | |
1261 //compute u | |
1262 for (i = 0; i<3; i++) | |
1263 for (j = 0; j<3; j++) | |
1264 u[i][j] = b[i][0] * a[j][0] + | |
1265 b[i][1] * a[j][1] + b[i][2] * a[j][2]; | |
1266 } | |
1267 | |
1268 //compute t | |
1269 for (i = 0; i<3; i++) | |
1270 t[i] = ((yc[i] - u[i][0] * xc[0]) - u[i][1] * xc[1]) - | |
1271 u[i][2] * xc[2]; | |
1272 }//if(mode!=0 && a_failed!=1) | |
1273 }//spur>0 | |
1274 else //just compute t and errors | |
1275 { | |
1276 //compute t | |
1277 for (i = 0; i<3; i++) | |
1278 t[i] = ((yc[i] - u[i][0] * xc[0]) - u[i][1] * xc[1]) - | |
1279 u[i][2] * xc[2]; | |
1280 }//else spur>0 | |
1281 | |
1282 //compute rms | |
1283 for (i = 0; i<3; i++) | |
1284 { | |
1285 if (e[i] < 0) e[i] = 0; | |
1286 e[i] = sqrt(e[i]); | |
1287 } | |
1288 d = e[2]; | |
1289 if (sigma < 0.0) d = -d; | |
1290 d = (d + e[1]) + e[0]; | |
1291 | |
1292 if (mode == 2 || mode == 0) | |
1293 { | |
1294 rms1 = (e0 - d) - d; | |
1295 if (rms1 < 0.0) rms1 = 0.0; | |
1296 } | |
1297 | |
1298 *rms = rms1; | |
1299 return true; | |
1300 } | |
1301 | |
1302 /* Partial implementation of Needleman-Wunsch (NW) dymanamic programming for | |
1303 * global alignment. The three NWDP_TM functions below are not complete | |
1304 * implementation of NW algorithm because gap jumping in the standard Gotoh | |
1305 * algorithm is not considered. Since the gap opening and gap extension is | |
1306 * the same, this is not a problem. This code was exploited in TM-align | |
1307 * because it is about 1.5 times faster than a complete NW implementation. | |
1308 * Nevertheless, if gap openning != gap extension shall be implemented in | |
1309 * the future, the Gotoh algorithm must be implemented. In rare scenarios, | |
1310 * it is also possible to have asymmetric alignment (i.e. | |
1311 * TMalign A.pdb B.pdb and TMalign B.pdb A.pdb have different TM_A and TM_B | |
1312 * values) caused by the NWPD_TM implement. | |
1313 */ | |
1314 | |
1315 /* Input: score[1:len1, 1:len2], and gap_open | |
1316 * Output: j2i[1:len2] \in {1:len1} U {-1} | |
1317 * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ | |
1318 void NWDP_TM(double **score, bool **path, double **val, | |
1319 int len1, int len2, double gap_open, int j2i[]) | |
1320 { | |
1321 | |
1322 int i, j; | |
1323 double h, v, d; | |
1324 | |
1325 //initialization | |
1326 for(i=0; i<=len1; i++) | |
1327 { | |
1328 val[i][0]=0; | |
1329 //val[i][0]=i*gap_open; | |
1330 path[i][0]=false; //not from diagonal | |
1331 } | |
1332 | |
1333 for(j=0; j<=len2; j++) | |
1334 { | |
1335 val[0][j]=0; | |
1336 //val[0][j]=j*gap_open; | |
1337 path[0][j]=false; //not from diagonal | |
1338 j2i[j]=-1; //all are not aligned, only use j2i[1:len2] | |
1339 } | |
1340 | |
1341 | |
1342 //decide matrix and path | |
1343 for(i=1; i<=len1; i++) | |
1344 { | |
1345 for(j=1; j<=len2; j++) | |
1346 { | |
1347 d=val[i-1][j-1]+score[i][j]; //diagonal | |
1348 | |
1349 //symbol insertion in horizontal (= a gap in vertical) | |
1350 h=val[i-1][j]; | |
1351 if(path[i-1][j]) h += gap_open; //aligned in last position | |
1352 | |
1353 //symbol insertion in vertical | |
1354 v=val[i][j-1]; | |
1355 if(path[i][j-1]) v += gap_open; //aligned in last position | |
1356 | |
1357 | |
1358 if(d>=h && d>=v) | |
1359 { | |
1360 path[i][j]=true; //from diagonal | |
1361 val[i][j]=d; | |
1362 } | |
1363 else | |
1364 { | |
1365 path[i][j]=false; //from horizontal | |
1366 if(v>=h) val[i][j]=v; | |
1367 else val[i][j]=h; | |
1368 } | |
1369 } //for i | |
1370 } //for j | |
1371 | |
1372 //trace back to extract the alignment | |
1373 i=len1; | |
1374 j=len2; | |
1375 while(i>0 && j>0) | |
1376 { | |
1377 if(path[i][j]) //from diagonal | |
1378 { | |
1379 j2i[j-1]=i-1; | |
1380 i--; | |
1381 j--; | |
1382 } | |
1383 else | |
1384 { | |
1385 h=val[i-1][j]; | |
1386 if(path[i-1][j]) h +=gap_open; | |
1387 | |
1388 v=val[i][j-1]; | |
1389 if(path[i][j-1]) v +=gap_open; | |
1390 | |
1391 if(v>=h) j--; | |
1392 else i--; | |
1393 } | |
1394 } | |
1395 } | |
1396 | |
1397 /* Input: vectors x, y, rotation matrix t, u, scale factor d02, and gap_open | |
1398 * Output: j2i[1:len2] \in {1:len1} U {-1} | |
1399 * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ | |
1400 void NWDP_TM(bool **path, double **val, double **x, double **y, | |
1401 int len1, int len2, double t[3], double u[3][3], | |
1402 double d02, double gap_open, int j2i[]) | |
1403 { | |
1404 int i, j; | |
1405 double h, v, d; | |
1406 | |
1407 //initialization. use old val[i][0] and val[0][j] initialization | |
1408 //to minimize difference from TMalign fortran version | |
1409 for(i=0; i<=len1; i++) | |
1410 { | |
1411 val[i][0]=0; | |
1412 //val[i][0]=i*gap_open; | |
1413 path[i][0]=false; //not from diagonal | |
1414 } | |
1415 | |
1416 for(j=0; j<=len2; j++) | |
1417 { | |
1418 val[0][j]=0; | |
1419 //val[0][j]=j*gap_open; | |
1420 path[0][j]=false; //not from diagonal | |
1421 j2i[j]=-1; //all are not aligned, only use j2i[1:len2] | |
1422 } | |
1423 double xx[3], dij; | |
1424 | |
1425 | |
1426 //decide matrix and path | |
1427 for(i=1; i<=len1; i++) | |
1428 { | |
1429 transform(t, u, &x[i-1][0], xx); | |
1430 for(j=1; j<=len2; j++) | |
1431 { | |
1432 dij=dist(xx, &y[j-1][0]); | |
1433 d=val[i-1][j-1] + 1.0/(1+dij/d02); | |
1434 | |
1435 //symbol insertion in horizontal (= a gap in vertical) | |
1436 h=val[i-1][j]; | |
1437 if(path[i-1][j]) h += gap_open; //aligned in last position | |
1438 | |
1439 //symbol insertion in vertical | |
1440 v=val[i][j-1]; | |
1441 if(path[i][j-1]) v += gap_open; //aligned in last position | |
1442 | |
1443 | |
1444 if(d>=h && d>=v) | |
1445 { | |
1446 path[i][j]=true; //from diagonal | |
1447 val[i][j]=d; | |
1448 } | |
1449 else | |
1450 { | |
1451 path[i][j]=false; //from horizontal | |
1452 if(v>=h) val[i][j]=v; | |
1453 else val[i][j]=h; | |
1454 } | |
1455 } //for i | |
1456 } //for j | |
1457 | |
1458 //trace back to extract the alignment | |
1459 i=len1; | |
1460 j=len2; | |
1461 while(i>0 && j>0) | |
1462 { | |
1463 if(path[i][j]) //from diagonal | |
1464 { | |
1465 j2i[j-1]=i-1; | |
1466 i--; | |
1467 j--; | |
1468 } | |
1469 else | |
1470 { | |
1471 h=val[i-1][j]; | |
1472 if(path[i-1][j]) h +=gap_open; | |
1473 | |
1474 v=val[i][j-1]; | |
1475 if(path[i][j-1]) v +=gap_open; | |
1476 | |
1477 if(v>=h) j--; | |
1478 else i--; | |
1479 } | |
1480 } | |
1481 } | |
1482 | |
1483 /* This is the same as the previous NWDP_TM, except for the lack of rotation | |
1484 * Input: vectors x, y, scale factor d02, and gap_open | |
1485 * Output: j2i[1:len2] \in {1:len1} U {-1} | |
1486 * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ | |
1487 void NWDP_SE(bool **path, double **val, double **x, double **y, | |
1488 int len1, int len2, double d02, double gap_open, int j2i[]) | |
1489 { | |
1490 int i, j; | |
1491 double h, v, d; | |
1492 | |
1493 for(i=0; i<=len1; i++) | |
1494 { | |
1495 val[i][0]=0; | |
1496 path[i][0]=false; //not from diagonal | |
1497 } | |
1498 | |
1499 for(j=0; j<=len2; j++) | |
1500 { | |
1501 val[0][j]=0; | |
1502 path[0][j]=false; //not from diagonal | |
1503 j2i[j]=-1; //all are not aligned, only use j2i[1:len2] | |
1504 } | |
1505 double dij; | |
1506 | |
1507 //decide matrix and path | |
1508 for(i=1; i<=len1; i++) | |
1509 { | |
1510 for(j=1; j<=len2; j++) | |
1511 { | |
1512 dij=dist(&x[i-1][0], &y[j-1][0]); | |
1513 d=val[i-1][j-1] + 1.0/(1+dij/d02); | |
1514 | |
1515 //symbol insertion in horizontal (= a gap in vertical) | |
1516 h=val[i-1][j]; | |
1517 if(path[i-1][j]) h += gap_open; //aligned in last position | |
1518 | |
1519 //symbol insertion in vertical | |
1520 v=val[i][j-1]; | |
1521 if(path[i][j-1]) v += gap_open; //aligned in last position | |
1522 | |
1523 | |
1524 if(d>=h && d>=v) | |
1525 { | |
1526 path[i][j]=true; //from diagonal | |
1527 val[i][j]=d; | |
1528 } | |
1529 else | |
1530 { | |
1531 path[i][j]=false; //from horizontal | |
1532 if(v>=h) val[i][j]=v; | |
1533 else val[i][j]=h; | |
1534 } | |
1535 } //for i | |
1536 } //for j | |
1537 | |
1538 //trace back to extract the alignment | |
1539 i=len1; | |
1540 j=len2; | |
1541 while(i>0 && j>0) | |
1542 { | |
1543 if(path[i][j]) //from diagonal | |
1544 { | |
1545 j2i[j-1]=i-1; | |
1546 i--; | |
1547 j--; | |
1548 } | |
1549 else | |
1550 { | |
1551 h=val[i-1][j]; | |
1552 if(path[i-1][j]) h +=gap_open; | |
1553 | |
1554 v=val[i][j-1]; | |
1555 if(path[i][j-1]) v +=gap_open; | |
1556 | |
1557 if(v>=h) j--; | |
1558 else i--; | |
1559 } | |
1560 } | |
1561 } | |
1562 | |
1563 /* +ss | |
1564 * Input: secondary structure secx, secy, and gap_open | |
1565 * Output: j2i[1:len2] \in {1:len1} U {-1} | |
1566 * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ | |
1567 void NWDP_TM(bool **path, double **val, const char *secx, const char *secy, | |
1568 const int len1, const int len2, const double gap_open, int j2i[]) | |
1569 { | |
1570 | |
1571 int i, j; | |
1572 double h, v, d; | |
1573 | |
1574 //initialization | |
1575 for(i=0; i<=len1; i++) | |
1576 { | |
1577 val[i][0]=0; | |
1578 //val[i][0]=i*gap_open; | |
1579 path[i][0]=false; //not from diagonal | |
1580 } | |
1581 | |
1582 for(j=0; j<=len2; j++) | |
1583 { | |
1584 val[0][j]=0; | |
1585 //val[0][j]=j*gap_open; | |
1586 path[0][j]=false; //not from diagonal | |
1587 j2i[j]=-1; //all are not aligned, only use j2i[1:len2] | |
1588 } | |
1589 | |
1590 //decide matrix and path | |
1591 for(i=1; i<=len1; i++) | |
1592 { | |
1593 for(j=1; j<=len2; j++) | |
1594 { | |
1595 d=val[i-1][j-1] + 1.0*(secx[i-1]==secy[j-1]); | |
1596 | |
1597 //symbol insertion in horizontal (= a gap in vertical) | |
1598 h=val[i-1][j]; | |
1599 if(path[i-1][j]) h += gap_open; //aligned in last position | |
1600 | |
1601 //symbol insertion in vertical | |
1602 v=val[i][j-1]; | |
1603 if(path[i][j-1]) v += gap_open; //aligned in last position | |
1604 | |
1605 if(d>=h && d>=v) | |
1606 { | |
1607 path[i][j]=true; //from diagonal | |
1608 val[i][j]=d; | |
1609 } | |
1610 else | |
1611 { | |
1612 path[i][j]=false; //from horizontal | |
1613 if(v>=h) val[i][j]=v; | |
1614 else val[i][j]=h; | |
1615 } | |
1616 } //for i | |
1617 } //for j | |
1618 | |
1619 //trace back to extract the alignment | |
1620 i=len1; | |
1621 j=len2; | |
1622 while(i>0 && j>0) | |
1623 { | |
1624 if(path[i][j]) //from diagonal | |
1625 { | |
1626 j2i[j-1]=i-1; | |
1627 i--; | |
1628 j--; | |
1629 } | |
1630 else | |
1631 { | |
1632 h=val[i-1][j]; | |
1633 if(path[i-1][j]) h +=gap_open; | |
1634 | |
1635 v=val[i][j-1]; | |
1636 if(path[i][j-1]) v +=gap_open; | |
1637 | |
1638 if(v>=h) j--; | |
1639 else i--; | |
1640 } | |
1641 } | |
1642 } | |
1643 | |
1644 void parameter_set4search(const int xlen, const int ylen, | |
1645 double &D0_MIN, double &Lnorm, | |
1646 double &score_d8, double &d0, double &d0_search, double &dcu0) | |
1647 { | |
1648 //parameter initilization for searching: D0_MIN, Lnorm, d0, d0_search, score_d8 | |
1649 D0_MIN=0.5; | |
1650 dcu0=4.25; //update 3.85-->4.25 | |
1651 | |
1652 Lnorm=getmin(xlen, ylen); //normaliz TMscore by this in searching | |
1653 if (Lnorm<=19) //update 15-->19 | |
1654 d0=0.168; //update 0.5-->0.168 | |
1655 else d0=(1.24*pow((Lnorm*1.0-15), 1.0/3)-1.8); | |
1656 D0_MIN=d0+0.8; //this should be moved to above | |
1657 d0=D0_MIN; //update: best for search | |
1658 | |
1659 d0_search=d0; | |
1660 if (d0_search>8) d0_search=8; | |
1661 if (d0_search<4.5) d0_search=4.5; | |
1662 | |
1663 score_d8=1.5*pow(Lnorm*1.0, 0.3)+3.5; //remove pairs with dis>d8 during search & final | |
1664 } | |
1665 | |
1666 void parameter_set4final_C3prime(const double len, double &D0_MIN, | |
1667 double &Lnorm, double &d0, double &d0_search) | |
1668 { | |
1669 D0_MIN=0.3; | |
1670 | |
1671 Lnorm=len; //normaliz TMscore by this in searching | |
1672 if(Lnorm<=11) d0=0.3; | |
1673 else if(Lnorm>11&&Lnorm<=15) d0=0.4; | |
1674 else if(Lnorm>15&&Lnorm<=19) d0=0.5; | |
1675 else if(Lnorm>19&&Lnorm<=23) d0=0.6; | |
1676 else if(Lnorm>23&&Lnorm<30) d0=0.7; | |
1677 else d0=(0.6*pow((Lnorm*1.0-0.5), 1.0/2)-2.5); | |
1678 | |
1679 d0_search=d0; | |
1680 if (d0_search>8) d0_search=8; | |
1681 if (d0_search<4.5) d0_search=4.5; | |
1682 } | |
1683 | |
1684 void parameter_set4final(const double len, double &D0_MIN, double &Lnorm, | |
1685 double &d0, double &d0_search, const int mol_type) | |
1686 { | |
1687 if (mol_type>0) // RNA | |
1688 { | |
1689 parameter_set4final_C3prime(len, D0_MIN, Lnorm, | |
1690 d0, d0_search); | |
1691 return; | |
1692 } | |
1693 D0_MIN=0.5; | |
1694 | |
1695 Lnorm=len; //normaliz TMscore by this in searching | |
1696 if (Lnorm<=21) d0=0.5; | |
1697 else d0=(1.24*pow((Lnorm*1.0-15), 1.0/3)-1.8); | |
1698 if (d0<D0_MIN) d0=D0_MIN; | |
1699 d0_search=d0; | |
1700 if (d0_search>8) d0_search=8; | |
1701 if (d0_search<4.5) d0_search=4.5; | |
1702 } | |
1703 | |
1704 void parameter_set4scale(const int len, const double d_s, double &Lnorm, | |
1705 double &d0, double &d0_search) | |
1706 { | |
1707 d0=d_s; | |
1708 Lnorm=len; //normaliz TMscore by this in searching | |
1709 d0_search=d0; | |
1710 if (d0_search>8) d0_search=8; | |
1711 if (d0_search<4.5) d0_search=4.5; | |
1712 } | |
1713 | |
1714 // 1, collect those residues with dis<d; | |
1715 // 2, calculate TMscore | |
1716 int score_fun8( double **xa, double **ya, int n_ali, double d, int i_ali[], | |
1717 double *score1, int score_sum_method, const double Lnorm, | |
1718 const double score_d8, const double d0) | |
1719 { | |
1720 double score_sum=0, di; | |
1721 double d_tmp=d*d; | |
1722 double d02=d0*d0; | |
1723 double score_d8_cut = score_d8*score_d8; | |
1724 | |
1725 int i, n_cut, inc=0; | |
1726 | |
1727 while(1) | |
1728 { | |
1729 n_cut=0; | |
1730 score_sum=0; | |
1731 for(i=0; i<n_ali; i++) | |
1732 { | |
1733 di = dist(xa[i], ya[i]); | |
1734 if(di<d_tmp) | |
1735 { | |
1736 i_ali[n_cut]=i; | |
1737 n_cut++; | |
1738 } | |
1739 if(score_sum_method==8) | |
1740 { | |
1741 if(di<=score_d8_cut) score_sum += 1/(1+di/d02); | |
1742 } | |
1743 else score_sum += 1/(1+di/d02); | |
1744 } | |
1745 //there are not enough feasible pairs, reliefe the threshold | |
1746 if(n_cut<3 && n_ali>3) | |
1747 { | |
1748 inc++; | |
1749 double dinc=(d+inc*0.5); | |
1750 d_tmp = dinc * dinc; | |
1751 } | |
1752 else break; | |
1753 } | |
1754 | |
1755 *score1=score_sum/Lnorm; | |
1756 return n_cut; | |
1757 } | |
1758 | |
1759 int score_fun8_standard(double **xa, double **ya, int n_ali, double d, | |
1760 int i_ali[], double *score1, int score_sum_method, | |
1761 double score_d8, double d0) | |
1762 { | |
1763 double score_sum = 0, di; | |
1764 double d_tmp = d*d; | |
1765 double d02 = d0*d0; | |
1766 double score_d8_cut = score_d8*score_d8; | |
1767 | |
1768 int i, n_cut, inc = 0; | |
1769 while (1) | |
1770 { | |
1771 n_cut = 0; | |
1772 score_sum = 0; | |
1773 for (i = 0; i<n_ali; i++) | |
1774 { | |
1775 di = dist(xa[i], ya[i]); | |
1776 if (di<d_tmp) | |
1777 { | |
1778 i_ali[n_cut] = i; | |
1779 n_cut++; | |
1780 } | |
1781 if (score_sum_method == 8) | |
1782 { | |
1783 if (di <= score_d8_cut) score_sum += 1 / (1 + di / d02); | |
1784 } | |
1785 else | |
1786 { | |
1787 score_sum += 1 / (1 + di / d02); | |
1788 } | |
1789 } | |
1790 //there are not enough feasible pairs, reliefe the threshold | |
1791 if (n_cut<3 && n_ali>3) | |
1792 { | |
1793 inc++; | |
1794 double dinc = (d + inc*0.5); | |
1795 d_tmp = dinc * dinc; | |
1796 } | |
1797 else break; | |
1798 } | |
1799 | |
1800 *score1 = score_sum / n_ali; | |
1801 return n_cut; | |
1802 } | |
1803 | |
1804 double TMscore8_search(double **r1, double **r2, double **xtm, double **ytm, | |
1805 double **xt, int Lali, double t0[3], double u0[3][3], int simplify_step, | |
1806 int score_sum_method, double *Rcomm, double local_d0_search, double Lnorm, | |
1807 double score_d8, double d0) | |
1808 { | |
1809 int i, m; | |
1810 double score_max, score, rmsd; | |
1811 const int kmax=Lali; | |
1812 int k_ali[kmax], ka, k; | |
1813 double t[3]; | |
1814 double u[3][3]; | |
1815 double d; | |
1816 | |
1817 | |
1818 //iterative parameters | |
1819 int n_it=20; //maximum number of iterations | |
1820 int n_init_max=6; //maximum number of different fragment length | |
