diff planemo/lib/python3.7/site-packages/networkx/classes/reportviews.py @ 1:56ad4e20f292 draft

"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author guerler
date Fri, 31 Jul 2020 00:32:28 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/planemo/lib/python3.7/site-packages/networkx/classes/reportviews.py	Fri Jul 31 00:32:28 2020 -0400
@@ -0,0 +1,1178 @@
+#    Copyright (C) 2004-2019 by
+#    Aric Hagberg <hagberg@lanl.gov>
+#    Dan Schult <dschult@colgate.edu>
+#    Pieter Swart <swart@lanl.gov>
+#    All rights reserved.
+#    BSD license.
+#
+# Authors: Aric Hagberg (hagberg@lanl.gov),
+#          Pieter Swart (swart@lanl.gov),
+#          Dan Schult(dschult@colgate.edu)
+"""
+View Classes provide node, edge and degree "views" of a graph.
+
+Views for nodes, edges and degree are provided for all base graph classes.
+A view means a read-only object that is quick to create, automatically
+updated when the graph changes, and provides basic access like `n in V`,
+`for n in V`, `V[n]` and sometimes set operations.
+
+The views are read-only iterable containers that are updated as the
+graph is updated. As with dicts, the graph should not be updated
+while iterating through the view. Views can be iterated multiple times.
+
+Edge and Node views also allow data attribute lookup.
+The resulting attribute dict is writable as `G.edges[3, 4]['color']='red'`
+Degree views allow lookup of degree values for single nodes.
+Weighted degree is supported with the `weight` argument.
+
+NodeView
+========
+
+    `V = G.nodes` (or `V = G.nodes()`) allows `len(V)`, `n in V`, set
+    operations e.g. "G.nodes & H.nodes", and `dd = G.nodes[n]`, where
+    `dd` is the node data dict. Iteration is over the nodes by default.
+
+NodeDataView
+============
+
+    To iterate over (node, data) pairs, use arguments to `G.nodes()`
+    to create a DataView e.g. `DV = G.nodes(data='color', default='red')`.
+    The DataView iterates as `for n, color in DV` and allows
+    `(n, 'red') in DV`. Using `DV = G.nodes(data=True)`, the DataViews
+    use the full datadict in writeable form also allowing contain testing as
+    `(n, {'color': 'red'}) in VD`. DataViews allow set operations when
+    data attributes are hashable.
+
+DegreeView
+==========
+
+    `V = G.degree` allows iteration over (node, degree) pairs as well
+    as lookup: `deg=V[n]`. There are many flavors of DegreeView
+    for In/Out/Directed/Multi. For Directed Graphs, `G.degree`
+    counts both in and out going edges. `G.out_degree` and
+    `G.in_degree` count only specific directions.
+    Weighted degree using edge data attributes is provide via
+    `V = G.degree(weight='attr_name')` where any string with the
+    attribute name can be used. `weight=None` is the default.
+    No set operations are implemented for degrees, use NodeView.
+
+    The argument `nbunch` restricts iteration to nodes in nbunch.
+    The DegreeView can still lookup any node even if nbunch is specified.
+
+EdgeView
+========
+
+    `V = G.edges` or `V = G.edges()` allows iteration over edges as well as
+    `e in V`, set operations and edge data lookup `dd = G.edges[2, 3]`.
+    Iteration is over 2-tuples `(u, v)` for Graph/DiGraph. For multigraphs
+    edges 3-tuples `(u, v, key)` are the default but 2-tuples can be obtained
+    via `V = G.edges(keys=False)`.
+
+    Set operations for directed graphs treat the edges as a set of 2-tuples.
+    For undirected graphs, 2-tuples are not a unique representation of edges.
+    So long as the set being compared to contains unique representations
+    of its edges, the set operations will act as expected. If the other
+    set contains both `(0, 1)` and `(1, 0)` however, the result of set
+    operations may contain both representations of the same edge.