1821 int L_ini[n_init_max]; //fragment lengths, Lali, Lali/2, Lali/4 ... 4 | |
1822 int L_ini_min=4; | |
1823 if(Lali<L_ini_min) L_ini_min=Lali; | |
1824 | |
1825 int n_init=0, i_init; | |
1826 for(i=0; i<n_init_max-1; i++) | |
1827 { | |
1828 n_init++; | |
1829 L_ini[i]=(int) (Lali/pow(2.0, (double) i)); | |
1830 if(L_ini[i]<=L_ini_min) | |
1831 { | |
1832 L_ini[i]=L_ini_min; | |
1833 break; | |
1834 } | |
1835 } | |
1836 if(i==n_init_max-1) | |
1837 { | |
1838 n_init++; | |
1839 L_ini[i]=L_ini_min; | |
1840 } | |
1841 | |
1842 score_max=-1; | |
1843 //find the maximum score starting from local structures superposition | |
1844 int i_ali[kmax], n_cut; | |
1845 int L_frag; //fragment length | |
1846 int iL_max; //maximum starting postion for the fragment | |
1847 | |
1848 for(i_init=0; i_init<n_init; i_init++) | |
1849 { | |
1850 L_frag=L_ini[i_init]; | |
1851 iL_max=Lali-L_frag; | |
1852 | |
1853 i=0; | |
1854 while(1) | |
1855 { | |
1856 //extract the fragment starting from position i | |
1857 ka=0; | |
1858 for(k=0; k<L_frag; k++) | |
1859 { | |
1860 int kk=k+i; | |
1861 r1[k][0]=xtm[kk][0]; | |
1862 r1[k][1]=xtm[kk][1]; | |
1863 r1[k][2]=xtm[kk][2]; | |
1864 | |
1865 r2[k][0]=ytm[kk][0]; | |
1866 r2[k][1]=ytm[kk][1]; | |
1867 r2[k][2]=ytm[kk][2]; | |
1868 | |
1869 k_ali[ka]=kk; | |
1870 ka++; | |
1871 } | |
1872 | |
1873 //extract rotation matrix based on the fragment | |
1874 Kabsch(r1, r2, L_frag, 1, &rmsd, t, u); | |
1875 if (simplify_step != 1) | |
1876 *Rcomm = 0; | |
1877 do_rotation(xtm, xt, Lali, t, u); | |
1878 | |
1879 //get subsegment of this fragment | |
1880 d = local_d0_search - 1; | |
1881 n_cut=score_fun8(xt, ytm, Lali, d, i_ali, &score, | |
1882 score_sum_method, Lnorm, score_d8, d0); | |
1883 if(score>score_max) | |
1884 { | |
1885 score_max=score; | |
1886 | |
1887 //save the rotation matrix | |
1888 for(k=0; k<3; k++) | |
1889 { | |
1890 t0[k]=t[k]; | |
1891 u0[k][0]=u[k][0]; | |
1892 u0[k][1]=u[k][1]; | |
1893 u0[k][2]=u[k][2]; | |
1894 } | |
1895 } | |
1896 | |
1897 //try to extend the alignment iteratively | |
1898 d = local_d0_search + 1; | |
1899 for(int it=0; it<n_it; it++) | |
1900 { | |
1901 ka=0; | |
1902 for(k=0; k<n_cut; k++) | |
1903 { | |
1904 m=i_ali[k]; | |
1905 r1[k][0]=xtm[m][0]; | |
1906 r1[k][1]=xtm[m][1]; | |
1907 r1[k][2]=xtm[m][2]; | |
1908 | |
1909 r2[k][0]=ytm[m][0]; | |
1910 r2[k][1]=ytm[m][1]; | |
1911 r2[k][2]=ytm[m][2]; | |
1912 | |
1913 k_ali[ka]=m; | |
1914 ka++; | |
1915 } | |
1916 //extract rotation matrix based on the fragment | |
1917 Kabsch(r1, r2, n_cut, 1, &rmsd, t, u); | |
1918 do_rotation(xtm, xt, Lali, t, u); | |
1919 n_cut=score_fun8(xt, ytm, Lali, d, i_ali, &score, | |
1920 score_sum_method, Lnorm, score_d8, d0); | |
1921 if(score>score_max) | |
1922 { | |
1923 score_max=score; | |
1924 | |
1925 //save the rotation matrix | |
1926 for(k=0; k<3; k++) | |
1927 { | |
1928 t0[k]=t[k]; | |
1929 u0[k][0]=u[k][0]; | |
1930 u0[k][1]=u[k][1]; | |
1931 u0[k][2]=u[k][2]; | |
1932 } | |
1933 } | |
1934 | |
1935 //check if it converges | |
1936 if(n_cut==ka) | |
1937 { | |
1938 for(k=0; k<n_cut; k++) | |
1939 { | |
1940 if(i_ali[k]!=k_ali[k]) break; | |
1941 } | |
1942 if(k==n_cut) break; | |
1943 } | |
1944 } //for iteration | |
1945 | |
1946 if(i<iL_max) | |
1947 { | |
1948 i=i+simplify_step; //shift the fragment | |
1949 if(i>iL_max) i=iL_max; //do this to use the last missed fragment | |
1950 } | |
1951 else if(i>=iL_max) break; | |
1952 }//while(1) | |
1953 //end of one fragment | |
1954 }//for(i_init | |
1955 return score_max; | |
1956 } | |
1957 | |
1958 | |
1959 double TMscore8_search_standard( double **r1, double **r2, | |
1960 double **xtm, double **ytm, double **xt, int Lali, | |
1961 double t0[3], double u0[3][3], int simplify_step, int score_sum_method, | |
1962 double *Rcomm, double local_d0_search, double score_d8, double d0) | |
1963 { | |
1964 int i, m; | |
1965 double score_max, score, rmsd; | |
1966 const int kmax = Lali; | |
1967 int k_ali[kmax], ka, k; | |
1968 double t[3]; | |
1969 double u[3][3]; | |
1970 double d; | |
1971 | |
1972 //iterative parameters | |
1973 int n_it = 20; //maximum number of iterations | |
1974 int n_init_max = 6; //maximum number of different fragment length | |
1975 int L_ini[n_init_max]; //fragment lengths, Lali, Lali/2, Lali/4 ... 4 | |
1976 int L_ini_min = 4; | |
1977 if (Lali<L_ini_min) L_ini_min = Lali; | |
1978 | |
1979 int n_init = 0, i_init; | |
1980 for (i = 0; i<n_init_max - 1; i++) | |
1981 { | |
1982 n_init++; | |
1983 L_ini[i] = (int)(Lali / pow(2.0, (double)i)); | |
1984 if (L_ini[i] <= L_ini_min) | |
1985 { | |
1986 L_ini[i] = L_ini_min; | |
1987 break; | |
1988 } | |
1989 } | |
1990 if (i == n_init_max - 1) | |
1991 { | |
1992 n_init++; | |
1993 L_ini[i] = L_ini_min; | |
1994 } | |
1995 | |
1996 score_max = -1; | |
1997 //find the maximum score starting from local structures superposition | |
1998 int i_ali[kmax], n_cut; | |
1999 int L_frag; //fragment length | |
2000 int iL_max; //maximum starting postion for the fragment | |
2001 | |
2002 for (i_init = 0; i_init<n_init; i_init++) | |
2003 { | |
2004 L_frag = L_ini[i_init]; | |
2005 iL_max = Lali - L_frag; | |
2006 | |
2007 i = 0; | |
2008 while (1) | |
2009 { | |
2010 //extract the fragment starting from position i | |
2011 ka = 0; | |
2012 for (k = 0; k<L_frag; k++) | |
2013 { | |
2014 int kk = k + i; | |
2015 r1[k][0] = xtm[kk][0]; | |
2016 r1[k][1] = xtm[kk][1]; | |
2017 r1[k][2] = xtm[kk][2]; | |
2018 | |
2019 r2[k][0] = ytm[kk][0]; | |
2020 r2[k][1] = ytm[kk][1]; | |
2021 r2[k][2] = ytm[kk][2]; | |
2022 | |
2023 k_ali[ka] = kk; | |
2024 ka++; | |
2025 } | |
2026 //extract rotation matrix based on the fragment | |
2027 Kabsch(r1, r2, L_frag, 1, &rmsd, t, u); | |
2028 if (simplify_step != 1) | |
2029 *Rcomm = 0; | |
2030 do_rotation(xtm, xt, Lali, t, u); | |
2031 | |
2032 //get subsegment of this fragment | |
2033 d = local_d0_search - 1; | |
2034 n_cut = score_fun8_standard(xt, ytm, Lali, d, i_ali, &score, | |
2035 score_sum_method, score_d8, d0); | |
2036 | |
2037 if (score>score_max) | |
2038 { | |
2039 score_max = score; | |
2040 | |
2041 //save the rotation matrix | |
2042 for (k = 0; k<3; k++) | |
2043 { | |
2044 t0[k] = t[k]; | |
2045 u0[k][0] = u[k][0]; | |
2046 u0[k][1] = u[k][1]; | |
2047 u0[k][2] = u[k][2]; | |
2048 } | |
2049 } | |
2050 | |
2051 //try to extend the alignment iteratively | |
2052 d = local_d0_search + 1; | |
2053 for (int it = 0; it<n_it; it++) | |
2054 { | |
2055 ka = 0; | |
2056 for (k = 0; k<n_cut; k++) | |
2057 { | |
2058 m = i_ali[k]; | |
2059 r1[k][0] = xtm[m][0]; | |
2060 r1[k][1] = xtm[m][1]; | |
2061 r1[k][2] = xtm[m][2]; | |
2062 | |
2063 r2[k][0] = ytm[m][0]; | |
2064 r2[k][1] = ytm[m][1]; | |
2065 r2[k][2] = ytm[m][2]; | |
2066 | |
2067 k_ali[ka] = m; | |
2068 ka++; | |
2069 } | |
2070 //extract rotation matrix based on the fragment | |
2071 Kabsch(r1, r2, n_cut, 1, &rmsd, t, u); | |
2072 do_rotation(xtm, xt, Lali, t, u); | |
2073 n_cut = score_fun8_standard(xt, ytm, Lali, d, i_ali, &score, | |
2074 score_sum_method, score_d8, d0); | |
2075 if (score>score_max) | |
2076 { | |
2077 score_max = score; | |
2078 | |
2079 //save the rotation matrix | |
2080 for (k = 0; k<3; k++) | |
2081 { | |
2082 t0[k] = t[k]; | |
2083 u0[k][0] = u[k][0]; | |
2084 u0[k][1] = u[k][1]; | |
2085 u0[k][2] = u[k][2]; | |
2086 } | |
2087 } | |
2088 | |
2089 //check if it converges | |
2090 if (n_cut == ka) | |
2091 { | |
2092 for (k = 0; k<n_cut; k++) | |
2093 { | |
2094 if (i_ali[k] != k_ali[k]) break; | |
2095 } | |
2096 if (k == n_cut) break; | |
2097 } | |
2098 } //for iteration | |
2099 | |
2100 if (i<iL_max) | |
2101 { | |
2102 i = i + simplify_step; //shift the fragment | |
2103 if (i>iL_max) i = iL_max; //do this to use the last missed fragment | |
2104 } | |
2105 else if (i >= iL_max) break; | |
2106 }//while(1) | |
2107 //end of one fragment | |
2108 }//for(i_init | |
2109 return score_max; | |
2110 } | |
2111 | |
2112 //Comprehensive TMscore search engine | |
2113 // input: two vector sets: x, y | |
2114 // an alignment invmap0[] between x and y | |
2115 // simplify_step: 1 or 40 or other integers | |
2116 // score_sum_method: 0 for score over all pairs | |
2117 // 8 for socre over the pairs with dist<score_d8 | |
2118 // output: the best rotaion matrix t, u that results in highest TMscore | |
2119 double detailed_search(double **r1, double **r2, double **xtm, double **ytm, | |
2120 double **xt, double **x, double **y, int xlen, int ylen, | |
2121 int invmap0[], double t[3], double u[3][3], int simplify_step, | |
2122 int score_sum_method, double local_d0_search, double Lnorm, | |
2123 double score_d8, double d0) | |
2124 { | |
2125 //x is model, y is template, try to superpose onto y | |
2126 int i, j, k; | |
2127 double tmscore; | |
2128 double rmsd; | |
2129 | |
2130 k=0; | |
2131 for(i=0; i<ylen; i++) | |
2132 { | |
2133 j=invmap0[i]; | |
2134 if(j>=0) //aligned | |
2135 { | |
2136 xtm[k][0]=x[j][0]; | |
2137 xtm[k][1]=x[j][1]; | |
2138 xtm[k][2]=x[j][2]; | |
2139 | |
2140 ytm[k][0]=y[i][0]; | |
2141 ytm[k][1]=y[i][1]; | |
2142 ytm[k][2]=y[i][2]; | |
2143 k++; | |
2144 } | |
2145 } | |
2146 | |
2147 //detailed search 40-->1 | |
2148 tmscore = TMscore8_search(r1, r2, xtm, ytm, xt, k, t, u, simplify_step, | |
2149 score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); | |
2150 return tmscore; | |
2151 } | |
2152 | |
2153 double detailed_search_standard( double **r1, double **r2, | |
2154 double **xtm, double **ytm, double **xt, double **x, double **y, | |
2155 int xlen, int ylen, int invmap0[], double t[3], double u[3][3], | |
2156 int simplify_step, int score_sum_method, double local_d0_search, | |
2157 const bool& bNormalize, double Lnorm, double score_d8, double d0) | |
2158 { | |
2159 //x is model, y is template, try to superpose onto y | |
2160 int i, j, k; | |
2161 double tmscore; | |
2162 double rmsd; | |
2163 | |
2164 k=0; | |
2165 for(i=0; i<ylen; i++) | |
2166 { | |
2167 j=invmap0[i]; | |
2168 if(j>=0) //aligned | |
2169 { | |
2170 xtm[k][0]=x[j][0]; | |
2171 xtm[k][1]=x[j][1]; | |
2172 xtm[k][2]=x[j][2]; | |
2173 | |
2174 ytm[k][0]=y[i][0]; | |
2175 ytm[k][1]=y[i][1]; | |
2176 ytm[k][2]=y[i][2]; | |
2177 k++; | |
2178 } | |
2179 } | |
2180 | |
2181 //detailed search 40-->1 | |
2182 tmscore = TMscore8_search_standard( r1, r2, xtm, ytm, xt, k, t, u, | |
2183 simplify_step, score_sum_method, &rmsd, local_d0_search, score_d8, d0); | |
2184 if (bNormalize)// "-i", to use standard_TMscore, then bNormalize=true, else bNormalize=false; | |
2185 tmscore = tmscore * k / Lnorm; | |
2186 | |
2187 return tmscore; | |
2188 } | |
2189 | |
2190 //compute the score quickly in three iterations | |
2191 double get_score_fast( double **r1, double **r2, double **xtm, double **ytm, | |
2192 double **x, double **y, int xlen, int ylen, int invmap[], | |
2193 double d0, double d0_search, double t[3], double u[3][3]) | |
2194 { | |
2195 double rms, tmscore, tmscore1, tmscore2; | |
2196 int i, j, k; | |
2197 | |
2198 k=0; | |
2199 for(j=0; j<ylen; j++) | |
2200 { | |
2201 i=invmap[j]; | |
2202 if(i>=0) | |
2203 { | |
2204 r1[k][0]=x[i][0]; | |
2205 r1[k][1]=x[i][1]; | |
2206 r1[k][2]=x[i][2]; | |
2207 | |
2208 r2[k][0]=y[j][0]; | |
2209 r2[k][1]=y[j][1]; | |
2210 r2[k][2]=y[j][2]; | |
2211 | |
2212 xtm[k][0]=x[i][0]; | |
2213 xtm[k][1]=x[i][1]; | |
2214 xtm[k][2]=x[i][2]; | |
2215 | |
2216 ytm[k][0]=y[j][0]; | |
2217 ytm[k][1]=y[j][1]; | |
2218 ytm[k][2]=y[j][2]; | |
2219 | |
2220 k++; | |
2221 } | |
2222 else if(i!=-1) PrintErrorAndQuit("Wrong map!\n"); | |
2223 } | |
2224 Kabsch(r1, r2, k, 1, &rms, t, u); | |
2225 | |
2226 //evaluate score | |
2227 double di; | |
2228 const int len=k; | |
2229 double dis[len]; | |
2230 double d00=d0_search; | |
2231 double d002=d00*d00; | |
2232 double d02=d0*d0; | |
2233 | |
2234 int n_ali=k; | |
2235 double xrot[3]; | |
2236 tmscore=0; | |
2237 for(k=0; k<n_ali; k++) | |
2238 { | |
2239 transform(t, u, &xtm[k][0], xrot); | |
2240 di=dist(xrot, &ytm[k][0]); | |
2241 dis[k]=di; | |
2242 tmscore += 1/(1+di/d02); | |
2243 } | |
2244 | |
2245 | |
2246 | |
2247 //second iteration | |
2248 double d002t=d002; | |
2249 while(1) | |
2250 { | |
2251 j=0; | |
2252 for(k=0; k<n_ali; k++) | |
2253 { | |
2254 if(dis[k]<=d002t) | |
2255 { | |
2256 r1[j][0]=xtm[k][0]; | |
2257 r1[j][1]=xtm[k][1]; | |
2258 r1[j][2]=xtm[k][2]; | |
2259 | |
2260 r2[j][0]=ytm[k][0]; | |
2261 r2[j][1]=ytm[k][1]; | |
2262 r2[j][2]=ytm[k][2]; | |
2263 | |
2264 j++; | |
2265 } | |
2266 } | |
2267 //there are not enough feasible pairs, relieve the threshold | |
2268 if(j<3 && n_ali>3) d002t += 0.5; | |
2269 else break; | |
2270 } | |
2271 | |
2272 if(n_ali!=j) | |
2273 { | |
2274 Kabsch(r1, r2, j, 1, &rms, t, u); | |
2275 tmscore1=0; | |
2276 for(k=0; k<n_ali; k++) | |
2277 { | |
2278 transform(t, u, &xtm[k][0], xrot); | |
2279 di=dist(xrot, &ytm[k][0]); | |
2280 dis[k]=di; | |
2281 tmscore1 += 1/(1+di/d02); | |
2282 } | |
2283 | |
2284 //third iteration | |
2285 d002t=d002+1; | |
2286 | |
2287 while(1) | |
2288 { | |
2289 j=0; | |
2290 for(k=0; k<n_ali; k++) | |
2291 { | |
2292 if(dis[k]<=d002t) | |
2293 { | |
2294 r1[j][0]=xtm[k][0]; | |
2295 r1[j][1]=xtm[k][1]; | |
2296 r1[j][2]=xtm[k][2]; | |
2297 | |
2298 r2[j][0]=ytm[k][0]; | |
2299 r2[j][1]=ytm[k][1]; | |
2300 r2[j][2]=ytm[k][2]; | |
2301 | |
2302 j++; | |
2303 } | |
2304 } | |
2305 //there are not enough feasible pairs, relieve the threshold | |
2306 if(j<3 && n_ali>3) d002t += 0.5; | |
2307 else break; | |
2308 } | |
2309 | |
2310 //evaluate the score | |
2311 Kabsch(r1, r2, j, 1, &rms, t, u); | |
2312 tmscore2=0; | |
2313 for(k=0; k<n_ali; k++) | |
2314 { | |
2315 transform(t, u, &xtm[k][0], xrot); | |
2316 di=dist(xrot, &ytm[k][0]); | |
2317 tmscore2 += 1/(1+di/d02); | |
2318 } | |
2319 } | |
2320 else | |
2321 { | |
2322 tmscore1=tmscore; | |
2323 tmscore2=tmscore; | |
2324 } | |
2325 | |
2326 if(tmscore1>=tmscore) tmscore=tmscore1; | |
2327 if(tmscore2>=tmscore) tmscore=tmscore2; | |
2328 return tmscore; // no need to normalize this score because it will not be used for latter scoring | |
2329 } | |
2330 | |
2331 | |
2332 //perform gapless threading to find the best initial alignment | |
2333 //input: x, y, xlen, ylen | |
2334 //output: y2x0 stores the best alignment: e.g., | |
2335 //y2x0[j]=i means: | |
2336 //the jth element in y is aligned to the ith element in x if i>=0 | |
2337 //the jth element in y is aligned to a gap in x if i==-1 | |
2338 double get_initial(double **r1, double **r2, double **xtm, double **ytm, | |
2339 double **x, double **y, int xlen, int ylen, int *y2x, | |
2340 double d0, double d0_search, const bool fast_opt, | |
2341 double t[3], double u[3][3]) | |
2342 { | |
2343 int min_len=getmin(xlen, ylen); | |
2344 if(min_len<3) PrintErrorAndQuit("Sequence is too short <3!\n"); | |
2345 | |
2346 int min_ali= min_len/2; //minimum size of considered fragment | |
2347 if(min_ali<=5) min_ali=5; | |
2348 int n1, n2; | |
2349 n1 = -ylen+min_ali; | |
2350 n2 = xlen-min_ali; | |
2351 | |
2352 int i, j, k, k_best; | |
2353 double tmscore, tmscore_max=-1; | |
2354 | |
2355 k_best=n1; | |
2356 for(k=n1; k<=n2; k+=(fast_opt)?5:1) | |
2357 { | |
2358 //get the map | |
2359 for(j=0; j<ylen; j++) | |
2360 { | |
2361 i=j+k; | |
2362 if(i>=0 && i<xlen) y2x[j]=i; | |
2363 else y2x[j]=-1; | |
2364 } | |
2365 | |
2366 //evaluate the map quickly in three iterations | |
2367 //this is not real tmscore, it is used to evaluate the goodness of the initial alignment | |
2368 tmscore=get_score_fast(r1, r2, xtm, ytm, | |
2369 x, y, xlen, ylen, y2x, d0,d0_search, t, u); | |
2370 if(tmscore>=tmscore_max) | |
2371 { | |
2372 tmscore_max=tmscore; | |
2373 k_best=k; | |
2374 } | |
2375 } | |
2376 | |
2377 //extract the best map | |
2378 k=k_best; | |
2379 for(j=0; j<ylen; j++) | |
2380 { | |
2381 i=j+k; | |
2382 if(i>=0 && i<xlen) y2x[j]=i; | |
2383 else y2x[j]=-1; | |
2384 } | |
2385 | |
2386 return tmscore_max; | |
2387 } | |
2388 | |
2389 void smooth(int *sec, int len) | |
2390 { | |
2391 int i, j; | |
2392 //smooth single --x-- => ----- | |
2393 for (i=2; i<len-2; i++) | |
2394 { | |
2395 if(sec[i]==2 || sec[i]==4) | |
2396 { | |
2397 j=sec[i]; | |
2398 if (sec[i-2]!=j && sec[i-1]!=j && sec[i+1]!=j && sec[i+2]!=j) | |
2399 sec[i]=1; | |
2400 } | |
2401 } | |
2402 | |
2403 // smooth double | |
2404 // --xx-- => ------ | |
2405 for (i=0; i<len-5; i++) | |
2406 { | |
2407 //helix | |
2408 if (sec[i]!=2 && sec[i+1]!=2 && sec[i+2]==2 && sec[i+3]==2 && | |
2409 sec[i+4]!=2 && sec[i+5]!= 2) | |
2410 { | |
2411 sec[i+2]=1; | |
2412 sec[i+3]=1; | |
2413 } | |
2414 | |
2415 //beta | |
2416 if (sec[i]!=4 && sec[i+1]!=4 && sec[i+2]==4 && sec[i+3]==4 && | |
2417 sec[i+4]!=4 && sec[i+5]!= 4) | |
2418 { | |
2419 sec[i+2]=1; | |
2420 sec[i+3]=1; | |
2421 } | |
2422 } | |
2423 | |
2424 //smooth connect | |
2425 for (i=0; i<len-2; i++) | |
2426 { | |
2427 if (sec[i]==2 && sec[i+1]!=2 && sec[i+2]==2) sec[i+1]=2; | |
2428 else if(sec[i]==4 && sec[i+1]!=4 && sec[i+2]==4) sec[i+1]=4; | |
2429 } | |
2430 | |
2431 } | |
2432 | |
2433 char sec_str(double dis13, double dis14, double dis15, | |
2434 double dis24, double dis25, double dis35) | |
2435 { | |
2436 char s='C'; | |
2437 | |
2438 double delta=2.1; | |
2439 if (fabs(dis15-6.37)<delta && fabs(dis14-5.18)<delta && | |
2440 fabs(dis25-5.18)<delta && fabs(dis13-5.45)<delta && | |
2441 fabs(dis24-5.45)<delta && fabs(dis35-5.45)<delta) | |
2442 { | |
2443 s='H'; //helix | |
2444 return s; | |
2445 } | |
2446 | |
2447 delta=1.42; | |
2448 if (fabs(dis15-13 )<delta && fabs(dis14-10.4)<delta && | |
2449 fabs(dis25-10.4)<delta && fabs(dis13-6.1 )<delta && | |
2450 fabs(dis24-6.1 )<delta && fabs(dis35-6.1 )<delta) | |
2451 { | |
2452 s='E'; //strand | |
2453 return s; | |
2454 } | |
2455 | |
2456 if (dis15 < 8) s='T'; //turn | |
2457 return s; | |
2458 } | |
2459 | |
2460 | |
2461 /* secondary stucture assignment for protein: | |
2462 * 1->coil, 2->helix, 3->turn, 4->strand */ | |
2463 void make_sec(double **x, int len, char *sec) | |
2464 { | |
2465 int j1, j2, j3, j4, j5; | |
2466 double d13, d14, d15, d24, d25, d35; | |
2467 for(int i=0; i<len; i++) | |
2468 { | |
2469 sec[i]='C'; | |
2470 j1=i-2; | |
2471 j2=i-1; | |
2472 j3=i; | |
2473 j4=i+1; | |
2474 j5=i+2; | |
2475 | |
2476 if(j1>=0 && j5<len) | |
2477 { | |
2478 d13=sqrt(dist(x[j1], x[j3])); | |
2479 d14=sqrt(dist(x[j1], x[j4])); | |
2480 d15=sqrt(dist(x[j1], x[j5])); | |
2481 d24=sqrt(dist(x[j2], x[j4])); | |
2482 d25=sqrt(dist(x[j2], x[j5])); | |
2483 d35=sqrt(dist(x[j3], x[j5])); | |
2484 sec[i]=sec_str(d13, d14, d15, d24, d25, d35); | |
2485 } | |
2486 } | |
2487 sec[len]=0; | |
2488 } | |
2489 | |
2490 //get initial alignment from secondary structure alignment | |
2491 //input: x, y, xlen, ylen | |
2492 //output: y2x stores the best alignment: e.g., | |
2493 //y2x[j]=i means: | |
2494 //the jth element in y is aligned to the ith element in x if i>=0 | |
2495 //the jth element in y is aligned to a gap in x if i==-1 | |
2496 void get_initial_ss(bool **path, double **val, | |
2497 const char *secx, const char *secy, int xlen, int ylen, int *y2x) | |
2498 { | |
2499 double gap_open=-1.0; | |
2500 NWDP_TM(path, val, secx, secy, xlen, ylen, gap_open, y2x); | |
2501 } | |
2502 | |
2503 | |
2504 // get_initial5 in TMalign fortran, get_initial_local in TMalign c by yangji | |
2505 //get initial alignment of local structure superposition | |
2506 //input: x, y, xlen, ylen | |
2507 //output: y2x stores the best alignment: e.g., | |
2508 //y2x[j]=i means: | |
2509 //the jth element in y is aligned to the ith element in x if i>=0 | |
2510 //the jth element in y is aligned to a gap in x if i==-1 | |
2511 bool get_initial5( double **r1, double **r2, double **xtm, double **ytm, | |
2512 bool **path, double **val, | |
2513 double **x, double **y, int xlen, int ylen, int *y2x, | |
2514 double d0, double d0_search, const bool fast_opt, const double D0_MIN) | |
2515 { | |
2516 double GL, rmsd; | |
2517 double t[3]; | |
2518 double u[3][3]; | |
2519 | |
2520 double d01 = d0 + 1.5; | |
2521 if (d01 < D0_MIN) d01 = D0_MIN; | |
2522 double d02 = d01*d01; | |
2523 | |
2524 double GLmax = 0; | |
2525 int aL = getmin(xlen, ylen); | |
2526 int *invmap = new int[ylen + 1]; | |
2527 | |
2528 // jump on sequence1--------------> | |
2529 int n_jump1 = 0; | |
2530 if (xlen > 250) | |
2531 n_jump1 = 45; | |
2532 else if (xlen > 200) | |
2533 n_jump1 = 35; | |
2534 else if (xlen > 150) | |
2535 n_jump1 = 25; | |
2536 else | |
2537 n_jump1 = 15; | |
2538 if (n_jump1 > (xlen / 3)) | |
2539 n_jump1 = xlen / 3; | |
2540 | |
2541 // jump on sequence2--------------> | |
2542 int n_jump2 = 0; | |
2543 if (ylen > 250) | |
2544 n_jump2 = 45; | |
2545 else if (ylen > 200) | |
2546 n_jump2 = 35; | |
2547 else if (ylen > 150) | |
2548 n_jump2 = 25; | |
2549 else | |
2550 n_jump2 = 15; | |
2551 if (n_jump2 > (ylen / 3)) | |
2552 n_jump2 = ylen / 3; | |
2553 | |
2554 // fragment to superimpose--------------> | |
2555 int n_frag[2] = { 20, 100 }; | |
2556 if (n_frag[0] > (aL / 3)) | |
2557 n_frag[0] = aL / 3; | |
2558 if (n_frag[1] > (aL / 2)) | |
2559 n_frag[1] = aL / 2; | |
2560 | |
2561 // start superimpose search--------------> | |
2562 if (fast_opt) | |
2563 { | |
2564 n_jump1*=5; | |
2565 n_jump2*=5; | |
2566 } | |
2567 bool flag = false; | |
2568 for (int i_frag = 0; i_frag < 2; i_frag++) | |
2569 { | |
2570 int m1 = xlen - n_frag[i_frag] + 1; | |
2571 int m2 = ylen - n_frag[i_frag] + 1; | |
2572 | |
2573 for (int i = 0; i<m1; i = i + n_jump1) //index starts from 0, different from FORTRAN | |
2574 { | |
2575 for (int j = 0; j<m2; j = j + n_jump2) | |
2576 { | |
2577 for (int k = 0; k<n_frag[i_frag]; k++) //fragment in y | |
2578 { | |
2579 r1[k][0] = x[k + i][0]; | |
2580 r1[k][1] = x[k + i][1]; | |
2581 r1[k][2] = x[k + i][2]; | |
2582 | |
2583 r2[k][0] = y[k + j][0]; | |
2584 r2[k][1] = y[k + j][1]; | |
2585 r2[k][2] = y[k + j][2]; | |
2586 } | |
2587 | |
2588 // superpose the two structures and rotate it | |
2589 Kabsch(r1, r2, n_frag[i_frag], 1, &rmsd, t, u); | |
2590 | |
2591 double gap_open = 0.0; | |
2592 NWDP_TM(path, val, x, y, xlen, ylen, | |
2593 t, u, d02, gap_open, invmap); | |
2594 GL = get_score_fast(r1, r2, xtm, ytm, x, y, xlen, ylen, | |
2595 invmap, d0, d0_search, t, u); | |
2596 if (GL>GLmax) | |
2597 { | |
2598 GLmax = GL; | |
2599 for (int ii = 0; ii<ylen; ii++) y2x[ii] = invmap[ii]; | |
2600 flag = true; | |
2601 } | |
2602 } | |
2603 } | |
2604 } | |
2605 | |
2606 delete[] invmap; | |
2607 return flag; | |
2608 } | |
2609 | |
2610 void score_matrix_rmsd_sec( double **r1, double **r2, double **score, | |
2611 const char *secx, const char *secy, double **x, double **y, | |
2612 int xlen, int ylen, int *y2x, const double D0_MIN, double d0) | |
2613 { | |
2614 double t[3], u[3][3]; | |
2615 double rmsd, dij; | |
2616 double d01=d0+1.5; | |
2617 if(d01 < D0_MIN) d01=D0_MIN; | |
2618 double d02=d01*d01; | |
2619 | |
2620 double xx[3]; | |
2621 int i, k=0; | |
2622 for(int j=0; j<ylen; j++) | |
2623 { | |
2624 i=y2x[j]; | |
2625 if(i>=0) | |
2626 { | |
2627 r1[k][0]=x[i][0]; | |
2628 r1[k][1]=x[i][1]; | |
2629 r1[k][2]=x[i][2]; | |
2630 | |
2631 r2[k][0]=y[j][0]; | |
2632 r2[k][1]=y[j][1]; | |
2633 r2[k][2]=y[j][2]; | |
2634 | |
2635 k++; | |
2636 } | |
2637 } | |
2638 Kabsch(r1, r2, k, 1, &rmsd, t, u); | |
2639 | |
2640 | |
2641 for(int ii=0; ii<xlen; ii++) | |
2642 { | |
2643 transform(t, u, &x[ii][0], xx); | |
2644 for(int jj=0; jj<ylen; jj++) | |
2645 { | |
2646 dij=dist(xx, &y[jj][0]); | |
2647 if (secx[ii]==secy[jj]) | |
2648 score[ii+1][jj+1] = 1.0/(1+dij/d02) + 0.5; | |
2649 else | |
2650 score[ii+1][jj+1] = 1.0/(1+dij/d02); | |
2651 } | |
2652 } | |
2653 } | |
2654 | |
2655 | |
2656 //get initial alignment from secondary structure and previous alignments | |
2657 //input: x, y, xlen, ylen | |
2658 //output: y2x stores the best alignment: e.g., | |
2659 //y2x[j]=i means: | |
2660 //the jth element in y is aligned to the ith element in x if i>=0 | |
2661 //the jth element in y is aligned to a gap in x if i==-1 | |
2662 void get_initial_ssplus(double **r1, double **r2, double **score, bool **path, | |
2663 double **val, const char *secx, const char *secy, double **x, double **y, | |
2664 int xlen, int ylen, int *y2x0, int *y2x, const double D0_MIN, double d0) | |
2665 { | |
2666 //create score matrix for DP | |
2667 score_matrix_rmsd_sec(r1, r2, score, secx, secy, x, y, xlen, ylen, | |
2668 y2x0, D0_MIN,d0); | |
2669 | |
2670 double gap_open=-1.0; | |
2671 NWDP_TM(score, path, val, xlen, ylen, gap_open, y2x); | |
2672 } | |
2673 | |
2674 | |
2675 void find_max_frag(double **x, int len, int *start_max, | |
2676 int *end_max, double dcu0, const bool fast_opt) | |
2677 { | |
2678 int r_min, fra_min=4; //minimum fragment for search | |
2679 if (fast_opt) fra_min=8; | |
2680 int start; | |
2681 int Lfr_max=0; | |
2682 | |
2683 r_min= (int) (len*1.0/3.0); //minimum fragment, in case too small protein | |
2684 if(r_min > fra_min) r_min=fra_min; | |
2685 | |
2686 int inc=0; | |
2687 double dcu0_cut=dcu0*dcu0;; | |
2688 double dcu_cut=dcu0_cut; | |
2689 | |
2690 while(Lfr_max < r_min) | |
2691 { | |
2692 Lfr_max=0; | |
2693 int j=1; //number of residues at nf-fragment | |
2694 start=0; | |
2695 for(int i=1; i<len; i++) | |
2696 { | |
2697 if(dist(x[i-1], x[i]) < dcu_cut) | |
2698 { | |
2699 j++; | |
2700 | |
2701 if(i==(len-1)) | |
2702 { | |
2703 if(j > Lfr_max) | |
2704 { | |
2705 Lfr_max=j; | |
2706 *start_max=start; | |
2707 *end_max=i; | |
2708 } | |
2709 j=1; | |
2710 } | |
2711 } | |
2712 else | |
2713 { | |
2714 if(j>Lfr_max) | |
2715 { | |
2716 Lfr_max=j; | |
2717 *start_max=start; | |
2718 *end_max=i-1; | |
2719 } | |
2720 | |
2721 j=1; | |
2722 start=i; | |
2723 } | |
2724 }// for i; | |
2725 | |
2726 if(Lfr_max < r_min) | |
2727 { | |
2728 inc++; | |
2729 double dinc=pow(1.1, (double) inc) * dcu0; | |
2730 dcu_cut= dinc*dinc; | |
2731 } | |
2732 }//while <; | |
2733 } | |
2734 | |
2735 //perform fragment gapless threading to find the best initial alignment | |
2736 //input: x, y, xlen, ylen | |
2737 //output: y2x0 stores the best alignment: e.g., | |
2738 //y2x0[j]=i means: | |
2739 //the jth element in y is aligned to the ith element in x if i>=0 | |
2740 //the jth element in y is aligned to a gap in x if i==-1 | |
2741 double get_initial_fgt(double **r1, double **r2, double **xtm, double **ytm, | |
2742 double **x, double **y, int xlen, int ylen, | |
2743 int *y2x, double d0, double d0_search, | |
2744 double dcu0, const bool fast_opt, double t[3], double u[3][3]) | |
2745 { | |
2746 int fra_min=4; //minimum fragment for search | |
2747 if (fast_opt) fra_min=8; | |
2748 int fra_min1=fra_min-1; //cutoff for shift, save time | |
2749 | |
2750 int xstart=0, ystart=0, xend=0, yend=0; | |
2751 | |
2752 find_max_frag(x, xlen, &xstart, &xend, dcu0, fast_opt); | |
2753 find_max_frag(y, ylen, &ystart, ¥d, dcu0, fast_opt); | |
2754 | |
2755 | |
2756 int Lx = xend-xstart+1; | |
2757 int Ly = yend-ystart+1; | |
2758 int *ifr, *y2x_; | |
2759 int L_fr=getmin(Lx, Ly); | |
2760 ifr= new int[L_fr]; | |
2761 y2x_= new int[ylen+1]; | |
2762 | |
2763 //select what piece will be used. The original implement may cause | |
2764 //asymetry, but only when xlen==ylen and Lx==Ly | |
2765 //if L1=Lfr1 and L2=Lfr2 (normal proteins), it will be the same as initial1 | |
2766 | |
2767 if(Lx<Ly || (Lx==Ly && xlen<ylen)) | |
2768 { | |
2769 for(int i=0; i<L_fr; i++) ifr[i]=xstart+i; | |
2770 } | |
2771 else if(Lx>Ly || (Lx==Ly && xlen>ylen)) | |
2772 { | |
2773 for(int i=0; i<L_fr; i++) ifr[i]=ystart+i; | |
2774 } | |
2775 else // solve asymetric for 1x5gA vs 2q7nA5 | |
2776 { | |
2777 /* In this case, L0==xlen==ylen; L_fr==Lx==Ly */ | |
2778 int L0=xlen; | |
2779 double tmscore, tmscore_max=-1; | |
2780 int i, j, k; | |
2781 int n1, n2; | |
2782 int min_len; | |
2783 int min_ali; | |
2784 | |
2785 /* part 1, normalized by xlen */ | |
2786 for(i=0; i<L_fr; i++) ifr[i]=xstart+i; | |
2787 | |
2788 if(L_fr==L0) | |
2789 { | |
2790 n1= (int)(L0*0.1); //my index starts from 0 | |
2791 n2= (int)(L0*0.89); | |
2792 j=0; | |
2793 for(i=n1; i<= n2; i++) | |
2794 { | |
2795 ifr[j]=ifr[i]; | |
2796 j++; | |
2797 } | |
2798 L_fr=j; | |
2799 } | |
2800 | |
2801 int L1=L_fr; | |
2802 min_len=getmin(L1, ylen); | |
2803 min_ali= (int) (min_len/2.5); //minimum size of considered fragment | |
2804 if(min_ali<=fra_min1) min_ali=fra_min1; | |
2805 n1 = -ylen+min_ali; | |
2806 n2 = L1-min_ali; | |
2807 | |
2808 for(k=n1; k<=n2; k+=(fast_opt)?3:1) | |
2809 { | |
2810 //get the map | |
2811 for(j=0; j<ylen; j++) | |
2812 { | |
2813 i=j+k; | |
2814 if(i>=0 && i<L1) y2x_[j]=ifr[i]; | |
2815 else y2x_[j]=-1; | |
2816 } | |
2817 | |
2818 //evaluate the map quickly in three iterations | |
2819 tmscore=get_score_fast(r1, r2, xtm, ytm, x, y, xlen, ylen, y2x_, | |
2820 d0, d0_search, t, u); | |
2821 | |
2822 if(tmscore>=tmscore_max) | |
2823 { | |
2824 tmscore_max=tmscore; | |
2825 for(j=0; j<ylen; j++) y2x[j]=y2x_[j]; | |
2826 } | |
2827 } | |
2828 | |
2829 /* part 2, normalized by ylen */ | |
2830 L_fr=Ly; | |
2831 for(i=0; i<L_fr; i++) ifr[i]=ystart+i; | |
2832 | |
2833 if (L_fr==L0) | |
2834 { | |
2835 n1= (int)(L0*0.1); //my index starts from 0 | |
2836 n2= (int)(L0*0.89); | |
2837 | |
2838 j=0; | |
2839 for(i=n1; i<= n2; i++) | |
2840 { | |
2841 ifr[j]=ifr[i]; | |
2842 j++; | |
2843 } | |
2844 L_fr=j; | |
2845 } | |
2846 | |
2847 int L2=L_fr; | |
2848 min_len=getmin(xlen, L2); | |
2849 min_ali= (int) (min_len/2.5); //minimum size of considered fragment | |
2850 if(min_ali<=fra_min1) min_ali=fra_min1; | |
2851 n1 = -L2+min_ali; | |
2852 n2 = xlen-min_ali; | |
2853 | |
2854 for(k=n1; k<=n2; k++) | |
2855 { | |
2856 //get the map | |
2857 for(j=0; j<ylen; j++) y2x_[j]=-1; | |
2858 | |
2859 for(j=0; j<L2; j++) | |
2860 { | |
2861 i=j+k; | |
2862 if(i>=0 && i<xlen) y2x_[ifr[j]]=i; | |
2863 } | |
2864 | |
2865 //evaluate the map quickly in three iterations | |
2866 tmscore=get_score_fast(r1, r2, xtm, ytm, | |
2867 x, y, xlen, ylen, y2x_, d0,d0_search, t, u); | |
2868 if(tmscore>=tmscore_max) | |
2869 { | |
2870 tmscore_max=tmscore; | |
2871 for(j=0; j<ylen; j++) y2x[j]=y2x_[j]; | |
2872 } | |
2873 } | |
2874 | |
2875 delete [] ifr; | |
2876 delete [] y2x_; | |
2877 return tmscore_max; | |
2878 } | |
2879 | |
2880 | |
2881 int L0=getmin(xlen, ylen); //non-redundant to get_initial1 | |
2882 if(L_fr==L0) | |
2883 { | |
2884 int n1= (int)(L0*0.1); //my index starts from 0 | |
2885 int n2= (int)(L0*0.89); | |
2886 | |
2887 int j=0; | |
2888 for(int i=n1; i<= n2; i++) | |
2889 { | |
2890 ifr[j]=ifr[i]; | |
2891 j++; | |
2892 } | |
2893 L_fr=j; | |
2894 } | |
2895 | |
2896 | |
2897 //gapless threading for the extracted fragment | |
2898 double tmscore, tmscore_max=-1; | |
2899 | |
2900 if(Lx<Ly || (Lx==Ly && xlen<=ylen)) | |
2901 { | |
2902 int L1=L_fr; | |
2903 int min_len=getmin(L1, ylen); | |
2904 int min_ali= (int) (min_len/2.5); //minimum size of considered fragment | |
2905 if(min_ali<=fra_min1) min_ali=fra_min1; | |
2906 int n1, n2; | |
2907 n1 = -ylen+min_ali; | |
2908 n2 = L1-min_ali; | |
2909 | |
2910 int i, j, k; | |
2911 for(k=n1; k<=n2; k+=(fast_opt)?3:1) | |
2912 { | |
2913 //get the map | |
2914 for(j=0; j<ylen; j++) | |
2915 { | |
2916 i=j+k; | |
2917 if(i>=0 && i<L1) y2x_[j]=ifr[i]; | |
2918 else y2x_[j]=-1; | |
2919 } | |
2920 | |
2921 //evaluate the map quickly in three iterations | |
2922 tmscore=get_score_fast(r1, r2, xtm, ytm, x, y, xlen, ylen, y2x_, | |
2923 d0, d0_search, t, u); | |
2924 | |
2925 if(tmscore>=tmscore_max) | |
2926 { | |
2927 tmscore_max=tmscore; | |
2928 for(j=0; j<ylen; j++) y2x[j]=y2x_[j]; | |
2929 } | |
2930 } | |
2931 } | |
2932 else | |
2933 { | |
2934 int L2=L_fr; | |
2935 int min_len=getmin(xlen, L2); | |
2936 int min_ali= (int) (min_len/2.5); //minimum size of considered fragment | |
2937 if(min_ali<=fra_min1) min_ali=fra_min1; | |
2938 int n1, n2; | |
2939 n1 = -L2+min_ali; | |
2940 n2 = xlen-min_ali; | |
2941 | |
2942 int i, j, k; | |
2943 | |
2944 for(k=n1; k<=n2; k++) | |
2945 { | |
2946 //get the map | |
2947 for(j=0; j<ylen; j++) y2x_[j]=-1; | |
2948 | |
2949 for(j=0; j<L2; j++) | |
2950 { | |
2951 i=j+k; | |