+
+EdgeDataView
+============
+
+    Edge data can be reported using an EdgeDataView typically created
+    by calling an EdgeView: `DV = G.edges(data='weight', default=1)`.
+    The EdgeDataView allows iteration over edge tuples, membership checking
+    but no set operations.
+
+    Iteration depends on `data` and `default` and for multigraph `keys`
+    If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
+    If `data is True` iterate over 3-tuples `(u, v, datadict)`.
+    Otherwise iterate over `(u, v, datadict.get(data, default))`.
+    For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key`
+    to create 3-tuples and 4-tuples.
+
+    The argument `nbunch` restricts edges to those incident to nodes in nbunch.
+"""
+from collections.abc import Mapping, Set, Iterable
+import networkx as nx
+
+__all__ = ['NodeView', 'NodeDataView',
+           'EdgeView', 'OutEdgeView', 'InEdgeView',
+           'EdgeDataView', 'OutEdgeDataView', 'InEdgeDataView',
+           'MultiEdgeView', 'OutMultiEdgeView', 'InMultiEdgeView',
+           'MultiEdgeDataView', 'OutMultiEdgeDataView', 'InMultiEdgeDataView',
+           'DegreeView', 'DiDegreeView', 'InDegreeView', 'OutDegreeView',
+           'MultiDegreeView', 'DiMultiDegreeView',
+           'InMultiDegreeView', 'OutMultiDegreeView']
+
+
+# NodeViews
+class NodeView(Mapping, Set):
+    """A NodeView class to act as G.nodes for a NetworkX Graph
+
+    Set operations act on the nodes without considering data.
+    Iteration is over nodes. Node data can be looked up like a dict.
+    Use NodeDataView to iterate over node data or to specify a data
+    attribute for lookup. NodeDataView is created by calling the NodeView.
+
+    Parameters
+    ----------
+    graph : NetworkX graph-like class
+
+    Examples
+    --------
+    >>> G = nx.path_graph(3)
+    >>> NV = G.nodes()
+    >>> 2 in NV
+    True
+    >>> for n in NV: print(n)
+    0
+    1
+    2
+    >>> assert(NV & {1, 2, 3} == {1, 2})
+
+    >>> G.add_node(2, color='blue')
+    >>> NV[2]
+    {'color': 'blue'}
+    >>> G.add_node(8, color='red')
+    >>> NDV = G.nodes(data=True)
+    >>> (2, NV[2]) in NDV
+    True
+    >>> for n, dd in NDV: print((n, dd.get('color', 'aqua')))
+    (0, 'aqua')
+    (1, 'aqua')
+    (2, 'blue')
+    (8, 'red')
+    >>> NDV[2] == NV[2]
+    True
+
+    >>> NVdata = G.nodes(data='color', default='aqua')
+    >>> (2, NVdata[2]) in NVdata
+    True
+    >>> for n, dd in NVdata: print((n, dd))
+    (0, 'aqua')
+    (1, 'aqua')
+    (2, 'blue')
+    (8, 'red')
+    >>> NVdata[2] == NV[2]  # NVdata gets 'color', NV gets datadict
+    False
+    """
+    __slots__ = '_nodes',
+
+    def __getstate__(self):
+        return {'_nodes': self._nodes}
+
+    def __setstate__(self, state):
+        self._nodes = state['_nodes']
+
+    def __init__(self, graph):
+        self._nodes = graph._node
+
+    # Mapping methods
+    def __len__(self):
+        return len(self._nodes)
+
+    def __iter__(self):
+        return iter(self._nodes)
+
+    def __getitem__(self, n):
+        return self._nodes[n]
+
+    # Set methods
+    def __contains__(self, n):
+        return n in self._nodes
+
+    @classmethod
+    def _from_iterable(cls, it):
+        return set(it)
+
+    # DataView method
+    def __call__(self, data=False, default=None):
+        if data is False:
+            return self
+        return NodeDataView(self._nodes, data, default)
+
+    def data(self, data=True, default=None):
+        if data is False:
+            return self
+        return NodeDataView(self._nodes, data, default)
+
+    def __str__(self):
+        return str(list(self))
+
+    def __repr__(self):
+        return '%s(%r)' % (self.__class__.__name__, tuple(self))
+
+
+class NodeDataView(Set):
+    """A DataView class for nodes of a NetworkX Graph
+
+    The main use for this class is to iterate through node-data pairs.