2952 if(i>=0 && i<xlen) y2x_[ifr[j]]=i; | |
2953 } | |
2954 | |
2955 //evaluate the map quickly in three iterations | |
2956 tmscore=get_score_fast(r1, r2, xtm, ytm, | |
2957 x, y, xlen, ylen, y2x_, d0,d0_search, t, u); | |
2958 if(tmscore>=tmscore_max) | |
2959 { | |
2960 tmscore_max=tmscore; | |
2961 for(j=0; j<ylen; j++) y2x[j]=y2x_[j]; | |
2962 } | |
2963 } | |
2964 } | |
2965 | |
2966 | |
2967 delete [] ifr; | |
2968 delete [] y2x_; | |
2969 return tmscore_max; | |
2970 } | |
2971 | |
2972 //heuristic run of dynamic programing iteratively to find the best alignment | |
2973 //input: initial rotation matrix t, u | |
2974 // vectors x and y, d0 | |
2975 //output: best alignment that maximizes the TMscore, will be stored in invmap | |
2976 double DP_iter(double **r1, double **r2, double **xtm, double **ytm, | |
2977 double **xt, bool **path, double **val, double **x, double **y, | |
2978 int xlen, int ylen, double t[3], double u[3][3], int invmap0[], | |
2979 int g1, int g2, int iteration_max, double local_d0_search, | |
2980 double D0_MIN, double Lnorm, double d0, double score_d8) | |
2981 { | |
2982 double gap_open[2]={-0.6, 0}; | |
2983 double rmsd; | |
2984 int *invmap=new int[ylen+1]; | |
2985 | |
2986 int iteration, i, j, k; | |
2987 double tmscore, tmscore_max, tmscore_old=0; | |
2988 int score_sum_method=8, simplify_step=40; | |
2989 tmscore_max=-1; | |
2990 | |
2991 //double d01=d0+1.5; | |
2992 double d02=d0*d0; | |
2993 for(int g=g1; g<g2; g++) | |
2994 { | |
2995 for(iteration=0; iteration<iteration_max; iteration++) | |
2996 { | |
2997 NWDP_TM(path, val, x, y, xlen, ylen, | |
2998 t, u, d02, gap_open[g], invmap); | |
2999 | |
3000 k=0; | |
3001 for(j=0; j<ylen; j++) | |
3002 { | |
3003 i=invmap[j]; | |
3004 | |
3005 if(i>=0) //aligned | |
3006 { | |
3007 xtm[k][0]=x[i][0]; | |
3008 xtm[k][1]=x[i][1]; | |
3009 xtm[k][2]=x[i][2]; | |
3010 | |
3011 ytm[k][0]=y[j][0]; | |
3012 ytm[k][1]=y[j][1]; | |
3013 ytm[k][2]=y[j][2]; | |
3014 k++; | |
3015 } | |
3016 } | |
3017 | |
3018 tmscore = TMscore8_search(r1, r2, xtm, ytm, xt, k, t, u, | |
3019 simplify_step, score_sum_method, &rmsd, local_d0_search, | |
3020 Lnorm, score_d8, d0); | |
3021 | |
3022 | |
3023 if(tmscore>tmscore_max) | |
3024 { | |
3025 tmscore_max=tmscore; | |
3026 for(i=0; i<ylen; i++) invmap0[i]=invmap[i]; | |
3027 } | |
3028 | |
3029 if(iteration>0) | |
3030 { | |
3031 if(fabs(tmscore_old-tmscore)<0.000001) break; | |
3032 } | |
3033 tmscore_old=tmscore; | |
3034 }// for iteration | |
3035 | |
3036 }//for gapopen | |
3037 | |
3038 | |
3039 delete []invmap; | |
3040 return tmscore_max; | |
3041 } | |
3042 | |
3043 | |
3044 void output_superpose(const string xname, const string yname, | |
3045 const string fname_super, | |
3046 double t[3], double u[3][3], const int ter_opt, const int mirror_opt, | |
3047 const char *seqM, const char *seqxA, const char *seqyA, | |
3048 const vector<string>&resi_vec1, const vector<string>&resi_vec2, | |
3049 const char *chainID1, const char *chainID2, | |
3050 const int xlen, const int ylen, const double d0A, const int n_ali8, | |
3051 const double rmsd, const double TM1, const double Liden) | |
3052 { | |
3053 stringstream buf; | |
3054 stringstream buf_all; | |
3055 stringstream buf_atm; | |
3056 stringstream buf_all_atm; | |
3057 stringstream buf_all_atm_lig; | |
3058 stringstream buf_pdb; | |
3059 stringstream buf_pymol; | |
3060 stringstream buf_tm; | |
3061 string line; | |
3062 double x[3]; // before transform | |
3063 double x1[3]; // after transform | |
3064 bool after_ter; // true if passed the "TER" line in PDB | |
3065 string asym_id; // chain ID | |
3066 | |
3067 buf_tm<<"REMARK TM-align" | |
3068 <<"\nREMARK Chain 1:"<<setw(11)<<left<<xname+chainID1<<" Size= "<<xlen | |
3069 <<"\nREMARK Chain 2:"<<setw(11)<<yname+chainID2<<right<<" Size= "<<ylen | |
3070 <<" (TM-score is normalized by "<<setw(4)<<ylen<<", d0=" | |
3071 <<setiosflags(ios::fixed)<<setprecision(2)<<setw(6)<<d0A<<")" | |
3072 <<"\nREMARK Aligned length="<<setw(4)<<n_ali8<<", RMSD=" | |
3073 <<setw(6)<<setiosflags(ios::fixed)<<setprecision(2)<<rmsd | |
3074 <<", TM-score="<<setw(7)<<setiosflags(ios::fixed)<<setprecision(5)<<TM1 | |
3075 <<", ID="<<setw(5)<<setiosflags(ios::fixed)<<setprecision(3) | |
3076 <<((n_ali8>0)?Liden/n_ali8:0)<<endl; | |
3077 string rasmol_CA_header="load inline\nselect *A\nwireframe .45\nselect *B\nwireframe .20\nselect all\ncolor white\n"; | |
3078 string rasmol_cartoon_header="load inline\nselect all\ncartoon\nselect *A\ncolor blue\nselect *B\ncolor red\nselect ligand\nwireframe 0.25\nselect solvent\nspacefill 0.25\nselect all\nexit\n"+buf_tm.str(); | |
3079 buf<<rasmol_CA_header; | |
3080 buf_all<<rasmol_CA_header; | |
3081 buf_atm<<rasmol_cartoon_header; | |
3082 buf_all_atm<<rasmol_cartoon_header; | |
3083 buf_all_atm_lig<<rasmol_cartoon_header; | |
3084 | |
3085 /* for PDBx/mmCIF only */ | |
3086 map<string,int> _atom_site; | |
3087 int atom_site_pos; | |
3088 vector<string> line_vec; | |
3089 string atom; // 4-character atom name | |
3090 string AA; // 3-character residue name | |
3091 string resi; // 4-character residue sequence number | |
3092 string inscode; // 1-character insertion code | |
3093 string model_index; // model index | |
3094 bool is_mmcif=false; | |
3095 int chain_num=0; | |
3096 | |
3097 /* used for CONECT record of chain1 */ | |
3098 int ca_idx1=0; // all CA atoms | |
3099 int lig_idx1=0; // all atoms | |
3100 vector <int> idx_vec; | |
3101 | |
3102 /* used for CONECT record of chain2 */ | |
3103 int ca_idx2=0; // all CA atoms | |
3104 int lig_idx2=0; // all atoms | |
3105 | |
3106 /* extract aligned region */ | |
3107 vector<string> resi_aln1; | |
3108 vector<string> resi_aln2; | |
3109 int i1=-1; | |
3110 int i2=-1; | |
3111 int i; | |
3112 for (i=0;i<strlen(seqM);i++) | |
3113 { | |
3114 i1+=(seqxA[i]!='-'); | |
3115 i2+=(seqyA[i]!='-'); | |
3116 if (seqM[i]==' ') continue; | |
3117 resi_aln1.push_back(resi_vec1[i1].substr(0,4)); | |
3118 resi_aln2.push_back(resi_vec2[i2].substr(0,4)); | |
3119 if (seqM[i]!=':') continue; | |
3120 buf <<"select "<<resi_aln1.back()<<":A," | |
3121 <<resi_aln2.back()<<":B\ncolor red\n"; | |
3122 buf_all<<"select "<<resi_aln1.back()<<":A," | |
3123 <<resi_aln2.back()<<":B\ncolor red\n"; | |
3124 } | |
3125 buf<<"select all\nexit\n"<<buf_tm.str(); | |
3126 buf_all<<"select all\nexit\n"<<buf_tm.str(); | |
3127 | |
3128 ifstream fin; | |
3129 /* read first file */ | |
3130 after_ter=false; | |
3131 asym_id=""; | |
3132 fin.open(xname.c_str()); | |
3133 while (fin.good()) | |
3134 { | |
3135 getline(fin, line); | |
3136 if (ter_opt>=3 && line.compare(0,3,"TER")==0) after_ter=true; | |
3137 if (is_mmcif==false && line.size()>=54 && | |
3138 (line.compare(0, 6, "ATOM ")==0 || | |
3139 line.compare(0, 6, "HETATM")==0)) // PDB format | |
3140 { | |
3141 x[0]=atof(line.substr(30,8).c_str()); | |
3142 x[1]=atof(line.substr(38,8).c_str()); | |
3143 x[2]=atof(line.substr(46,8).c_str()); | |
3144 if (mirror_opt) x[2]=-x[2]; | |
3145 transform(t, u, x, x1); | |
3146 buf_pdb<<line.substr(0,30)<<setiosflags(ios::fixed) | |
3147 <<setprecision(3) | |
3148 <<setw(8)<<x1[0] <<setw(8)<<x1[1] <<setw(8)<<x1[2] | |
3149 <<line.substr(54)<<'\n'; | |
3150 | |
3151 if (line[16]!='A' && line[16]!=' ') continue; | |
3152 if (after_ter && line.compare(0,6,"ATOM ")==0) continue; | |
3153 lig_idx1++; | |
3154 buf_all_atm_lig<<line.substr(0,6)<<setw(5)<<lig_idx1 | |
3155 <<line.substr(11,9)<<" A"<<line.substr(22,8) | |
3156 <<setiosflags(ios::fixed)<<setprecision(3) | |
3157 <<setw(8)<<x1[0]<<setw(8)<<x1[1] <<setw(8)<<x1[2]<<'\n'; | |
3158 if (after_ter || line.compare(0,6,"ATOM ")) continue; | |
3159 if (ter_opt>=2) | |
3160 { | |
3161 if (ca_idx1 && asym_id.size() && asym_id!=line.substr(21,1)) | |
3162 { | |
3163 after_ter=true; | |
3164 continue; | |
3165 } | |
3166 asym_id=line[21]; | |
3167 } | |
3168 buf_all_atm<<"ATOM "<<setw(5)<<lig_idx1 | |
3169 <<line.substr(11,9)<<" A"<<line.substr(22,8) | |
3170 <<setiosflags(ios::fixed)<<setprecision(3) | |
3171 <<setw(8)<<x1[0]<<setw(8)<<x1[1] <<setw(8)<<x1[2]<<'\n'; | |
3172 if (find(resi_aln1.begin(),resi_aln1.end(),line.substr(22,4) | |
3173 )!=resi_aln1.end()) | |
3174 { | |
3175 buf_atm<<"ATOM "<<setw(5)<<lig_idx1 | |
3176 <<line.substr(11,9)<<" A"<<line.substr(22,8) | |
3177 <<setiosflags(ios::fixed)<<setprecision(3) | |
3178 <<setw(8)<<x1[0]<<setw(8)<<x1[1] <<setw(8)<<x1[2]<<'\n'; | |
3179 } | |
3180 if (line.substr(12,4)!=" CA ") continue; | |
3181 ca_idx1++; | |
3182 buf_all<<"ATOM "<<setw(5)<<ca_idx1 | |
3183 <<" CA "<<line.substr(17,3)<<" A"<<line.substr(22,8) | |
3184 <<setiosflags(ios::fixed)<<setprecision(3) | |
3185 <<setw(8)<<x1[0]<<setw(8)<<x1[1]<<setw(8)<<x1[2]<<'\n'; | |
3186 if (find(resi_aln1.begin(),resi_aln1.end(),line.substr(22,4) | |
3187 )==resi_aln1.end()) continue; | |
3188 buf<<"ATOM "<<setw(5)<<ca_idx1 | |
3189 <<" CA "<<line.substr(17,3)<<" A"<<line.substr(22,8) | |
3190 <<setiosflags(ios::fixed)<<setprecision(3) | |
3191 <<setw(8)<<x1[0]<<setw(8)<<x1[1]<<setw(8)<<x1[2]<<'\n'; | |
3192 idx_vec.push_back(ca_idx1); | |
3193 } | |
3194 else if (line.compare(0,5,"loop_")==0) // PDBx/mmCIF | |
3195 { | |
3196 while(1) | |
3197 { | |
3198 if (fin.good()) getline(fin, line); | |
3199 else PrintErrorAndQuit("ERROR! Unexpected end of "+xname); | |
3200 if (line.size()) break; | |
3201 } | |
3202 if (line.compare(0,11,"_atom_site.")) continue; | |
3203 _atom_site.clear(); | |
3204 atom_site_pos=0; | |
3205 _atom_site[line.substr(11,line.size()-12)]=atom_site_pos; | |
3206 while(1) | |
3207 { | |
3208 if (fin.good()) getline(fin, line); | |
3209 else PrintErrorAndQuit("ERROR! Unexpected end of "+xname); | |
3210 if (line.size()==0) continue; | |
3211 if (line.compare(0,11,"_atom_site.")) break; | |
3212 _atom_site[line.substr(11,line.size()-12)]=++atom_site_pos; | |
3213 } | |
3214 | |
3215 if (is_mmcif==false) | |
3216 { | |
3217 buf_pdb.str(string()); | |
3218 is_mmcif=true; | |
3219 } | |
3220 | |
3221 while(1) | |
3222 { | |
3223 line_vec.clear(); | |
3224 split(line,line_vec); | |
3225 if (line_vec[_atom_site["group_PDB"]]!="ATOM" && | |
3226 line_vec[_atom_site["group_PDB"]]!="HETATM") break; | |
3227 if (_atom_site.count("pdbx_PDB_model_num")) | |
3228 { | |
3229 if (model_index.size() && model_index!= | |
3230 line_vec[_atom_site["pdbx_PDB_model_num"]]) | |
3231 break; | |
3232 model_index=line_vec[_atom_site["pdbx_PDB_model_num"]]; | |
3233 } | |
3234 | |
3235 x[0]=atof(line_vec[_atom_site["Cartn_x"]].c_str()); | |
3236 x[1]=atof(line_vec[_atom_site["Cartn_y"]].c_str()); | |
3237 x[2]=atof(line_vec[_atom_site["Cartn_z"]].c_str()); | |
3238 if (mirror_opt) x[2]=-x[2]; | |
3239 transform(t, u, x, x1); | |
3240 | |
3241 if (_atom_site.count("label_alt_id")==0 || | |
3242 line_vec[_atom_site["label_alt_id"]]=="." || | |
3243 line_vec[_atom_site["label_alt_id"]]=="A") | |
3244 { | |
3245 atom=line_vec[_atom_site["label_atom_id"]]; | |
3246 if (atom[0]=='"') atom=atom.substr(1); | |
3247 if (atom.size() && atom[atom.size()-1]=='"') | |
3248 atom=atom.substr(0,atom.size()-1); | |
3249 if (atom.size()==0) atom=" "; | |
3250 else if (atom.size()==1) atom=" "+atom+" "; | |
3251 else if (atom.size()==2) atom=" "+atom+" "; | |
3252 else if (atom.size()==3) atom=" "+atom; | |
3253 else if (atom.size()>=5) atom=atom.substr(0,4); | |
3254 | |
3255 AA=line_vec[_atom_site["label_comp_id"]]; // residue name | |
3256 if (AA.size()==1) AA=" "+AA; | |
3257 else if (AA.size()==2) AA=" " +AA; | |
3258 else if (AA.size()>=4) AA=AA.substr(0,3); | |
3259 | |
3260 if (_atom_site.count("auth_seq_id")) | |
3261 resi=line_vec[_atom_site["auth_seq_id"]]; | |
3262 else resi=line_vec[_atom_site["label_seq_id"]]; | |
3263 while (resi.size()<4) resi=' '+resi; | |
3264 if (resi.size()>4) resi=resi.substr(0,4); | |
3265 | |
3266 inscode=' '; | |
3267 if (_atom_site.count("pdbx_PDB_ins_code") && | |
3268 line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") | |
3269 inscode=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; | |
3270 | |
3271 if (_atom_site.count("auth_asym_id")) | |
3272 { | |
3273 if (ter_opt>=2 && ca_idx1 && asym_id.size() && | |
3274 asym_id!=line_vec[_atom_site["auth_asym_id"]]) | |
3275 after_ter=true; | |
3276 asym_id=line_vec[_atom_site["auth_asym_id"]]; | |
3277 } | |
3278 else if (_atom_site.count("label_asym_id")) | |
3279 { | |
3280 if (ter_opt>=2 && ca_idx1 && asym_id.size() && | |
3281 asym_id!=line_vec[_atom_site["label_asym_id"]]) | |
3282 after_ter=true; | |
3283 asym_id=line_vec[_atom_site["label_asym_id"]]; | |
3284 } | |
3285 buf_pdb<<left<<setw(6) | |
3286 <<line_vec[_atom_site["group_PDB"]]<<right | |
3287 <<setw(5)<<lig_idx1%100000<<' '<<atom<<' ' | |
3288 <<AA<<" "<<asym_id[asym_id.size()-1] | |
3289 <<resi<<inscode<<" " | |
3290 <<setiosflags(ios::fixed)<<setprecision(3) | |
3291 <<setw(8)<<x1[0] | |
3292 <<setw(8)<<x1[1] | |
3293 <<setw(8)<<x1[2]<<'\n'; | |
3294 | |
3295 if (after_ter==false || | |
3296 line_vec[_atom_site["group_pdb"]]=="HETATM") | |
3297 { | |
3298 lig_idx1++; | |
3299 buf_all_atm_lig<<left<<setw(6) | |
3300 <<line_vec[_atom_site["group_PDB"]]<<right | |
3301 <<setw(5)<<lig_idx1%100000<<' '<<atom<<' ' | |
3302 <<AA<<" A"<<resi<<inscode<<" " | |
3303 <<setiosflags(ios::fixed)<<setprecision(3) | |
3304 <<setw(8)<<x1[0] | |
3305 <<setw(8)<<x1[1] | |
3306 <<setw(8)<<x1[2]<<'\n'; | |
3307 if (after_ter==false && | |
3308 line_vec[_atom_site["group_PDB"]]=="ATOM") | |
3309 { | |
3310 buf_all_atm<<"ATOM "<<setw(6) | |
3311 <<setw(5)<<lig_idx1%100000<<' '<<atom<<' ' | |
3312 <<AA<<" A"<<resi<<inscode<<" " | |
3313 <<setiosflags(ios::fixed)<<setprecision(3) | |
3314 <<setw(8)<<x1[0] | |
3315 <<setw(8)<<x1[1] | |
3316 <<setw(8)<<x1[2]<<'\n'; | |
3317 if (find(resi_aln1.begin(),resi_aln1.end(),resi | |
3318 )!=resi_aln1.end()) | |
3319 { | |
3320 buf_atm<<"ATOM "<<setw(6) | |
3321 <<setw(5)<<lig_idx1%100000<<' ' | |
3322 <<atom<<' '<<AA<<" A"<<resi<<inscode<<" " | |
3323 <<setiosflags(ios::fixed)<<setprecision(3) | |
3324 <<setw(8)<<x1[0] | |
3325 <<setw(8)<<x1[1] | |
3326 <<setw(8)<<x1[2]<<'\n'; | |
3327 } | |
3328 if (atom==" CA ") | |
3329 { | |
3330 ca_idx1++; | |
3331 buf_all<<"ATOM "<<setw(6) | |
3332 <<setw(5)<<ca_idx1%100000<<" CA " | |
3333 <<AA<<" A"<<resi<<inscode<<" " | |
3334 <<setiosflags(ios::fixed)<<setprecision(3) | |
3335 <<setw(8)<<x1[0] | |
3336 <<setw(8)<<x1[1] | |
3337 <<setw(8)<<x1[2]<<'\n'; | |
3338 if (find(resi_aln1.begin(),resi_aln1.end(),resi | |
3339 )!=resi_aln1.end()) | |
3340 { | |
3341 buf<<"ATOM "<<setw(6) | |
3342 <<setw(5)<<ca_idx1%100000<<" CA " | |
3343 <<AA<<" A"<<resi<<inscode<<" " | |
3344 <<setiosflags(ios::fixed)<<setprecision(3) | |
3345 <<setw(8)<<x1[0] | |
3346 <<setw(8)<<x1[1] | |
3347 <<setw(8)<<x1[2]<<'\n'; | |
3348 idx_vec.push_back(ca_idx1); | |
3349 } | |
3350 } | |
3351 } | |
3352 } | |
3353 } | |
3354 | |
3355 while(1) | |
3356 { | |
3357 if (fin.good()) getline(fin, line); | |
3358 else break; | |
3359 if (line.size()) break; | |
3360 } | |
3361 } | |
3362 } | |
3363 else if (line.size() && is_mmcif==false) | |
3364 { | |
3365 buf_pdb<<line<<'\n'; | |
3366 if (ter_opt>=1 && line.compare(0,3,"END")==0) break; | |
3367 } | |
3368 } | |
3369 fin.close(); | |
3370 buf<<"TER\n"; | |
3371 buf_all<<"TER\n"; | |
3372 buf_atm<<"TER\n"; | |
3373 buf_all_atm<<"TER\n"; | |
3374 buf_all_atm_lig<<"TER\n"; | |
3375 for (i=1;i<ca_idx1;i++) buf_all<<"CONECT" | |
3376 <<setw(5)<<i%100000<<setw(5)<<(i+1)%100000<<'\n'; | |
3377 for (i=1;i<idx_vec.size();i++) buf<<"CONECT" | |
3378 <<setw(5)<<idx_vec[i-1]%100000<<setw(5)<<idx_vec[i]%100000<<'\n'; | |
3379 idx_vec.clear(); | |
3380 | |
3381 /* read second file */ | |
3382 after_ter=false; | |
3383 asym_id=""; | |
3384 fin.open(yname.c_str()); | |
3385 while (fin.good()) | |
3386 { | |
3387 getline(fin, line); | |
3388 if (ter_opt>=3 && line.compare(0,3,"TER")==0) after_ter=true; | |
3389 if (line.size()>=54 && (line.compare(0, 6, "ATOM ")==0 || | |
3390 line.compare(0, 6, "HETATM")==0)) // PDB format | |
3391 { | |
3392 if (line[16]!='A' && line[16]!=' ') continue; | |
3393 if (after_ter && line.compare(0,6,"ATOM ")==0) continue; | |
3394 lig_idx2++; | |
3395 buf_all_atm_lig<<line.substr(0,6)<<setw(5)<<lig_idx1+lig_idx2 | |
3396 <<line.substr(11,9)<<" B"<<line.substr(22,32)<<'\n'; | |
3397 if (after_ter || line.compare(0,6,"ATOM ")) continue; | |
3398 if (ter_opt>=2) | |
3399 { | |
3400 if (ca_idx2 && asym_id.size() && asym_id!=line.substr(21,1)) | |
3401 { | |
3402 after_ter=true; | |
3403 continue; | |
3404 } | |
3405 asym_id=line[21]; | |
3406 } | |
3407 buf_all_atm<<"ATOM "<<setw(5)<<lig_idx1+lig_idx2 | |
3408 <<line.substr(11,9)<<" B"<<line.substr(22,32)<<'\n'; | |
3409 if (find(resi_aln2.begin(),resi_aln2.end(),line.substr(22,4) | |
3410 )!=resi_aln2.end()) | |
3411 { | |
3412 buf_atm<<"ATOM "<<setw(5)<<lig_idx1+lig_idx2 | |
3413 <<line.substr(11,9)<<" B"<<line.substr(22,32)<<'\n'; | |
3414 } | |
3415 if (line.substr(12,4)!=" CA ") continue; | |
3416 ca_idx2++; | |
3417 buf_all<<"ATOM "<<setw(5)<<ca_idx1+ca_idx2<<" CA " | |
3418 <<line.substr(17,3)<<" B"<<line.substr(22,32)<<'\n'; | |
3419 if (find(resi_aln2.begin(),resi_aln2.end(),line.substr(22,4) | |
3420 )==resi_aln2.end()) continue; | |
3421 buf<<"ATOM "<<setw(5)<<ca_idx1+ca_idx2<<" CA " | |
3422 <<line.substr(17,3)<<" B"<<line.substr(22,32)<<'\n'; | |
3423 idx_vec.push_back(ca_idx1+ca_idx2); | |
3424 } | |
3425 else if (line.compare(0,5,"loop_")==0) // PDBx/mmCIF | |
3426 { | |
3427 while(1) | |
3428 { | |
3429 if (fin.good()) getline(fin, line); | |
3430 else PrintErrorAndQuit("ERROR! Unexpected end of "+yname); | |
3431 if (line.size()) break; | |
3432 } | |
3433 if (line.compare(0,11,"_atom_site.")) continue; | |
3434 _atom_site.clear(); | |
3435 atom_site_pos=0; | |
3436 _atom_site[line.substr(11,line.size()-12)]=atom_site_pos; | |
3437 while(1) | |
3438 { | |
3439 if (fin.good()) getline(fin, line); | |
3440 else PrintErrorAndQuit("ERROR! Unexpected end of "+yname); | |
3441 if (line.size()==0) continue; | |
3442 if (line.compare(0,11,"_atom_site.")) break; | |
3443 _atom_site[line.substr(11,line.size()-12)]=++atom_site_pos; | |
3444 } | |
3445 | |
3446 while(1) | |
3447 { | |
3448 line_vec.clear(); | |
3449 split(line,line_vec); | |
3450 if (line_vec[_atom_site["group_PDB"]]!="ATOM" && | |
3451 line_vec[_atom_site["group_PDB"]]!="HETATM") break; | |
3452 if (_atom_site.count("pdbx_PDB_model_num")) | |
3453 { | |
3454 if (model_index.size() && model_index!= | |
3455 line_vec[_atom_site["pdbx_PDB_model_num"]]) | |
3456 break; | |
3457 model_index=line_vec[_atom_site["pdbx_PDB_model_num"]]; | |
3458 } | |
3459 | |
3460 if (_atom_site.count("label_alt_id")==0 || | |
3461 line_vec[_atom_site["label_alt_id"]]=="." || | |
3462 line_vec[_atom_site["label_alt_id"]]=="A") | |
3463 { | |
3464 atom=line_vec[_atom_site["label_atom_id"]]; | |
3465 if (atom[0]=='"') atom=atom.substr(1); | |
3466 if (atom.size() && atom[atom.size()-1]=='"') | |
3467 atom=atom.substr(0,atom.size()-1); | |
3468 if (atom.size()==0) atom=" "; | |
3469 else if (atom.size()==1) atom=" "+atom+" "; | |
3470 else if (atom.size()==2) atom=" "+atom+" "; | |
3471 else if (atom.size()==3) atom=" "+atom; | |
3472 else if (atom.size()>=5) atom=atom.substr(0,4); | |
3473 | |
3474 AA=line_vec[_atom_site["label_comp_id"]]; // residue name | |
3475 if (AA.size()==1) AA=" "+AA; | |
3476 else if (AA.size()==2) AA=" " +AA; | |
3477 else if (AA.size()>=4) AA=AA.substr(0,3); | |
3478 | |
3479 if (_atom_site.count("auth_seq_id")) | |
3480 resi=line_vec[_atom_site["auth_seq_id"]]; | |
3481 else resi=line_vec[_atom_site["label_seq_id"]]; | |
3482 while (resi.size()<4) resi=' '+resi; | |
3483 if (resi.size()>4) resi=resi.substr(0,4); | |
3484 | |
3485 inscode=' '; | |
3486 if (_atom_site.count("pdbx_PDB_ins_code") && | |
3487 line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") | |
3488 inscode=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; | |
3489 | |
3490 if (ter_opt>=2) | |
3491 { | |
3492 if (_atom_site.count("auth_asym_id")) | |
3493 { | |
3494 if (ca_idx2 && asym_id.size() && | |
3495 asym_id!=line_vec[_atom_site["auth_asym_id"]]) | |
3496 after_ter=true; | |
3497 else | |
3498 asym_id=line_vec[_atom_site["auth_asym_id"]]; | |
3499 } | |
3500 else if (_atom_site.count("label_asym_id")) | |
3501 { | |
3502 if (ca_idx2 && asym_id.size() && | |
3503 asym_id!=line_vec[_atom_site["label_asym_id"]]) | |
3504 after_ter=true; | |
3505 else | |
3506 asym_id=line_vec[_atom_site["label_asym_id"]]; | |
3507 } | |
3508 } | |
3509 if (after_ter==false || | |
3510 line_vec[_atom_site["group_PDB"]]=="HETATM") | |
3511 { | |
3512 lig_idx2++; | |
3513 buf_all_atm_lig<<left<<setw(6) | |
3514 <<line_vec[_atom_site["group_PDB"]]<<right | |
3515 <<setw(5)<<(lig_idx1+lig_idx2)%100000<<' ' | |
3516 <<atom<<' '<<AA<<" B"<<resi<<inscode<<" " | |
3517 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
3518 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
3519 <<setw(8)<<line_vec[_atom_site["Cartn_z"]] | |
3520 <<'\n'; | |
3521 if (after_ter==false && | |
3522 line_vec[_atom_site["group_PDB"]]=="ATOM") | |
3523 { | |
3524 buf_all_atm<<"ATOM "<<setw(6) | |
3525 <<setw(5)<<(lig_idx1+lig_idx2)%100000<<' ' | |
3526 <<atom<<' '<<AA<<" B"<<resi<<inscode<<" " | |
3527 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
3528 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
3529 <<setw(8)<<line_vec[_atom_site["Cartn_z"]] | |
3530 <<'\n'; | |
3531 if (find(resi_aln2.begin(),resi_aln2.end(),resi | |
3532 )!=resi_aln2.end()) | |
3533 { | |
3534 buf_atm<<"ATOM "<<setw(6) | |
3535 <<setw(5)<<(lig_idx1+lig_idx2)%100000<<' ' | |
3536 <<atom<<' '<<AA<<" B"<<resi<<inscode<<" " | |
3537 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
3538 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
3539 <<setw(8)<<line_vec[_atom_site["Cartn_z"]] | |
3540 <<'\n'; | |
3541 } | |
3542 if (atom==" CA ") | |
3543 { | |
3544 ca_idx2++; | |
3545 buf_all<<"ATOM "<<setw(6) | |
3546 <<setw(5)<<(ca_idx1+ca_idx2)%100000 | |
3547 <<" CA "<<AA<<" B"<<resi<<inscode<<" " | |
3548 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
3549 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
3550 <<setw(8)<<line_vec[_atom_site["Cartn_z"]] | |
3551 <<'\n'; | |
3552 if (find(resi_aln2.begin(),resi_aln2.end(),resi | |
3553 )!=resi_aln2.end()) | |
3554 { | |
3555 buf<<"ATOM "<<setw(6) | |
3556 <<setw(5)<<(ca_idx1+ca_idx2)%100000 | |
3557 <<" CA "<<AA<<" B"<<resi<<inscode<<" " | |
3558 <<setw(8)<<line_vec[_atom_site["Cartn_x"]] | |
3559 <<setw(8)<<line_vec[_atom_site["Cartn_y"]] | |
3560 <<setw(8)<<line_vec[_atom_site["Cartn_z"]] | |
3561 <<'\n'; | |
3562 idx_vec.push_back(ca_idx1+ca_idx2); | |
3563 } | |
3564 } | |
3565 } | |
3566 } | |
3567 } | |
3568 | |
3569 if (fin.good()) getline(fin, line); | |
3570 else break; | |
3571 } | |
3572 } | |
3573 else if (line.size()) | |
3574 { | |
3575 if (ter_opt>=1 && line.compare(0,3,"END")==0) break; | |
3576 } | |
3577 } | |
3578 fin.close(); | |
3579 buf<<"TER\n"; | |
3580 buf_all<<"TER\n"; | |
3581 buf_atm<<"TER\n"; | |
3582 buf_all_atm<<"TER\n"; | |
3583 buf_all_atm_lig<<"TER\n"; | |
3584 for (i=ca_idx1+1;i<ca_idx1+ca_idx2;i++) buf_all<<"CONECT" | |
3585 <<setw(5)<<i%100000<<setw(5)<<(i+1)%100000<<'\n'; | |
3586 for (i=1;i<idx_vec.size();i++) buf<<"CONECT" | |
3587 <<setw(5)<<idx_vec[i-1]%100000<<setw(5)<<idx_vec[i]%100000<<'\n'; | |
3588 idx_vec.clear(); | |
3589 | |
3590 /* write pymol script */ | |
3591 ofstream fp; | |
3592 vector<string> pml_list; | |
3593 pml_list.push_back(fname_super+""); | |
3594 pml_list.push_back(fname_super+"_atm"); | |
3595 pml_list.push_back(fname_super+"_all"); | |
3596 pml_list.push_back(fname_super+"_all_atm"); | |
3597 pml_list.push_back(fname_super+"_all_atm_lig"); | |
3598 for (i=0;i<pml_list.size();i++) | |
3599 { | |
3600 buf_pymol<<"#!/usr/bin/env pymol\n" | |
3601 <<"load "<<pml_list[i]<<"\n" | |
3602 <<"hide all\n" | |
3603 <<((i==0 || i==2)?("show stick\n"):("show cartoon\n")) | |
3604 <<"color blue, chain A\n" | |
3605 <<"color red, chain B\n" | |
3606 <<"set ray_shadow, 0\n" | |
3607 <<"set stick_radius, 0.3\n" | |
3608 <<"set sphere_scale, 0.25\n" | |
3609 <<"show stick, not polymer\n" | |
3610 <<"show sphere, not polymer\n" | |
3611 <<"bg_color white\n" | |
3612 <<"set transparency=0.2\n" | |
3613 <<"zoom polymer\n" | |
3614 <<endl; | |
3615 fp.open((pml_list[i]+".pml").c_str()); | |
3616 fp<<buf_pymol.str(); | |
3617 fp.close(); | |
3618 buf_pymol.str(string()); | |
3619 pml_list[i].clear(); | |
3620 } | |
3621 pml_list.clear(); | |
3622 | |
3623 /* write rasmol script */ | |
3624 fp.open((fname_super).c_str()); | |
3625 fp<<buf.str(); | |
3626 fp.close(); | |
3627 fp.open((fname_super+"_all").c_str()); | |
3628 fp<<buf_all.str(); | |
3629 fp.close(); | |
3630 fp.open((fname_super+"_atm").c_str()); | |
3631 fp<<buf_atm.str(); | |
3632 fp.close(); | |
3633 fp.open((fname_super+"_all_atm").c_str()); | |
3634 fp<<buf_all_atm.str(); | |
3635 fp.close(); | |
3636 fp.open((fname_super+"_all_atm_lig").c_str()); | |
3637 fp<<buf_all_atm_lig.str(); | |
3638 fp.close(); | |
3639 fp.open((fname_super+".pdb").c_str()); | |
3640 fp<<buf_pdb.str(); | |
3641 fp.close(); | |
3642 | |
3643 /* clear stream */ | |
3644 buf.str(string()); | |
3645 buf_all.str(string()); | |
3646 buf_atm.str(string()); | |
3647 buf_all_atm.str(string()); | |
3648 buf_all_atm_lig.str(string()); | |
3649 buf_pdb.str(string()); | |
3650 buf_tm.str(string()); | |
3651 resi_aln1.clear(); | |
3652 resi_aln2.clear(); | |
3653 asym_id.clear(); | |
3654 line_vec.clear(); | |
3655 atom.clear(); | |
3656 AA.clear(); | |
3657 resi.clear(); | |
3658 inscode.clear(); | |
3659 model_index.clear(); | |
3660 } | |
3661 | |
3662 /* extract rotation matrix based on TMscore8 */ | |
3663 void output_rotation_matrix(const char* fname_matrix, | |
3664 const double t[3], const double u[3][3]) | |
3665 { | |
3666 fstream fout; | |
3667 fout.open(fname_matrix, ios::out | ios::trunc); | |
3668 if (fout)// succeed | |
3669 { | |
3670 fout << "------ The rotation matrix to rotate Chain_1 to Chain_2 ------\n"; | |
3671 char dest[1000]; | |
3672 sprintf(dest, "m %18s %14s %14s %14s\n", "t[m]", "u[m][0]", "u[m][1]", "u[m][2]"); | |
3673 fout << string(dest); | |
3674 for (int k = 0; k < 3; k++) | |
3675 { | |
3676 sprintf(dest, "%d %18.10f %14.10f %14.10f %14.10f\n", k, t[k], u[k][0], u[k][1], u[k][2]); | |
3677 fout << string(dest); | |
3678 } | |
3679 fout << "\nCode for rotating Structure A from (x,y,z) to (X,Y,Z):\n" | |
3680 "for(i=0; i<L; i++)\n" | |
3681 "{\n" | |
3682 " X[i] = t[0] + u[0][0]*x[i] + u[0][1]*y[i] + u[0][2]*z[i];\n" | |
3683 " Y[i] = t[1] + u[1][0]*x[i] + u[1][1]*y[i] + u[1][2]*z[i];\n" | |
3684 " Z[i] = t[2] + u[2][0]*x[i] + u[2][1]*y[i] + u[2][2]*z[i];\n" | |
3685 "}\n"; | |
3686 fout.close(); | |
3687 } | |
3688 else | |
3689 cout << "Open file to output rotation matrix fail.\n"; | |
3690 } | |
3691 | |
3692 //output the final results | |
3693 void output_results( | |
3694 const string xname, const string yname, | |
3695 const char *chainID1, const char *chainID2, | |
3696 const int xlen, const int ylen, double t[3], double u[3][3], | |
3697 const double TM1, const double TM2, | |
3698 const double TM3, const double TM4, const double TM5, | |
3699 const double rmsd, const double d0_out, | |
3700 const char *seqM, const char *seqxA, const char *seqyA, const double Liden, | |
3701 const int n_ali8, const int L_ali, | |
3702 const double TM_ali, const double rmsd_ali, const double TM_0, | |
3703 const double d0_0, const double d0A, const double d0B, | |
3704 const double Lnorm_ass, const double d0_scale, | |
3705 const double d0a, const double d0u, const char* fname_matrix, | |
3706 const int outfmt_opt, const int ter_opt, const string fname_super, | |
3707 const int i_opt, const int a_opt, const bool u_opt, const bool d_opt, | |
3708 const int mirror_opt, | |
3709 const vector<string>&resi_vec1, const vector<string>&resi_vec2) | |
3710 { | |
3711 if (outfmt_opt<=0) | |
3712 { | |
3713 printf("\nName of Chain_1: %s%s (to be superimposed onto Chain_2)\n", | |
3714 xname.c_str(), chainID1); | |
3715 printf("Name of Chain_2: %s%s\n", yname.c_str(), chainID2); | |
3716 printf("Length of Chain_1: %d residues\n", xlen); | |
3717 printf("Length of Chain_2: %d residues\n\n", ylen); | |
3718 | |
3719 if (i_opt) | |
3720 printf("User-specified initial alignment: TM/Lali/rmsd = %7.5lf, %4d, %6.3lf\n", TM_ali, L_ali, rmsd_ali); | |
3721 | |
3722 printf("Aligned length= %d, RMSD= %6.2f, Seq_ID=n_identical/n_aligned= %4.3f\n", n_ali8, rmsd, (n_ali8>0)?Liden/n_ali8:0); | |
3723 printf("TM-score= %6.5f (if normalized by length of Chain_1, i.e., LN=%d, d0=%.2f)\n", TM2, xlen, d0B); | |
3724 printf("TM-score= %6.5f (if normalized by length of Chain_2, i.e., LN=%d, d0=%.2f)\n", TM1, ylen, d0A); | |
3725 | |
3726 if (a_opt==1) | |
3727 printf("TM-score= %6.5f (if normalized by average length of two structures, i.e., LN= %.1f, d0= %.2f)\n", TM3, (xlen+ylen)*0.5, d0a); | |
3728 if (u_opt) | |
3729 printf("TM-score= %6.5f (if normalized by user-specified LN=%.2f and d0=%.2f)\n", TM4, Lnorm_ass, d0u); | |
3730 if (d_opt) | |
3731 printf("TM-score= %6.5f (if scaled by user-specified d0= %.2f, and LN= %d)\n", TM5, d0_scale, ylen); | |
3732 printf("(You should use TM-score normalized by length of the reference structure)\n"); | |
3733 | |
3734 //output alignment | |
3735 printf("\n(\":\" denotes residue pairs of d < %4.1f Angstrom, ", d0_out); | |
3736 printf("\".\" denotes other aligned residues)\n"); | |
3737 printf("%s\n", seqxA); | |
3738 printf("%s\n", seqM); | |
3739 printf("%s\n", seqyA); | |
3740 } | |
3741 else if (outfmt_opt==1) | |
3742 { | |
3743 printf(">%s%s\tL=%d\td0=%.2f\tseqID=%.3f\tTM-score=%.5f\n", | |
3744 xname.c_str(), chainID1, xlen, d0B, Liden/xlen, TM2); | |
3745 printf("%s\n", seqxA); | |
3746 printf(">%s%s\tL=%d\td0=%.2f\tseqID=%.3f\tTM-score=%.5f\n", | |
3747 yname.c_str(), chainID2, ylen, d0A, Liden/ylen, TM1); | |
3748 printf("%s\n", seqyA); | |
3749 | |
3750 printf("# Lali=%d\tRMSD=%.2f\tseqID_ali=%.3f\n", | |
3751 n_ali8, rmsd, (n_ali8>0)?Liden/n_ali8:0); | |
3752 | |
3753 if (i_opt) | |
3754 printf("# User-specified initial alignment: TM=%.5lf\tLali=%4d\trmsd=%.3lf\n", TM_ali, L_ali, rmsd_ali); | |
3755 | |
3756 if(a_opt) | |
3757 printf("# TM-score=%.5f (normalized by average length of two structures: L=%.1f\td0=%.2f)\n", TM3, (xlen+ylen)*0.5, d0a); | |
3758 | |
3759 if(u_opt) | |
3760 printf("# TM-score=%.5f (normalized by user-specified L=%.2f\td0=%.2f)\n", TM4, Lnorm_ass, d0u); | |
3761 | |
3762 if(d_opt) | |
3763 printf("# TM-score=%.5f (scaled by user-specified d0=%.2f\tL=%d)\n", TM5, d0_scale, ylen); | |
3764 | |
3765 printf("$$$$\n"); | |
3766 } | |
3767 else if (outfmt_opt==2) | |
3768 { | |
3769 printf("%s%s\t%s%s\t%.4f\t%.4f\t%.2f\t%4.3f\t%4.3f\t%4.3f\t%d\t%d\t%d", | |
3770 xname.c_str(), chainID1, yname.c_str(), chainID2, TM2, TM1, rmsd, | |
3771 Liden/xlen, Liden/ylen, (n_ali8>0)?Liden/n_ali8:0, | |
3772 xlen, ylen, n_ali8); | |
3773 } | |
3774 cout << endl; | |
3775 | |
3776 if (strlen(fname_matrix)) | |
3777 output_rotation_matrix(fname_matrix, t, u); | |
3778 if (fname_super.size()) | |
3779 output_superpose(xname, yname, fname_super, t, u, ter_opt, mirror_opt, | |
3780 seqM, seqxA, seqyA, resi_vec1, resi_vec2, chainID1, chainID2, | |
3781 xlen, ylen, d0A, n_ali8, rmsd, TM1, Liden); | |
3782 } | |
3783 | |
3784 double standard_TMscore(double **r1, double **r2, double **xtm, double **ytm, | |
3785 double **xt, double **x, double **y, int xlen, int ylen, int invmap[], | |
3786 int& L_ali, double& RMSD, double D0_MIN, double Lnorm, double d0, | |
3787 double d0_search, double score_d8, double t[3], double u[3][3], | |
3788 const int mol_type) | |
3789 { | |
3790 D0_MIN = 0.5; | |
3791 Lnorm = ylen; | |
3792 if (mol_type>0) // RNA | |
3793 { | |
3794 if (Lnorm<=11) d0=0.3; | |
3795 else if(Lnorm>11 && Lnorm<=15) d0=0.4; | |
3796 else if(Lnorm>15 && Lnorm<=19) d0=0.5; | |
3797 else if(Lnorm>19 && Lnorm<=23) d0=0.6; | |
3798 else if(Lnorm>23 && Lnorm<30) d0=0.7; | |
3799 else d0=(0.6*pow((Lnorm*1.0-0.5), 1.0/2)-2.5); | |
3800 } | |
3801 else | |
3802 { | |
3803 if (Lnorm > 21) d0=(1.24*pow((Lnorm*1.0-15), 1.0/3) -1.8); | |