+    The data can be the entire data-dictionary for each node, or it
+    can be a specific attribute (with default) for each node.
+    Set operations are enabled with NodeDataView, but don't work in
+    cases where the data is not hashable. Use with caution.
+    Typically, set operations on nodes use NodeView, not NodeDataView.
+    That is, they use `G.nodes` instead of `G.nodes(data='foo')`.
+
+    Parameters
+    ==========
+    graph : NetworkX graph-like class
+    data : bool or string (default=False)
+    default : object (default=None)
+    """
+    __slots__ = ('_nodes', '_data', '_default')
+
+    def __getstate__(self):
+        return {'_nodes': self._nodes,
+                '_data': self._data,
+                '_default': self._default}
+
+    def __setstate__(self, state):
+        self._nodes = state['_nodes']
+        self._data = state['_data']
+        self._default = state['_default']
+
+    def __init__(self, nodedict, data=False, default=None):
+        self._nodes = nodedict
+        self._data = data
+        self._default = default
+
+    @classmethod
+    def _from_iterable(cls, it):
+        try:
+            return set(it)
+        except TypeError as err:
+            if "unhashable" in str(err):
+                msg = " : Could be b/c data=True or your values are unhashable"
+                raise TypeError(str(err) + msg)
+            raise
+
+    def __len__(self):
+        return len(self._nodes)
+
+    def __iter__(self):
+        data = self._data
+        if data is False:
+            return iter(self._nodes)
+        if data is True:
+            return iter(self._nodes.items())
+        return ((n, dd[data] if data in dd else self._default)
+                for n, dd in self._nodes.items())
+
+    def __contains__(self, n):
+        try:
+            node_in = n in self._nodes
+        except TypeError:
+            n, d = n
+            return n in self._nodes and self[n] == d
+        if node_in is True:
+            return node_in
+        try:
+            n, d = n
+        except (TypeError, ValueError):
+            return False
+        return n in self._nodes and self[n] == d
+
+    def __getitem__(self, n):
+        ddict = self._nodes[n]
+        data = self._data
+        if data is False or data is True:
+            return ddict
+        return ddict[data] if data in ddict else self._default
+
+    def __str__(self):
+        return str(list(self))
+
+    def __repr__(self):
+        if self._data is False:
+            return '%s(%r)' % (self.__class__.__name__, tuple(self))
+        if self._data is True:
+            return '%s(%r)' % (self.__class__.__name__, dict(self))
+        return '%s(%r, data=%r)' % \
+               (self.__class__.__name__, dict(self), self._data)
+
+
+# DegreeViews
+class DiDegreeView(object):
+    """A View class for degree of nodes in a NetworkX Graph
+
+    The functionality is like dict.items() with (node, degree) pairs.
+    Additional functionality includes read-only lookup of node degree,
+    and calling with optional features nbunch (for only a subset of nodes)
+    and weight (use edge weights to compute degree).