3804 else d0 = D0_MIN; | |
3805 if (d0 < D0_MIN) d0 = D0_MIN; | |
3806 } | |
3807 double d0_input = d0;// Scaled by seq_min | |
3808 | |
3809 double tmscore;// collected alined residues from invmap | |
3810 int n_al = 0; | |
3811 int i; | |
3812 for (int j = 0; j<ylen; j++) | |
3813 { | |
3814 i = invmap[j]; | |
3815 if (i >= 0) | |
3816 { | |
3817 xtm[n_al][0] = x[i][0]; | |
3818 xtm[n_al][1] = x[i][1]; | |
3819 xtm[n_al][2] = x[i][2]; | |
3820 | |
3821 ytm[n_al][0] = y[j][0]; | |
3822 ytm[n_al][1] = y[j][1]; | |
3823 ytm[n_al][2] = y[j][2]; | |
3824 | |
3825 r1[n_al][0] = x[i][0]; | |
3826 r1[n_al][1] = x[i][1]; | |
3827 r1[n_al][2] = x[i][2]; | |
3828 | |
3829 r2[n_al][0] = y[j][0]; | |
3830 r2[n_al][1] = y[j][1]; | |
3831 r2[n_al][2] = y[j][2]; | |
3832 | |
3833 n_al++; | |
3834 } | |
3835 else if (i != -1) PrintErrorAndQuit("Wrong map!\n"); | |
3836 } | |
3837 L_ali = n_al; | |
3838 | |
3839 Kabsch(r1, r2, n_al, 0, &RMSD, t, u); | |
3840 RMSD = sqrt( RMSD/(1.0*n_al) ); | |
3841 | |
3842 int temp_simplify_step = 1; | |
3843 int temp_score_sum_method = 0; | |
3844 d0_search = d0_input; | |
3845 double rms = 0.0; | |
3846 tmscore = TMscore8_search_standard(r1, r2, xtm, ytm, xt, n_al, t, u, | |
3847 temp_simplify_step, temp_score_sum_method, &rms, d0_input, | |
3848 score_d8, d0); | |
3849 tmscore = tmscore * n_al / (1.0*Lnorm); | |
3850 | |
3851 return tmscore; | |
3852 } | |
3853 | |
3854 /* copy the value of t and u into t0,u0 */ | |
3855 void copy_t_u(double t[3], double u[3][3], double t0[3], double u0[3][3]) | |
3856 { | |
3857 int i,j; | |
3858 for (i=0;i<3;i++) | |
3859 { | |
3860 t0[i]=t[i]; | |
3861 for (j=0;j<3;j++) u0[i][j]=u[i][j]; | |
3862 } | |
3863 } | |
3864 | |
3865 /* calculate approximate TM-score given rotation matrix */ | |
3866 double approx_TM(const int xlen, const int ylen, const int a_opt, | |
3867 double **xa, double **ya, double t[3], double u[3][3], | |
3868 const int invmap0[], const int mol_type) | |
3869 { | |
3870 double Lnorm_0=ylen; // normalized by the second protein | |
3871 if (a_opt==-2 && xlen>ylen) Lnorm_0=xlen; // longer | |
3872 else if (a_opt==-1 && xlen<ylen) Lnorm_0=xlen; // shorter | |
3873 else if (a_opt==1) Lnorm_0=(xlen+ylen)/2.; // average | |
3874 | |
3875 double D0_MIN; | |
3876 double Lnorm; | |
3877 double d0; | |
3878 double d0_search; | |
3879 parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); | |
3880 double TMtmp=0; | |
3881 double d; | |
3882 double xtmp[3]={0,0,0}; | |
3883 | |
3884 for(int i=0,j=0; j<ylen; j++) | |
3885 { | |
3886 i=invmap0[j]; | |
3887 if(i>=0)//aligned | |
3888 { | |
3889 transform(t, u, &xa[i][0], &xtmp[0]); | |
3890 d=sqrt(dist(&xtmp[0], &ya[j][0])); | |
3891 TMtmp+=1/(1+(d/d0)*(d/d0)); | |
3892 //if (d <= score_d8) TMtmp+=1/(1+(d/d0)*(d/d0)); | |
3893 } | |
3894 } | |
3895 TMtmp/=Lnorm_0; | |
3896 return TMtmp; | |
3897 } | |
3898 | |
3899 void clean_up_after_approx_TM(int *invmap0, int *invmap, | |
3900 double **score, bool **path, double **val, double **xtm, double **ytm, | |
3901 double **xt, double **r1, double **r2, const int xlen, const int minlen) | |
3902 { | |
3903 delete [] invmap0; | |
3904 delete [] invmap; | |
3905 DeleteArray(&score, xlen+1); | |
3906 DeleteArray(&path, xlen+1); | |
3907 DeleteArray(&val, xlen+1); | |
3908 DeleteArray(&xtm, minlen); | |
3909 DeleteArray(&ytm, minlen); | |
3910 DeleteArray(&xt, xlen); | |
3911 DeleteArray(&r1, minlen); | |
3912 DeleteArray(&r2, minlen); | |
3913 return; | |
3914 } | |
3915 | |
3916 /* Entry function for TM-align. Return TM-score calculation status: | |
3917 * 0 - full TM-score calculation | |
3918 * 1 - terminated due to exception | |
3919 * 2-7 - pre-terminated due to low TM-score */ | |
3920 int TMalign_main(double **xa, double **ya, | |
3921 const char *seqx, const char *seqy, const char *secx, const char *secy, | |
3922 double t0[3], double u0[3][3], | |
3923 double &TM1, double &TM2, double &TM3, double &TM4, double &TM5, | |
3924 double &d0_0, double &TM_0, | |
3925 double &d0A, double &d0B, double &d0u, double &d0a, double &d0_out, | |
3926 string &seqM, string &seqxA, string &seqyA, | |
3927 double &rmsd0, int &L_ali, double &Liden, | |
3928 double &TM_ali, double &rmsd_ali, int &n_ali, int &n_ali8, | |
3929 const int xlen, const int ylen, | |
3930 const vector<string> sequence, const double Lnorm_ass, | |
3931 const double d0_scale, const int i_opt, const int a_opt, | |
3932 const bool u_opt, const bool d_opt, const bool fast_opt, | |
3933 const int mol_type, const double TMcut=-1) | |
3934 { | |
3935 double D0_MIN; //for d0 | |
3936 double Lnorm; //normalization length | |
3937 double score_d8,d0,d0_search,dcu0;//for TMscore search | |
3938 double t[3], u[3][3]; //Kabsch translation vector and rotation matrix | |
3939 double **score; // Input score table for dynamic programming | |
3940 bool **path; // for dynamic programming | |
3941 double **val; // for dynamic programming | |
3942 double **xtm, **ytm; // for TMscore search engine | |
3943 double **xt; //for saving the superposed version of r_1 or xtm | |
3944 double **r1, **r2; // for Kabsch rotation | |
3945 | |
3946 /***********************/ | |
3947 /* allocate memory */ | |
3948 /***********************/ | |
3949 int minlen = min(xlen, ylen); | |
3950 NewArray(&score, xlen+1, ylen+1); | |
3951 NewArray(&path, xlen+1, ylen+1); | |
3952 NewArray(&val, xlen+1, ylen+1); | |
3953 NewArray(&xtm, minlen, 3); | |
3954 NewArray(&ytm, minlen, 3); | |
3955 NewArray(&xt, xlen, 3); | |
3956 NewArray(&r1, minlen, 3); | |
3957 NewArray(&r2, minlen, 3); | |
3958 | |
3959 /***********************/ | |
3960 /* parameter set */ | |
3961 /***********************/ | |
3962 parameter_set4search(xlen, ylen, D0_MIN, Lnorm, | |
3963 score_d8, d0, d0_search, dcu0); | |
3964 int simplify_step = 40; //for similified search engine | |
3965 int score_sum_method = 8; //for scoring method, whether only sum over pairs with dis<score_d8 | |
3966 | |
3967 int i; | |
3968 int *invmap0 = new int[ylen+1]; | |
3969 int *invmap = new int[ylen+1]; | |
3970 double TM, TMmax=-1; | |
3971 for(i=0; i<ylen; i++) invmap0[i]=-1; | |
3972 | |
3973 double ddcc=0.4; | |
3974 if (Lnorm <= 40) ddcc=0.1; //Lnorm was setted in parameter_set4search | |
3975 double local_d0_search = d0_search; | |
3976 | |
3977 //************************************************// | |
3978 // get initial alignment from user's input: // | |
3979 // Stick to the initial alignment // | |
3980 //************************************************// | |
3981 bool bAlignStick = false; | |
3982 if (i_opt==3)// if input has set parameter for "-I" | |
3983 { | |
3984 // In the original code, this loop starts from 1, which is | |
3985 // incorrect. Fortran starts from 1 but C++ should starts from 0. | |
3986 for (int j = 0; j < ylen; j++)// Set aligned position to be "-1" | |
3987 invmap[j] = -1; | |
3988 | |
3989 int i1 = -1;// in C version, index starts from zero, not from one | |
3990 int i2 = -1; | |
3991 int L1 = sequence[0].size(); | |
3992 int L2 = sequence[1].size(); | |
3993 int L = min(L1, L2);// Get positions for aligned residues | |
3994 for (int kk1 = 0; kk1 < L; kk1++) | |
3995 { | |
3996 if (sequence[0][kk1] != '-') i1++; | |
3997 if (sequence[1][kk1] != '-') | |
3998 { | |
3999 i2++; | |
4000 if (i2 >= ylen || i1 >= xlen) kk1 = L; | |
4001 else if (sequence[0][kk1] != '-') invmap[i2] = i1; | |
4002 } | |
4003 } | |
4004 | |
4005 //--------------- 2. Align proteins from original alignment | |
4006 double prevD0_MIN = D0_MIN;// stored for later use | |
4007 int prevLnorm = Lnorm; | |
4008 double prevd0 = d0; | |
4009 TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, | |
4010 invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, d0_search, score_d8, | |
4011 t, u, mol_type); | |
4012 D0_MIN = prevD0_MIN; | |
4013 Lnorm = prevLnorm; | |
4014 d0 = prevd0; | |
4015 TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, | |
4016 invmap, t, u, 40, 8, local_d0_search, true, Lnorm, score_d8, d0); | |
4017 if (TM > TMmax) | |
4018 { | |
4019 TMmax = TM; | |
4020 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4021 } | |
4022 bAlignStick = true; | |
4023 } | |
4024 | |
4025 /******************************************************/ | |
4026 /* get initial alignment with gapless threading */ | |
4027 /******************************************************/ | |
4028 if (!bAlignStick) | |
4029 { | |
4030 get_initial(r1, r2, xtm, ytm, xa, ya, xlen, ylen, invmap0, d0, | |
4031 d0_search, fast_opt, t, u); | |
4032 TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap0, | |
4033 t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, | |
4034 score_d8, d0); | |
4035 if (TM>TMmax) TMmax = TM; | |
4036 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4037 //run dynamic programing iteratively to find the best alignment | |
4038 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, | |
4039 t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, | |
4040 D0_MIN, Lnorm, d0, score_d8); | |
4041 if (TM>TMmax) | |
4042 { | |
4043 TMmax = TM; | |
4044 for (int i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4045 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4046 } | |
4047 | |
4048 if (TMcut>0) // pre-terminate if TM-score is too low | |
4049 { | |
4050 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4051 xa, ya, t0, u0, invmap0, mol_type); | |
4052 | |
4053 if (TMtmp<0.5*TMcut) | |
4054 { | |
4055 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4056 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4057 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4058 return 2; | |
4059 } | |
4060 } | |
4061 | |
4062 /************************************************************/ | |
4063 /* get initial alignment based on secondary structure */ | |
4064 /************************************************************/ | |
4065 get_initial_ss(path, val, secx, secy, xlen, ylen, invmap); | |
4066 TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, | |
4067 t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, | |
4068 score_d8, d0); | |
4069 if (TM>TMmax) | |
4070 { | |
4071 TMmax = TM; | |
4072 for (int i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4073 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4074 } | |
4075 if (TM > TMmax*0.2) | |
4076 { | |
4077 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, | |
4078 xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, | |
4079 local_d0_search, D0_MIN, Lnorm, d0, score_d8); | |
4080 if (TM>TMmax) | |
4081 { | |
4082 TMmax = TM; | |
4083 for (int i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4084 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4085 } | |
4086 } | |
4087 | |
4088 if (TMcut>0) // pre-terminate if TM-score is too low | |
4089 { | |
4090 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4091 xa, ya, t0, u0, invmap0, mol_type); | |
4092 | |
4093 if (TMtmp<0.52*TMcut) | |
4094 { | |
4095 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4096 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4097 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4098 return 3; | |
4099 } | |
4100 } | |
4101 | |
4102 /************************************************************/ | |
4103 /* get initial alignment based on local superposition */ | |
4104 /************************************************************/ | |
4105 //=initial5 in original TM-align | |
4106 if (get_initial5( r1, r2, xtm, ytm, path, val, xa, ya, | |
4107 xlen, ylen, invmap, d0, d0_search, fast_opt, D0_MIN)) | |
4108 { | |
4109 TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, | |
4110 invmap, t, u, simplify_step, score_sum_method, | |
4111 local_d0_search, Lnorm, score_d8, d0); | |
4112 if (TM>TMmax) | |
4113 { | |
4114 TMmax = TM; | |
4115 for (int i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4116 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4117 } | |
4118 if (TM > TMmax*ddcc) | |
4119 { | |
4120 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, | |
4121 xlen, ylen, t, u, invmap, 0, 2, 2, local_d0_search, | |
4122 D0_MIN, Lnorm, d0, score_d8); | |
4123 if (TM>TMmax) | |
4124 { | |
4125 TMmax = TM; | |
4126 for (int i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4127 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4128 } | |
4129 } | |
4130 } | |
4131 else | |
4132 cerr << "\n\nWarning: initial alignment from local superposition fail!\n\n" << endl; | |
4133 | |
4134 if (TMcut>0) // pre-terminate if TM-score is too low | |
4135 { | |
4136 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4137 xa, ya, t0, u0, invmap0, mol_type); | |
4138 | |
4139 if (TMtmp<0.54*TMcut) | |
4140 { | |
4141 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4142 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4143 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4144 return 4; | |
4145 } | |
4146 } | |
4147 | |
4148 /********************************************************************/ | |
4149 /* get initial alignment by local superposition+secondary structure */ | |
4150 /********************************************************************/ | |
4151 //=initial3 in original TM-align | |
4152 get_initial_ssplus(r1, r2, score, path, val, secx, secy, xa, ya, | |
4153 xlen, ylen, invmap0, invmap, D0_MIN, d0); | |
4154 TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, | |
4155 t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, | |
4156 score_d8, d0); | |
4157 if (TM>TMmax) | |
4158 { | |
4159 TMmax = TM; | |
4160 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4161 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4162 } | |
4163 if (TM > TMmax*ddcc) | |
4164 { | |
4165 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, | |
4166 xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, | |
4167 local_d0_search, D0_MIN, Lnorm, d0, score_d8); | |
4168 if (TM>TMmax) | |
4169 { | |
4170 TMmax = TM; | |
4171 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4172 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4173 } | |
4174 } | |
4175 | |
4176 if (TMcut>0) // pre-terminate if TM-score is too low | |
4177 { | |
4178 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4179 xa, ya, t0, u0, invmap0, mol_type); | |
4180 | |
4181 if (TMtmp<0.56*TMcut) | |
4182 { | |
4183 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4184 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4185 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4186 return 5; | |
4187 } | |
4188 } | |
4189 | |
4190 /*******************************************************************/ | |
4191 /* get initial alignment based on fragment gapless threading */ | |
4192 /*******************************************************************/ | |
4193 //=initial4 in original TM-align | |
4194 get_initial_fgt(r1, r2, xtm, ytm, xa, ya, xlen, ylen, | |
4195 invmap, d0, d0_search, dcu0, fast_opt, t, u); | |
4196 TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, | |
4197 t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, | |
4198 score_d8, d0); | |
4199 if (TM>TMmax) | |
4200 { | |
4201 TMmax = TM; | |
4202 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4203 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4204 } | |
4205 if (TM > TMmax*ddcc) | |
4206 { | |
4207 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, | |
4208 xlen, ylen, t, u, invmap, 1, 2, 2, local_d0_search, D0_MIN, | |
4209 Lnorm, d0, score_d8); | |
4210 if (TM>TMmax) | |
4211 { | |
4212 TMmax = TM; | |
4213 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4214 if (TMcut>0) copy_t_u(t, u, t0, u0); | |
4215 } | |
4216 } | |
4217 | |
4218 if (TMcut>0) // pre-terminate if TM-score is too low | |
4219 { | |
4220 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4221 xa, ya, t0, u0, invmap0, mol_type); | |
4222 | |
4223 if (TMtmp<0.58*TMcut) | |
4224 { | |
4225 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4226 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4227 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4228 return 6; | |
4229 } | |
4230 } | |
4231 | |
4232 //************************************************// | |
4233 // get initial alignment from user's input: // | |
4234 //************************************************// | |
4235 if (i_opt==1)// if input has set parameter for "-i" | |
4236 { | |
4237 for (int j = 0; j < ylen; j++)// Set aligned position to be "-1" | |
4238 invmap[j] = -1; | |
4239 | |
4240 int i1 = -1;// in C version, index starts from zero, not from one | |
4241 int i2 = -1; | |
4242 int L1 = sequence[0].size(); | |
4243 int L2 = sequence[1].size(); | |
4244 int L = min(L1, L2);// Get positions for aligned residues | |
4245 for (int kk1 = 0; kk1 < L; kk1++) | |
4246 { | |
4247 if (sequence[0][kk1] != '-') | |
4248 i1++; | |
4249 if (sequence[1][kk1] != '-') | |
4250 { | |
4251 i2++; | |
4252 if (i2 >= ylen || i1 >= xlen) kk1 = L; | |
4253 else if (sequence[0][kk1] != '-') invmap[i2] = i1; | |
4254 } | |
4255 } | |
4256 | |
4257 //--------------- 2. Align proteins from original alignment | |
4258 double prevD0_MIN = D0_MIN;// stored for later use | |
4259 int prevLnorm = Lnorm; | |
4260 double prevd0 = d0; | |
4261 TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, | |
4262 xlen, ylen, invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, | |
4263 d0_search, score_d8, t, u, mol_type); | |
4264 D0_MIN = prevD0_MIN; | |
4265 Lnorm = prevLnorm; | |
4266 d0 = prevd0; | |
4267 | |
4268 TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, | |
4269 xlen, ylen, invmap, t, u, 40, 8, local_d0_search, true, Lnorm, | |
4270 score_d8, d0); | |
4271 if (TM > TMmax) | |
4272 { | |
4273 TMmax = TM; | |
4274 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4275 } | |
4276 // Different from get_initial, get_initial_ss and get_initial_ssplus | |
4277 TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, | |
4278 xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, | |
4279 local_d0_search, D0_MIN, Lnorm, d0, score_d8); | |
4280 if (TM>TMmax) | |
4281 { | |
4282 TMmax = TM; | |
4283 for (i = 0; i<ylen; i++) invmap0[i] = invmap[i]; | |
4284 } | |
4285 } | |
4286 } | |
4287 | |
4288 | |
4289 | |
4290 //*******************************************************************// | |
4291 // The alignment will not be changed any more in the following // | |
4292 //*******************************************************************// | |
4293 //check if the initial alignment is generated approriately | |
4294 bool flag=false; | |
4295 for(i=0; i<ylen; i++) | |
4296 { | |
4297 if(invmap0[i]>=0) | |
4298 { | |
4299 flag=true; | |
4300 break; | |
4301 } | |
4302 } | |
4303 if(!flag) | |
4304 { | |
4305 cout << "There is no alignment between the two proteins!" << endl; | |
4306 cout << "Program stop with no result!" << endl; | |
4307 return 1; | |
4308 } | |
4309 | |
4310 /* last TM-score pre-termination */ | |
4311 if (TMcut>0) | |
4312 { | |
4313 double TMtmp=approx_TM(xlen, ylen, a_opt, | |
4314 xa, ya, t0, u0, invmap0, mol_type); | |
4315 | |
4316 if (TMtmp<0.6*TMcut) | |
4317 { | |
4318 TM1=TM2=TM3=TM4=TM5=TMtmp; | |
4319 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4320 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4321 return 7; | |
4322 } | |
4323 } | |
4324 | |
4325 //********************************************************************// | |
4326 // Detailed TMscore search engine --> prepare for final TMscore // | |
4327 //********************************************************************// | |
4328 //run detailed TMscore search engine for the best alignment, and | |
4329 //extract the best rotation matrix (t, u) for the best alginment | |
4330 simplify_step=1; | |
4331 if (fast_opt) simplify_step=40; | |
4332 score_sum_method=8; | |
4333 TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, | |
4334 invmap0, t, u, simplify_step, score_sum_method, local_d0_search, | |
4335 false, Lnorm, score_d8, d0); | |
4336 | |
4337 //select pairs with dis<d8 for final TMscore computation and output alignment | |
4338 int k=0; | |
4339 int *m1, *m2; | |
4340 double d; | |
4341 m1=new int[xlen]; //alignd index in x | |
4342 m2=new int[ylen]; //alignd index in y | |
4343 do_rotation(xa, xt, xlen, t, u); | |
4344 k=0; | |
4345 for(int j=0; j<ylen; j++) | |
4346 { | |
4347 i=invmap0[j]; | |
4348 if(i>=0)//aligned | |
4349 { | |
4350 n_ali++; | |
4351 d=sqrt(dist(&xt[i][0], &ya[j][0])); | |
4352 if (d <= score_d8 || (i_opt == 3)) | |
4353 { | |
4354 m1[k]=i; | |
4355 m2[k]=j; | |
4356 | |
4357 xtm[k][0]=xa[i][0]; | |
4358 xtm[k][1]=xa[i][1]; | |
4359 xtm[k][2]=xa[i][2]; | |
4360 | |
4361 ytm[k][0]=ya[j][0]; | |
4362 ytm[k][1]=ya[j][1]; | |
4363 ytm[k][2]=ya[j][2]; | |
4364 | |
4365 r1[k][0] = xt[i][0]; | |
4366 r1[k][1] = xt[i][1]; | |
4367 r1[k][2] = xt[i][2]; | |
4368 r2[k][0] = ya[j][0]; | |
4369 r2[k][1] = ya[j][1]; | |
4370 r2[k][2] = ya[j][2]; | |
4371 | |
4372 k++; | |
4373 } | |
4374 } | |
4375 } | |
4376 n_ali8=k; | |
4377 | |
4378 Kabsch(r1, r2, n_ali8, 0, &rmsd0, t, u);// rmsd0 is used for final output, only recalculate rmsd0, not t & u | |
4379 rmsd0 = sqrt(rmsd0 / n_ali8); | |
4380 | |
4381 | |
4382 //****************************************// | |
4383 // Final TMscore // | |
4384 // Please set parameters for output // | |
4385 //****************************************// | |
4386 double rmsd; | |
4387 simplify_step=1; | |
4388 score_sum_method=0; | |
4389 double Lnorm_0=ylen; | |
4390 | |
4391 | |
4392 //normalized by length of structure A | |
4393 parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); | |
4394 d0A=d0; | |
4395 d0_0=d0A; | |
4396 local_d0_search = d0_search; | |
4397 TM1 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, | |
4398 score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); | |
4399 TM_0 = TM1; | |
4400 | |
4401 //normalized by length of structure B | |
4402 parameter_set4final(xlen+0.0, D0_MIN, Lnorm, d0, d0_search, mol_type); | |
4403 d0B=d0; | |
4404 local_d0_search = d0_search; | |
4405 TM2 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t, u, simplify_step, | |
4406 score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); | |
4407 | |
4408 double Lnorm_d0; | |
4409 if (a_opt>0) | |
4410 { | |
4411 //normalized by average length of structures A, B | |
4412 Lnorm_0=(xlen+ylen)*0.5; | |
4413 parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); | |
4414 d0a=d0; | |
4415 d0_0=d0a; | |
4416 local_d0_search = d0_search; | |
4417 | |
4418 TM3 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, | |
4419 simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, | |
4420 score_d8, d0); | |
4421 TM_0=TM3; | |
4422 } | |
4423 if (u_opt) | |
4424 { | |
4425 //normalized by user assigned length | |
4426 parameter_set4final(Lnorm_ass, D0_MIN, Lnorm, | |
4427 d0, d0_search, mol_type); | |
4428 d0u=d0; | |
4429 d0_0=d0u; | |
4430 Lnorm_0=Lnorm_ass; | |
4431 local_d0_search = d0_search; | |
4432 TM4 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, | |
4433 simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, | |
4434 score_d8, d0); | |
4435 TM_0=TM4; | |
4436 } | |
4437 if (d_opt) | |
4438 { | |
4439 //scaled by user assigned d0 | |
4440 parameter_set4scale(ylen, d0_scale, Lnorm, d0, d0_search); | |
4441 d0_out=d0_scale; | |
4442 d0_0=d0_scale; | |
4443 //Lnorm_0=ylen; | |
4444 Lnorm_d0=Lnorm_0; | |
4445 local_d0_search = d0_search; | |
4446 TM5 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, | |
4447 simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, | |
4448 score_d8, d0); | |
4449 TM_0=TM5; | |
4450 } | |
4451 | |
4452 /* derive alignment from superposition */ | |
4453 int ali_len=xlen+ylen; //maximum length of alignment | |
4454 seqxA.assign(ali_len,'-'); | |
4455 seqM.assign( ali_len,' '); | |
4456 seqyA.assign(ali_len,'-'); | |
4457 | |
4458 //do_rotation(xa, xt, xlen, t, u); | |
4459 do_rotation(xa, xt, xlen, t0, u0); | |
4460 | |
4461 int kk=0, i_old=0, j_old=0; | |
4462 d=0; | |
4463 for(int k=0; k<n_ali8; k++) | |
4464 { | |
4465 for(int i=i_old; i<m1[k]; i++) | |
4466 { | |
4467 //align x to gap | |
4468 seqxA[kk]=seqx[i]; | |
4469 seqyA[kk]='-'; | |
4470 seqM[kk]=' '; | |
4471 kk++; | |
4472 } | |
4473 | |
4474 for(int j=j_old; j<m2[k]; j++) | |
4475 { | |
4476 //align y to gap | |
4477 seqxA[kk]='-'; | |
4478 seqyA[kk]=seqy[j]; | |
4479 seqM[kk]=' '; | |
4480 kk++; | |
4481 } | |
4482 | |
4483 seqxA[kk]=seqx[m1[k]]; | |
4484 seqyA[kk]=seqy[m2[k]]; | |
4485 Liden+=(seqxA[kk]==seqyA[kk]); | |
4486 d=sqrt(dist(&xt[m1[k]][0], &ya[m2[k]][0])); | |
4487 if(d<d0_out) seqM[kk]=':'; | |
4488 else seqM[kk]='.'; | |
4489 kk++; | |
4490 i_old=m1[k]+1; | |
4491 j_old=m2[k]+1; | |
4492 } | |
4493 | |
4494 //tail | |
4495 for(int i=i_old; i<xlen; i++) | |
4496 { | |
4497 //align x to gap | |
4498 seqxA[kk]=seqx[i]; | |
4499 seqyA[kk]='-'; | |
4500 seqM[kk]=' '; | |
4501 kk++; | |
4502 } | |
4503 for(int j=j_old; j<ylen; j++) | |
4504 { | |
4505 //align y to gap | |
4506 seqxA[kk]='-'; | |
4507 seqyA[kk]=seqy[j]; | |
4508 seqM[kk]=' '; | |
4509 kk++; | |
4510 } | |
4511 seqxA=seqxA.substr(0,kk); | |
4512 seqyA=seqyA.substr(0,kk); | |
4513 seqM =seqM.substr(0,kk); | |
4514 | |
4515 /* free memory */ | |
4516 clean_up_after_approx_TM(invmap0, invmap, score, path, val, | |
4517 xtm, ytm, xt, r1, r2, xlen, minlen); | |
4518 delete [] m1; | |
4519 delete [] m2; | |
4520 return 0; // zero for no exception | |
4521 } | |
4522 | |
4523 /* entry function for TM-align with circular permutation | |
4524 * i_opt, a_opt, u_opt, d_opt, TMcut are not implemented yet */ | |
4525 int CPalign_main(double **xa, double **ya, | |
4526 const char *seqx, const char *seqy, const char *secx, const char *secy, | |
4527 double t0[3], double u0[3][3], | |
4528 double &TM1, double &TM2, double &TM3, double &TM4, double &TM5, | |
4529 double &d0_0, double &TM_0, | |
4530 double &d0A, double &d0B, double &d0u, double &d0a, double &d0_out, | |
4531 string &seqM, string &seqxA, string &seqyA, | |
4532 double &rmsd0, int &L_ali, double &Liden, | |
4533 double &TM_ali, double &rmsd_ali, int &n_ali, int &n_ali8, | |
4534 const int xlen, const int ylen, | |
4535 const vector<string> sequence, const double Lnorm_ass, | |
4536 const double d0_scale, const int i_opt, const int a_opt, | |
4537 const bool u_opt, const bool d_opt, const bool fast_opt, | |
4538 const int mol_type, const double TMcut=-1) | |
4539 { | |
4540 char *seqx_cp, *seqy_cp; // for the protein sequence | |
4541 char *secx_cp, *secy_cp; // for the secondary structure | |
4542 double **xa_cp, **ya_cp; // coordinates | |
4543 string seqxA_cp,seqyA_cp; // alignment | |
4544 int i,r; | |
4545 int cp_point=0; // position of circular permutation | |
4546 int cp_aln_best=0; // amount of aligned residue in sliding window | |
4547 int cp_aln_current;// amount of aligned residue in sliding window | |
4548 | |
4549 /* duplicate structure */ | |
4550 NewArray(&xa_cp, xlen*2, 3); | |
4551 seqx_cp = new char[xlen*2 + 1]; | |
4552 secx_cp = new char[xlen*2 + 1]; | |
4553 for (r=0;r<xlen;r++) | |
4554 { | |
4555 xa_cp[r+xlen][0]=xa_cp[r][0]=xa[r][0]; | |
4556 xa_cp[r+xlen][1]=xa_cp[r][1]=xa[r][1]; | |
4557 xa_cp[r+xlen][2]=xa_cp[r][2]=xa[r][2]; | |
4558 seqx_cp[r+xlen]=seqx_cp[r]=seqx[r]; | |
4559 secx_cp[r+xlen]=secx_cp[r]=secx[r]; | |
4560 } | |
4561 seqx_cp[2*xlen]=0; | |
4562 secx_cp[2*xlen]=0; | |
4563 | |
4564 /* fTM-align alignment */ | |
4565 double TM1_cp,TM2_cp; | |
4566 TMalign_main(xa_cp, ya, seqx_cp, seqy, secx_cp, secy, | |
4567 t0, u0, TM1_cp, TM2_cp, TM3, TM4, TM5, | |
4568 d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA_cp, seqyA_cp, | |
4569 rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, | |
4570 xlen*2, ylen, sequence, Lnorm_ass, d0_scale, | |
4571 0, false, false, false, true, mol_type, -1); | |
4572 | |
4573 /* delete gap in seqxA_cp */ | |
4574 r=0; | |
4575 seqxA=seqxA_cp; | |
4576 seqyA=seqyA_cp; | |
4577 for (i=0;i<seqxA_cp.size();i++) | |
4578 { | |
4579 if (seqxA_cp[i]!='-') | |
4580 { | |
4581 seqxA[r]=seqxA_cp[i]; | |
4582 seqyA[r]=seqyA_cp[i]; | |
4583 r++; | |
4584 } | |
4585 } | |
4586 seqxA=seqxA.substr(0,r); | |
4587 seqyA=seqyA.substr(0,r); | |
4588 | |
4589 /* count the number of aligned residues in each window | |
4590 * r - residue index in the original unaligned sequence | |
4591 * i - position in the alignment */ | |
4592 for (r=0;r<xlen-1;r++) | |
4593 { | |
4594 cp_aln_current=0; | |
4595 for (i=r;i<r+xlen;i++) cp_aln_current+=(seqyA[i]!='-'); | |
4596 | |
4597 if (cp_aln_current>cp_aln_best) | |
4598 { | |
4599 cp_aln_best=cp_aln_current; | |
4600 cp_point=r; | |
4601 } | |
4602 } | |
4603 seqM.clear(); | |
4604 seqxA.clear(); | |
4605 seqyA.clear(); | |
4606 seqxA_cp.clear(); | |
4607 seqyA_cp.clear(); | |
4608 rmsd0=Liden=n_ali=n_ali8=0; | |
4609 | |
4610 /* fTM-align alignment */ | |
4611 TMalign_main(xa, ya, seqx, seqy, secx, secy, | |
4612 t0, u0, TM1, TM2, TM3, TM4, TM5, | |
4613 d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, | |
4614 rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, | |
4615 xlen, ylen, sequence, Lnorm_ass, d0_scale, | |
4616 0, false, false, false, true, mol_type, -1); | |
4617 | |
4618 /* do not use cricular permutation of number of aligned residues is not | |
4619 * larger than sequence-order dependent alignment */ | |
4620 if (n_ali8>cp_aln_best) cp_point=0; | |
4621 | |
4622 /* prepare structure for final alignment */ | |
4623 seqM.clear(); | |
4624 seqxA.clear(); | |
4625 seqyA.clear(); | |
4626 rmsd0=Liden=n_ali=n_ali8=0; | |
4627 if (cp_point!=0) | |
4628 { | |
4629 for (r=0;r<xlen;r++) | |
4630 { | |
4631 xa_cp[r][0]=xa_cp[r+cp_point][0]; | |
4632 xa_cp[r][1]=xa_cp[r+cp_point][1]; | |
4633 xa_cp[r][2]=xa_cp[r+cp_point][2]; | |
4634 seqx_cp[r]=seqx_cp[r+cp_point]; | |
4635 secx_cp[r]=secx_cp[r+cp_point]; | |
4636 } | |
4637 } | |
4638 seqx_cp[xlen]=0; | |
4639 secx_cp[xlen]=0; | |
4640 | |
4641 /* full TM-align */ | |
4642 TMalign_main(xa_cp, ya, seqx_cp, seqy, secx_cp, secy, | |
4643 t0, u0, TM1, TM2, TM3, TM4, TM5, | |
4644 d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA_cp, seqyA_cp, | |
4645 rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, | |
4646 xlen, ylen, sequence, Lnorm_ass, d0_scale, | |
4647 i_opt, a_opt, u_opt, d_opt, fast_opt, mol_type, TMcut); | |
4648 | |
4649 /* correct alignment | |
4650 * r - residue index in the original unaligned sequence | |
4651 * i - position in the alignment */ | |
4652 if (cp_point>0) | |
4653 { | |
4654 r=0; | |
4655 for (i=0;i<seqxA_cp.size();i++) | |
4656 { | |
4657 r+=(seqxA_cp[i]!='-'); | |
4658 if (r>=(xlen-cp_point)) | |
4659 { | |
4660 i++; | |
4661 break; | |
4662 } | |
4663 } | |
4664 seqxA=seqxA_cp.substr(0,i)+'*'+seqxA_cp.substr(i); | |
4665 seqM =seqM.substr(0,i) +' '+seqM.substr(i); | |
4666 seqyA=seqyA_cp.substr(0,i)+'-'+seqyA_cp.substr(i); | |
4667 } | |
4668 else | |
4669 { | |
4670 seqxA=seqxA_cp; | |
4671 seqyA=seqyA_cp; | |
4672 } | |
4673 | |
4674 /* clean up */ | |
4675 delete[]seqx_cp; | |
4676 delete[]secx_cp; | |
4677 DeleteArray(&xa_cp,xlen*2); | |
4678 seqxA_cp.clear(); | |
4679 seqyA_cp.clear(); | |
4680 return cp_point; | |
4681 } | |
4682 | |
4683 int main(int argc, char *argv[]) | |
4684 { | |
4685 if (argc < 2) print_help(); | |
4686 | |
4687 | |
4688 clock_t t1, t2; | |
4689 t1 = clock(); | |
4690 | |
4691 /**********************/ | |
4692 /* get argument */ | |
4693 /**********************/ | |
4694 string xname = ""; | |
4695 string yname = ""; | |
4696 string fname_super = ""; // file name for superposed structure | |
4697 string fname_lign = ""; // file name for user alignment | |
4698 string fname_matrix= ""; // file name for output matrix | |
4699 vector<string> sequence; // get value from alignment file | |
4700 double Lnorm_ass, d0_scale; | |
4701 | |
4702 bool h_opt = false; // print full help message | |
4703 bool v_opt = false; // print version | |
4704 bool m_opt = false; // flag for -m, output rotation matrix | |
4705 int i_opt = 0; // 1 for -i, 3 for -I | |
4706 bool o_opt = false; // flag for -o, output superposed structure | |
4707 int a_opt = 0; // flag for -a, do not normalized by average length | |
4708 bool u_opt = false; // flag for -u, normalized by user specified length | |