+
+    Parameters
+    ==========
+    graph : NetworkX graph-like class
+    nbunch : node, container of nodes, or None meaning all nodes (default=None)
+    weight : bool or string (default=None)
+
+    Notes
+    -----
+    DegreeView can still lookup any node even if nbunch is specified.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(3)
+    >>> DV = G.degree()
+    >>> assert(DV[2] == 1)
+    >>> assert(sum(deg for n, deg in DV) == 4)
+
+    >>> DVweight = G.degree(weight="span")
+    >>> G.add_edge(1, 2, span=34)
+    >>> DVweight[2]
+    34
+    >>> DVweight[0]  #  default edge weight is 1
+    1
+    >>> sum(span for n, span in DVweight)  # sum weighted degrees
+    70
+
+    >>> DVnbunch = G.degree(nbunch=(1, 2))
+    >>> assert(len(list(DVnbunch)) == 2)  # iteration over nbunch only
+    """
+
+    def __init__(self, G, nbunch=None, weight=None):
+        self._graph = G
+        self._succ = G._succ if hasattr(G, "_succ") else G._adj
+        self._pred = G._pred if hasattr(G, "_pred") else G._adj
+        self._nodes = self._succ if nbunch is None \
+            else list(G.nbunch_iter(nbunch))
+        self._weight = weight
+
+    def __call__(self, nbunch=None, weight=None):
+        if nbunch is None:
+            if weight == self._weight:
+                return self
+            return self.__class__(self._graph, None, weight)
+        try:
+            if nbunch in self._nodes:
+                if weight == self._weight:
+                    return self[nbunch]
+                return self.__class__(self._graph, None, weight)[nbunch]
+        except TypeError:
+            pass
+        return self.__class__(self._graph, nbunch, weight)
+
+    def __getitem__(self, n):
+        weight = self._weight
+        succs = self._succ[n]
+        preds = self._pred[n]
+        if weight is None:
+            return len(succs) + len(preds)
+        return sum(dd.get(weight, 1) for dd in succs.values()) + \
+            sum(dd.get(weight, 1) for dd in preds.values())
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                succs = self._succ[n]
+                preds = self._pred[n]
+                yield (n, len(succs) + len(preds))
+        else:
+            for n in self._nodes:
+                succs = self._succ[n]
+                preds = self._pred[n]
+                deg = sum(dd.get(weight, 1) for dd in succs.values()) \
+                    + sum(dd.get(weight, 1) for dd in preds.values())
+                yield (n, deg)
+
+    def __len__(self):
+        return len(self._nodes)
+
+    def __str__(self):
+        return str(list(self))
+
+    def __repr__(self):
+        return '%s(%r)' % (self.__class__.__name__, dict(self))
+
+
+class DegreeView(DiDegreeView):
+    """A DegreeView class to act as G.degree for a NetworkX Graph
+
+    Typical usage focuses on iteration over `(node, degree)` pairs.
+    The degree is by default the number of edges incident to the node.
+    Optional argument `weight` enables weighted degree using the edge
+    attribute named in the `weight` argument.  Reporting and iteration
+    can also be restricted to a subset of nodes using `nbunch`.
+
+    Additional functionality include node lookup so that `G.degree[n]`
+    reported the (possibly weighted) degree of node `n`. Calling the
+    view creates a view with different arguments `nbunch` or `weight`.
+
+    Parameters
+    ==========
+    graph : NetworkX graph-like class
+    nbunch : node, container of nodes, or None meaning all nodes (default=None)
+    weight : string or None (default=None)
+
+    Notes
+    -----
+    DegreeView can still lookup any node even if nbunch is specified.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(3)
+    >>> DV = G.degree()
+    >>> assert(DV[2] == 1)
+    >>> assert(G.degree[2] == 1)
+    >>> assert(sum(deg for n, deg in DV) == 4)
+
+    >>> DVweight = G.degree(weight="span")
+    >>> G.add_edge(1, 2, span=34)
+    >>> DVweight[2]
+    34
+    >>> DVweight[0]  #  default edge weight is 1
+    1
+    >>> sum(span for n, span in DVweight)  # sum weighted degrees
+    70
+
+    >>> DVnbunch = G.degree(nbunch=(1, 2))
+    >>> assert(len(list(DVnbunch)) == 2)  # iteration over nbunch only
+    """
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._succ[n]
+        if weight is None:
+            return len(nbrs) + (n in nbrs)
+        return sum(dd.get(weight, 1) for dd in nbrs.values()) + \
+            (n in nbrs and nbrs[n].get(weight, 1))
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                yield (n, len(nbrs) + (n in nbrs))
+        else:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                deg = sum(dd.get(weight, 1) for dd in nbrs.values()) + \
+                    (n in nbrs and nbrs[n].get(weight, 1))
+                yield (n, deg)
+
+
+class OutDegreeView(DiDegreeView):
+    """A DegreeView class to report out_degree for a DiGraph; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._succ[n]
+        if self._weight is None:
+            return len(nbrs)
+        return sum(dd.get(self._weight, 1) for dd in nbrs.values())
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                succs = self._succ[n]
+                yield (n, len(succs))
+        else:
+            for n in self._nodes:
+                succs = self._succ[n]
+                deg = sum(dd.get(weight, 1) for dd in succs.values())
+                yield (n, deg)
+
+
+class InDegreeView(DiDegreeView):
+    """A DegreeView class to report in_degree for a DiGraph; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._pred[n]
+        if weight is None:
+            return len(nbrs)
+        return sum(dd.get(weight, 1) for dd in nbrs.values())
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                preds = self._pred[n]
+                yield (n, len(preds))
+        else:
+            for n in self._nodes:
+                preds = self._pred[n]
+                deg = sum(dd.get(weight, 1) for dd in preds.values())
+                yield (n, deg)
+
+
+class MultiDegreeView(DiDegreeView):
+    """A DegreeView class for undirected multigraphs; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._succ[n]
+        if weight is None:
+            return sum(len(keys) for keys in nbrs.values()) + \
+                (n in nbrs and len(nbrs[n]))
+        # edge weighted graph - degree is sum of nbr edge weights
+        deg = sum(d.get(weight, 1) for key_dict in nbrs.values()
+                  for d in key_dict.values())
+        if n in nbrs:
+            deg += sum(d.get(weight, 1) for d in nbrs[n].values())
+        return deg
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                deg = sum(len(keys) for keys in nbrs.values()) + \
+                    (n in nbrs and len(nbrs[n]))
+                yield (n, deg)
+        else:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                deg = sum(d.get(weight, 1) for key_dict in nbrs.values()
+                          for d in key_dict.values())
+                if n in nbrs:
+                    deg += sum(d.get(weight, 1) for d in nbrs[n].values())
+                yield (n, deg)
+
+
+class DiMultiDegreeView(DiDegreeView):
+    """A DegreeView class for MultiDiGraph; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        succs = self._succ[n]
+        preds = self._pred[n]
+        if weight is None:
+            return sum(len(keys) for keys in succs.values()) + \
+                sum(len(keys) for keys in preds.values())
+        # edge weighted graph - degree is sum of nbr edge weights
+        deg = sum(d.get(weight, 1) for key_dict in succs.values()
+                  for d in key_dict.values()) + \
+            sum(d.get(weight, 1) for key_dict in preds.values()
+                for d in key_dict.values())
+        return deg
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                succs = self._succ[n]
+                preds = self._pred[n]
+                deg = sum(len(keys) for keys in succs.values()) + \
+                    sum(len(keys) for keys in preds.values())
+                yield (n, deg)
+        else:
+            for n in self._nodes:
+                succs = self._succ[n]