4709 bool d_opt = false; // flag for -d, user specified d0 | |
4710 | |
4711 double TMcut =-1; | |
4712 int infmt1_opt=-1; // PDB or PDBx/mmCIF format for chain_1 | |
4713 int infmt2_opt=-1; // PDB or PDBx/mmCIF format for chain_2 | |
4714 int ter_opt =3; // TER, END, or different chainID | |
4715 int split_opt =0; // do not split chain | |
4716 int outfmt_opt=0; // set -outfmt to full output | |
4717 bool fast_opt =false; // flags for -fast, fTM-align algorithm | |
4718 int cp_opt =0; // do not check circular permutation | |
4719 int mirror_opt=0; // do not align mirror | |
4720 int het_opt=0; // do not read HETATM residues | |
4721 string atom_opt ="auto";// use C alpha atom for protein and C3' for RNA | |
4722 string mol_opt ="auto";// auto-detect the molecule type as protein/RNA | |
4723 string suffix_opt=""; // set -suffix to empty | |
4724 string dir_opt =""; // set -dir to empty | |
4725 string dir1_opt =""; // set -dir1 to empty | |
4726 string dir2_opt =""; // set -dir2 to empty | |
4727 int byresi_opt=0; // set -byresi to 0 | |
4728 vector<string> chain1_list; // only when -dir1 is set | |
4729 vector<string> chain2_list; // only when -dir2 is set | |
4730 | |
4731 for(int i = 1; i < argc; i++) | |
4732 { | |
4733 if ( !strcmp(argv[i],"-o") && i < (argc-1) ) | |
4734 { | |
4735 fname_super = argv[i + 1]; o_opt = true; i++; | |
4736 } | |
4737 else if ( (!strcmp(argv[i],"-u") || | |
4738 !strcmp(argv[i],"-L")) && i < (argc-1) ) | |
4739 { | |
4740 Lnorm_ass = atof(argv[i + 1]); u_opt = true; i++; | |
4741 } | |
4742 else if ( !strcmp(argv[i],"-a") && i < (argc-1) ) | |
4743 { | |
4744 if (!strcmp(argv[i + 1], "T")) a_opt=true; | |
4745 else if (!strcmp(argv[i + 1], "F")) a_opt=false; | |
4746 else | |
4747 { | |
4748 a_opt=atoi(argv[i + 1]); | |
4749 if (a_opt!=-2 && a_opt!=-1 && a_opt!=1) | |
4750 PrintErrorAndQuit("-a must be -2, -1, 1, T or F"); | |
4751 } | |
4752 i++; | |
4753 } | |
4754 else if ( !strcmp(argv[i],"-d") && i < (argc-1) ) | |
4755 { | |
4756 d0_scale = atof(argv[i + 1]); d_opt = true; i++; | |
4757 } | |
4758 else if ( !strcmp(argv[i],"-v") ) | |
4759 { | |
4760 v_opt = true; | |
4761 } | |
4762 else if ( !strcmp(argv[i],"-h") ) | |
4763 { | |
4764 h_opt = true; | |
4765 } | |
4766 else if ( !strcmp(argv[i],"-i") && i < (argc-1) ) | |
4767 { | |
4768 if (i_opt==3) | |
4769 PrintErrorAndQuit("ERROR! -i and -I cannot be used together"); | |
4770 fname_lign = argv[i + 1]; i_opt = 1; i++; | |
4771 } | |
4772 else if (!strcmp(argv[i], "-I") && i < (argc-1) ) | |
4773 { | |
4774 if (i_opt==1) | |
4775 PrintErrorAndQuit("ERROR! -I and -i cannot be used together"); | |
4776 fname_lign = argv[i + 1]; i_opt = 3; i++; | |
4777 } | |
4778 else if (!strcmp(argv[i], "-m") && i < (argc-1) ) | |
4779 { | |
4780 fname_matrix = argv[i + 1]; m_opt = true; i++; | |
4781 }// get filename for rotation matrix | |
4782 else if (!strcmp(argv[i], "-fast")) | |
4783 { | |
4784 fast_opt = true; | |
4785 } | |
4786 else if ( !strcmp(argv[i],"-infmt1") && i < (argc-1) ) | |
4787 { | |
4788 infmt1_opt=atoi(argv[i + 1]); i++; | |
4789 } | |
4790 else if ( !strcmp(argv[i],"-infmt2") && i < (argc-1) ) | |
4791 { | |
4792 infmt2_opt=atoi(argv[i + 1]); i++; | |
4793 } | |
4794 else if ( !strcmp(argv[i],"-ter") && i < (argc-1) ) | |
4795 { | |
4796 ter_opt=atoi(argv[i + 1]); i++; | |
4797 } | |
4798 else if ( !strcmp(argv[i],"-split") && i < (argc-1) ) | |
4799 { | |
4800 split_opt=atoi(argv[i + 1]); i++; | |
4801 } | |
4802 else if ( !strcmp(argv[i],"-atom") && i < (argc-1) ) | |
4803 { | |
4804 atom_opt=argv[i + 1]; i++; | |
4805 } | |
4806 else if ( !strcmp(argv[i],"-mol") && i < (argc-1) ) | |
4807 { | |
4808 mol_opt=argv[i + 1]; i++; | |
4809 } | |
4810 else if ( !strcmp(argv[i],"-dir") && i < (argc-1) ) | |
4811 { | |
4812 dir_opt=argv[i + 1]; i++; | |
4813 } | |
4814 else if ( !strcmp(argv[i],"-dir1") && i < (argc-1) ) | |
4815 { | |
4816 dir1_opt=argv[i + 1]; i++; | |
4817 } | |
4818 else if ( !strcmp(argv[i],"-dir2") && i < (argc-1) ) | |
4819 { | |
4820 dir2_opt=argv[i + 1]; i++; | |
4821 } | |
4822 else if ( !strcmp(argv[i],"-suffix") && i < (argc-1) ) | |
4823 { | |
4824 suffix_opt=argv[i + 1]; i++; | |
4825 } | |
4826 else if ( !strcmp(argv[i],"-outfmt") && i < (argc-1) ) | |
4827 { | |
4828 outfmt_opt=atoi(argv[i + 1]); i++; | |
4829 } | |
4830 else if ( !strcmp(argv[i],"-TMcut") && i < (argc-1) ) | |
4831 { | |
4832 TMcut=atof(argv[i + 1]); i++; | |
4833 } | |
4834 else if ( !strcmp(argv[i],"-byresi") && i < (argc-1) ) | |
4835 { | |
4836 byresi_opt=atoi(argv[i + 1]); i++; | |
4837 } | |
4838 else if ( !strcmp(argv[i],"-cp") ) | |
4839 { | |
4840 cp_opt=1; | |
4841 } | |
4842 else if ( !strcmp(argv[i],"-mirror") && i < (argc-1) ) | |
4843 { | |
4844 mirror_opt=atoi(argv[i + 1]); i++; | |
4845 } | |
4846 else if ( !strcmp(argv[i],"-het") && i < (argc-1) ) | |
4847 { | |
4848 het_opt=atoi(argv[i + 1]); i++; | |
4849 } | |
4850 else if (xname.size() == 0) xname=argv[i]; | |
4851 else if (yname.size() == 0) yname=argv[i]; | |
4852 else PrintErrorAndQuit(string("ERROR! Undefined option ")+argv[i]); | |
4853 } | |
4854 | |
4855 if(xname.size()==0 || (yname.size()==0 && dir_opt.size()==0) || | |
4856 (yname.size() && dir_opt.size())) | |
4857 { | |
4858 if (h_opt) print_help(h_opt); | |
4859 if (v_opt) | |
4860 { | |
4861 print_version(); | |
4862 exit(EXIT_FAILURE); | |
4863 } | |
4864 if (xname.size()==0) | |
4865 PrintErrorAndQuit("Please provide input structures"); | |
4866 else if (yname.size()==0 && dir_opt.size()==0) | |
4867 PrintErrorAndQuit("Please provide structure B"); | |
4868 else if (yname.size() && dir_opt.size()) | |
4869 PrintErrorAndQuit("Please provide only one file name if -dir is set"); | |
4870 } | |
4871 | |
4872 if (suffix_opt.size() && dir_opt.size()+dir1_opt.size()+dir2_opt.size()==0) | |
4873 PrintErrorAndQuit("-suffix is only valid if -dir, -dir1 or -dir2 is set"); | |
4874 if ((dir_opt.size() || dir1_opt.size() || dir2_opt.size())) | |
4875 { | |
4876 if (m_opt || o_opt) | |
4877 PrintErrorAndQuit("-m or -o cannot be set with -dir, -dir1 or -dir2"); | |
4878 else if (dir_opt.size() && (dir1_opt.size() || dir2_opt.size())) | |
4879 PrintErrorAndQuit("-dir cannot be set with -dir1 or -dir2"); | |
4880 } | |
4881 if (atom_opt.size()!=4) | |
4882 PrintErrorAndQuit("ERROR! atom name must have 4 characters, including space."); | |
4883 if (mol_opt!="auto" && mol_opt!="protein" && mol_opt!="RNA") | |
4884 PrintErrorAndQuit("ERROR! molecule type must be either RNA or protein."); | |
4885 else if (mol_opt=="protein" && atom_opt=="auto") | |
4886 atom_opt=" CA "; | |
4887 else if (mol_opt=="RNA" && atom_opt=="auto") | |
4888 atom_opt=" C3'"; | |
4889 | |
4890 if (u_opt && Lnorm_ass<=0) | |
4891 PrintErrorAndQuit("Wrong value for option -u! It should be >0"); | |
4892 if (d_opt && d0_scale<=0) | |
4893 PrintErrorAndQuit("Wrong value for option -d! It should be >0"); | |
4894 if (outfmt_opt>=2 && (a_opt || u_opt || d_opt)) | |
4895 PrintErrorAndQuit("-outfmt 2 cannot be used with -a, -u, -L, -d"); | |
4896 if (byresi_opt!=0) | |
4897 { | |
4898 if (i_opt) | |
4899 PrintErrorAndQuit("-byresi >=1 cannot be used with -i or -I"); | |
4900 if (byresi_opt<0 || byresi_opt>3) | |
4901 PrintErrorAndQuit("-byresi can only be 0, 1, 2 or 3"); | |
4902 if (byresi_opt>=2 && ter_opt>=2) | |
4903 PrintErrorAndQuit("-byresi >=2 should be used with -ter <=1"); | |
4904 } | |
4905 if (split_opt==1 && ter_opt!=0) | |
4906 PrintErrorAndQuit("-split 1 should be used with -ter 0"); | |
4907 else if (split_opt==2 && ter_opt!=0 && ter_opt!=1) | |
4908 PrintErrorAndQuit("-split 2 should be used with -ter 0 or 1"); | |
4909 if (split_opt<0 || split_opt>2) | |
4910 PrintErrorAndQuit("-split can only be 0, 1 or 2"); | |
4911 if (cp_opt!=0 && cp_opt!=1) | |
4912 PrintErrorAndQuit("-cp can only be 0 or 1"); | |
4913 if (cp_opt && i_opt) | |
4914 PrintErrorAndQuit("-cp cannot be used with -i or -I"); | |
4915 | |
4916 /* read initial alignment file from 'align.txt' */ | |
4917 if (i_opt) read_user_alignment(sequence, fname_lign, i_opt); | |
4918 | |
4919 if (byresi_opt) i_opt=3; | |
4920 | |
4921 if (m_opt && fname_matrix == "") // Output rotation matrix: matrix.txt | |
4922 PrintErrorAndQuit("ERROR! Please provide a file name for option -m!"); | |
4923 | |
4924 /* parse file list */ | |
4925 if (dir1_opt.size()+dir_opt.size()==0) chain1_list.push_back(xname); | |
4926 else file2chainlist(chain1_list, xname, dir_opt+dir1_opt, suffix_opt); | |
4927 | |
4928 if (dir_opt.size()) | |
4929 for (int i=0;i<chain1_list.size();i++) | |
4930 chain2_list.push_back(chain1_list[i]); | |
4931 else if (dir2_opt.size()==0) chain2_list.push_back(yname); | |
4932 else file2chainlist(chain2_list, yname, dir2_opt, suffix_opt); | |
4933 | |
4934 if (outfmt_opt==2) | |
4935 cout<<"#PDBchain1\tPDBchain2\tTM1\tTM2\t" | |
4936 <<"RMSD\tID1\tID2\tIDali\tL1\tL2\tLali"<<endl; | |
4937 | |
4938 /* declare previously global variables */ | |
4939 vector<vector<string> >PDB_lines1; // text of chain1 | |
4940 vector<vector<string> >PDB_lines2; // text of chain2 | |
4941 vector<int> mol_vec1; // molecule type of chain1, RNA if >0 | |
4942 vector<int> mol_vec2; // molecule type of chain2, RNA if >0 | |
4943 vector<string> chainID_list1; // list of chainID1 | |
4944 vector<string> chainID_list2; // list of chainID2 | |
4945 int i,j; // file index | |
4946 int chain_i,chain_j; // chain index | |
4947 int r; // residue index | |
4948 int xlen, ylen; // chain length | |
4949 int xchainnum,ychainnum;// number of chains in a PDB file | |
4950 char *seqx, *seqy; // for the protein sequence | |
4951 char *secx, *secy; // for the secondary structure | |
4952 double **xa, **ya; // for input vectors xa[0...xlen-1][0..2] and | |
4953 // ya[0...ylen-1][0..2], in general, | |
4954 // ya is regarded as native structure | |
4955 // --> superpose xa onto ya | |
4956 vector<string> resi_vec1; // residue index for chain1 | |
4957 vector<string> resi_vec2; // residue index for chain2 | |
4958 | |
4959 /* loop over file names */ | |
4960 for (i=0;i<chain1_list.size();i++) | |
4961 { | |
4962 /* parse chain 1 */ | |
4963 xname=chain1_list[i]; | |
4964 xchainnum=get_PDB_lines(xname, PDB_lines1, chainID_list1, | |
4965 mol_vec1, ter_opt, infmt1_opt, atom_opt, split_opt, het_opt); | |
4966 if (!xchainnum) | |
4967 { | |
4968 cerr<<"Warning! Cannot parse file: "<<xname | |
4969 <<". Chain number 0."<<endl; | |
4970 continue; | |
4971 } | |
4972 for (chain_i=0;chain_i<xchainnum;chain_i++) | |
4973 { | |
4974 xlen=PDB_lines1[chain_i].size(); | |
4975 mol_vec1[chain_i]=-1; | |
4976 if (!xlen) | |
4977 { | |
4978 cerr<<"Warning! Cannot parse file: "<<xname | |
4979 <<". Chain length 0."<<endl; | |
4980 continue; | |
4981 } | |
4982 else if (xlen<3) | |
4983 { | |
4984 cerr<<"Sequence is too short <3!: "<<xname<<endl; | |
4985 continue; | |
4986 } | |
4987 NewArray(&xa, xlen, 3); | |
4988 seqx = new char[xlen + 1]; | |
4989 secx = new char[xlen + 1]; | |
4990 xlen = read_PDB(PDB_lines1[chain_i], xa, seqx, | |
4991 resi_vec1, byresi_opt?byresi_opt:o_opt); | |
4992 if (mirror_opt) for (r=0;r<xlen;r++) xa[r][2]=-xa[r][2]; | |
4993 make_sec(xa, xlen, secx); // secondary structure assignment | |
4994 | |
4995 for (j=(dir_opt.size()>0)*(i+1);j<chain2_list.size();j++) | |
4996 { | |
4997 /* parse chain 2 */ | |
4998 if (PDB_lines2.size()==0) | |
4999 { | |
5000 yname=chain2_list[j]; | |
5001 ychainnum=get_PDB_lines(yname, PDB_lines2, chainID_list2, | |
5002 mol_vec2, ter_opt, infmt2_opt, atom_opt, split_opt, | |
5003 het_opt); | |
5004 if (!ychainnum) | |
5005 { | |
5006 cerr<<"Warning! Cannot parse file: "<<yname | |
5007 <<". Chain number 0."<<endl; | |
5008 continue; | |
5009 } | |
5010 } | |
5011 for (chain_j=0;chain_j<ychainnum;chain_j++) | |
5012 { | |
5013 ylen=PDB_lines2[chain_j].size(); | |
5014 mol_vec2[chain_j]=-1; | |
5015 if (!ylen) | |
5016 { | |
5017 cerr<<"Warning! Cannot parse file: "<<yname | |
5018 <<". Chain length 0."<<endl; | |
5019 continue; | |
5020 } | |
5021 else if (ylen<3) | |
5022 { | |
5023 cerr<<"Sequence is too short <3!: "<<yname<<endl; | |
5024 continue; | |
5025 } | |
5026 NewArray(&ya, ylen, 3); | |
5027 seqy = new char[ylen + 1]; | |
5028 secy = new char[ylen + 1]; | |
5029 ylen = read_PDB(PDB_lines2[chain_j], ya, seqy, | |
5030 resi_vec2, byresi_opt?byresi_opt:o_opt); | |
5031 make_sec(ya, ylen, secy); | |
5032 if (byresi_opt) extract_aln_from_resi(sequence, | |
5033 seqx,seqy,resi_vec1,resi_vec2,byresi_opt); | |
5034 | |
5035 /* declare variable specific to this pair of TMalign */ | |
5036 double t0[3], u0[3][3]; | |
5037 double TM1, TM2; | |
5038 double TM3, TM4, TM5; // for a_opt, u_opt, d_opt | |
5039 double d0_0, TM_0; | |
5040 double d0A, d0B, d0u, d0a; | |
5041 double d0_out=5.0; | |
5042 string seqM, seqxA, seqyA;// for output alignment | |
5043 double rmsd0 = 0.0; | |
5044 int L_ali; // Aligned length in standard_TMscore | |
5045 double Liden=0; | |
5046 double TM_ali, rmsd_ali; // TMscore and rmsd in standard_TMscore | |
5047 int n_ali=0; | |
5048 int n_ali8=0; | |
5049 | |
5050 /* entry function for structure alignment */ | |
5051 if (cp_opt) CPalign_main( | |
5052 xa, ya, seqx, seqy, secx, secy, | |
5053 t0, u0, TM1, TM2, TM3, TM4, TM5, | |
5054 d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, | |
5055 seqM, seqxA, seqyA, | |
5056 rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, | |
5057 xlen, ylen, sequence, Lnorm_ass, d0_scale, | |
5058 i_opt, a_opt, u_opt, d_opt, fast_opt, | |
5059 mol_vec1[chain_i]+mol_vec2[chain_j],TMcut); | |
5060 else TMalign_main( | |
5061 xa, ya, seqx, seqy, secx, secy, | |
5062 t0, u0, TM1, TM2, TM3, TM4, TM5, | |
5063 d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, | |
5064 seqM, seqxA, seqyA, | |
5065 rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, | |
5066 xlen, ylen, sequence, Lnorm_ass, d0_scale, | |
5067 i_opt, a_opt, u_opt, d_opt, fast_opt, | |
5068 mol_vec1[chain_i]+mol_vec2[chain_j],TMcut); | |
5069 | |
5070 /* print result */ | |
5071 if (outfmt_opt==0) print_version(); | |
5072 output_results( | |
5073 xname.substr(dir1_opt.size()), | |
5074 yname.substr(dir2_opt.size()), | |
5075 chainID_list1[chain_i].c_str(), | |
5076 chainID_list2[chain_j].c_str(), | |
5077 xlen, ylen, t0, u0, TM1, TM2, | |
5078 TM3, TM4, TM5, rmsd0, d0_out, | |
5079 seqM.c_str(), seqxA.c_str(), seqyA.c_str(), Liden, | |
5080 n_ali8, L_ali, TM_ali, rmsd_ali, | |
5081 TM_0, d0_0, d0A, d0B, | |
5082 Lnorm_ass, d0_scale, d0a, d0u, | |
5083 (m_opt?fname_matrix+chainID_list1[chain_i]:"").c_str(), | |
5084 outfmt_opt, ter_opt, | |
5085 (o_opt?fname_super+chainID_list1[chain_i]:"").c_str(), | |
5086 i_opt, a_opt, u_opt, d_opt,mirror_opt, | |
5087 resi_vec1,resi_vec2); | |
5088 | |
5089 /* Done! Free memory */ | |
5090 seqM.clear(); | |
5091 seqxA.clear(); | |
5092 seqyA.clear(); | |
5093 DeleteArray(&ya, ylen); | |
5094 delete [] seqy; | |
5095 delete [] secy; | |
5096 resi_vec2.clear(); | |
5097 } // chain_j | |
5098 if (chain2_list.size()>1) | |
5099 { | |
5100 yname.clear(); | |
5101 for (chain_j=0;chain_j<ychainnum;chain_j++) | |
5102 PDB_lines2[chain_j].clear(); | |
5103 PDB_lines2.clear(); | |
5104 chainID_list2.clear(); | |
5105 mol_vec2.clear(); | |
5106 } | |
5107 } // j | |
5108 PDB_lines1[chain_i].clear(); | |
5109 DeleteArray(&xa, xlen); | |
5110 delete [] seqx; | |
5111 delete [] secx; | |
5112 resi_vec1.clear(); | |
5113 } // chain_i | |
5114 xname.clear(); | |
5115 PDB_lines1.clear(); | |
5116 chainID_list1.clear(); | |
5117 mol_vec1.clear(); | |
5118 } // i | |
5119 if (chain2_list.size()==1) | |
5120 { | |
5121 yname.clear(); | |
5122 for (chain_j=0;chain_j<ychainnum;chain_j++) | |
5123 PDB_lines2[chain_j].clear(); | |
5124 PDB_lines2.clear(); | |
5125 resi_vec2.clear(); | |
5126 chainID_list2.clear(); | |
5127 mol_vec2.clear(); | |
5128 } | |
5129 chain1_list.clear(); | |
5130 chain2_list.clear(); | |
5131 sequence.clear(); | |
5132 | |
5133 t2 = clock(); | |
5134 float diff = ((float)t2 - (float)t1)/CLOCKS_PER_SEC; | |
5135 printf("Total CPU time is %5.2f seconds\n", diff); | |
5136 return 0; | |
5137 } |