+                preds = self._pred[n]
+                deg = sum(d.get(weight, 1) for key_dict in succs.values()
+                          for d in key_dict.values()) + \
+                    sum(d.get(weight, 1) for key_dict in preds.values()
+                        for d in key_dict.values())
+                yield (n, deg)
+
+
+class InMultiDegreeView(DiDegreeView):
+    """A DegreeView class for inward degree of MultiDiGraph; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._pred[n]
+        if weight is None:
+            return sum(len(data) for data in nbrs.values())
+        # edge weighted graph - degree is sum of nbr edge weights
+        return sum(d.get(weight, 1) for key_dict in nbrs.values()
+                   for d in key_dict.values())
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                nbrs = self._pred[n]
+                deg = sum(len(data) for data in nbrs.values())
+                yield (n, deg)
+        else:
+            for n in self._nodes:
+                nbrs = self._pred[n]
+                deg = sum(d.get(weight, 1) for key_dict in nbrs.values()
+                          for d in key_dict.values())
+                yield (n, deg)
+
+
+class OutMultiDegreeView(DiDegreeView):
+    """A DegreeView class for outward degree of MultiDiGraph; See DegreeView"""
+
+    def __getitem__(self, n):
+        weight = self._weight
+        nbrs = self._succ[n]
+        if weight is None:
+            return sum(len(data) for data in nbrs.values())
+        # edge weighted graph - degree is sum of nbr edge weights
+        return sum(d.get(weight, 1) for key_dict in nbrs.values()
+                   for d in key_dict.values())
+
+    def __iter__(self):
+        weight = self._weight
+        if weight is None:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                deg = sum(len(data) for data in nbrs.values())
+                yield (n, deg)
+        else:
+            for n in self._nodes:
+                nbrs = self._succ[n]
+                deg = sum(d.get(weight, 1) for key_dict in nbrs.values()
+                          for d in key_dict.values())
+                yield (n, deg)
+
+
+# EdgeDataViews
+class OutEdgeDataView(object):
+    """EdgeDataView for outward edges of DiGraph; See EdgeDataView"""
+    __slots__ = ('_viewer', '_nbunch', '_data', '_default',
+                 '_adjdict', '_nodes_nbrs', '_report')
+
+    def __getstate__(self):
+        return {'viewer': self._viewer,
+                'nbunch': self._nbunch,
+                'data': self._data,
+                'default': self._default}
+
+    def __setstate__(self, state):
+        self.__init__(**state)
+
+    def __init__(self, viewer, nbunch=None, data=False, default=None):
+        self._viewer = viewer
+        adjdict = self._adjdict = viewer._adjdict
+        if nbunch is None:
+            self._nodes_nbrs = adjdict.items
+        else:
+            nbunch = list(viewer._graph.nbunch_iter(nbunch))
+            self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
+        self._nbunch = nbunch
+        self._data = data
+        self._default = default
+        # Set _report based on data and default
+        if data is True:
+            self._report = lambda n, nbr, dd: (n, nbr, dd)
+        elif data is False:
+            self._report = lambda n, nbr, dd: (n, nbr)
+        else:  # data is attribute name
+            self._report = lambda n, nbr, dd: \
+                (n, nbr, dd[data]) if data in dd else (n, nbr, default)
+
+    def __len__(self):
+        return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
+
+    def __iter__(self):
+        return (self._report(n, nbr, dd) for n, nbrs in self._nodes_nbrs()
+                for nbr, dd in nbrs.items())
+
+    def __contains__(self, e):
+        try:
+            u, v = e[:2]
+            ddict = self._adjdict[u][v]
+        except KeyError:
+            return False
+        return e == self._report(u, v, ddict)
+
+    def __str__(self):
+        return str(list(self))
+
+    def __repr__(self):
+        return '%s(%r)' % (self.__class__.__name__, list(self))
+
+
+class EdgeDataView(OutEdgeDataView):
+    """A EdgeDataView class for edges of Graph
+
+    This view is primarily used to iterate over the edges reporting
+    edges as node-tuples with edge data optionally reported. The
+    argument `nbunch` allows restriction to edges incident to nodes
+    in that container/singleton. The default (nbunch=None)
+    reports all edges. The arguments `data` and `default` control
+    what edge data is reported. The default `data is False` reports
+    only node-tuples for each edge. If `data is True` the entire edge
+    data dict is returned. Otherwise `data` is assumed to hold the name
+    of the edge attribute to report with default `default` if  that
+    edge attribute is not present.
+
+    Parameters
+    ----------
+    nbunch : container of nodes, node or None (default None)
+    data : False, True or string (default False)
+    default : default value (default None)
+
+    Examples
+    --------
+    >>> G = nx.path_graph(3)
+    >>> G.add_edge(1, 2, foo='bar')
+    >>> list(G.edges(data='foo', default='biz'))
+    [(0, 1, 'biz'), (1, 2, 'bar')]
+    >>> assert((0, 1, 'biz') in G.edges(data='foo', default='biz'))
+    """
+    __slots__ = ()
+
+    def __len__(self):
+        return sum(1 for e in self)
+
+    def __iter__(self):
+        seen = {}
+        for n, nbrs in self._nodes_nbrs():
+            for nbr, dd in nbrs.items():
+                if nbr not in seen:
+                    yield self._report(n, nbr, dd)
+            seen[n] = 1
+        del seen
+
+    def __contains__(self, e):
+        try:
+            u, v = e[:2]
+            ddict = self._adjdict[u][v]
+        except KeyError:
+            try:
+                ddict = self._adjdict[v][u]
+            except KeyError:
+                return False
+        return e == self._report(u, v, ddict)
+
+
+class InEdgeDataView(OutEdgeDataView):
+    """An EdgeDataView class for outward edges of DiGraph; See EdgeDataView"""
+    __slots__ = ()
+
+    def __iter__(self):
+        return (self._report(nbr, n, dd) for n, nbrs in self._nodes_nbrs()
+                for nbr, dd in nbrs.items())
+
+    def __contains__(self, e):
+        try:
+            u, v = e[:2]
+            ddict = self._adjdict[v][u]
+        except KeyError:
+            return False
+        return e == self._report(u, v, ddict)
+
+
+class OutMultiEdgeDataView(OutEdgeDataView):
+    """An EdgeDataView for outward edges of MultiDiGraph; See EdgeDataView"""
+    __slots__ = ('keys',)
+
+    def __getstate__(self):
+        return {'viewer': self._viewer,
+                'nbunch': self._nbunch,
+                'keys': self.keys,
+                'data': self._data,
+                'default': self._default}
+
+    def __setstate__(self, state):
+        self.__init__(**state)
+
+    def __init__(self, viewer, nbunch=None,
+                 data=False, keys=False, default=None):
+        self._viewer = viewer
+        adjdict = self._adjdict = viewer._adjdict
+        self.keys = keys
+        if nbunch is None:
+            self._nodes_nbrs = adjdict.items
+        else:
+            nbunch = list(viewer._graph.nbunch_iter(nbunch))
+            self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
+        self._nbunch = nbunch
+        self._data = data
+        self._default = default
+        # Set _report based on data and default
+        if data is True:
+            if keys is True:
+                self._report = lambda n, nbr, k, dd: (n, nbr, k, dd)
+            else:
+                self._report = lambda n, nbr, k, dd: (n, nbr, dd)
+        elif data is False:
+            if keys is True:
+                self._report = lambda n, nbr, k, dd: (n, nbr, k)
+            else:
+                self._report = lambda n, nbr, k, dd: (n, nbr)
+        else:  # data is attribute name
+            if keys is True:
+                self._report = lambda n, nbr, k, dd: (n, nbr, k, dd[data]) \
+                    if data in dd else (n, nbr, k, default)
+            else:
+                self._report = lambda n, nbr, k, dd: (n, nbr, dd[data]) \
+                    if data in dd else (n, nbr, default)
+
+    def __len__(self):
+        return sum(1 for e in self)
+
+    def __iter__(self):
+        return (self._report(n, nbr, k, dd) for n, nbrs in self._nodes_nbrs()
+                for nbr, kd in nbrs.items() for k, dd in kd.items())
+
+    def __contains__(self, e):
+        u, v = e[:2]
+        try:
+            kdict = self._adjdict[u][v]
+        except KeyError:
+            return False
+        if self.keys is True:
+            k = e[2]
+            try:
+                dd = kdict[k]
+            except KeyError:
+                return False
+            return e == self._report(u, v, k, dd)
+        for k, dd in kdict.items():
+            if e == self._report(u, v, k, dd):
+                return True
+        return False
+
+
+class MultiEdgeDataView(OutMultiEdgeDataView):
+    """An EdgeDataView class for edges of MultiGraph; See EdgeDataView"""
+    __slots__ = ()
+
+    def __iter__(self):
+        seen = {}
+        for n, nbrs in self._nodes_nbrs():
+            for nbr, kd in nbrs.items():
+                if nbr not in seen:
+                    for k, dd in kd.items():
+                        yield self._report(n, nbr, k, dd)
+            seen[n] = 1
+        del seen
+
+    def __contains__(self, e):
+        u, v = e[:2]
+        try:
+            kdict = self._adjdict[u][v]
+        except KeyError:
+            try:
+                kdict = self._adjdict[v][u]
+            except KeyError:
+                return False
+        if self.keys is True:
+            k = e[2]
+            try:
+                dd = kdict[k]
+            except KeyError:
+                return False
+            return e == self._report(u, v, k, dd)
+        for k, dd in kdict.items():
+            if e == self._report(u, v, k, dd):
+                return True
+        return False
+
+
+class InMultiEdgeDataView(OutMultiEdgeDataView):
+    """An EdgeDataView for inward edges of MultiDiGraph; See EdgeDataView"""
+    __slots__ = ()
+
+    def __iter__(self):
+        return (self._report(nbr, n, k, dd) for n, nbrs in self._nodes_nbrs()
+                for nbr, kd in nbrs.items() for k, dd in kd.items())
+
+    def __contains__(self, e):
+        u, v = e[:2]
+        try:
+            kdict = self._adjdict[v][u]
+        except KeyError:
+            return False
+        if self.keys is True:
+            k = e[2]
+            dd = kdict[k]
+            return e == self._report(u, v, k, dd)
+        for k, dd in kdict.items():
+            if e == self._report(u, v, k, dd):
+                return True
+        return False
+
+
+# EdgeViews    have set operations and no data reported
+class OutEdgeView(Set, Mapping):
+    """A EdgeView class for outward edges of a DiGraph"""
+    __slots__ = ('_adjdict', '_graph', '_nodes_nbrs')
+
+    def __getstate__(self):
+        return {'_graph': self._graph}
+
+    def __setstate__(self, state):
+        self._graph = G = state['_graph']
+        self._adjdict = G._succ if hasattr(G, "succ") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    @classmethod
+    def _from_iterable(cls, it):
+        return set(it)
+
+    dataview = OutEdgeDataView
+
+    def __init__(self, G):
+        self._graph = G
+        self._adjdict = G._succ if hasattr(G, "succ") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    # Set methods
+    def __len__(self):
+        return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
+
+    def __iter__(self):
+        for n, nbrs in self._nodes_nbrs():
+            for nbr in nbrs:
+                yield (n, nbr)
+
+    def __contains__(self, e):
+        try:
+            u, v = e
+            return v in self._adjdict[u]
+        except KeyError:
+            return False
+
+    # Mapping Methods
+    def __getitem__(self, e):
+        u, v = e
+        return self._adjdict[u][v]
+
+    # EdgeDataView methods
+    def __call__(self, nbunch=None, data=False, default=None):
+        if nbunch is None and data is False:
+            return self
+        return self.dataview(self, nbunch, data, default)
+
+    def data(self, data=True, default=None, nbunch=None):
+        if nbunch is None and data is False:
+            return self
+        return self.dataview(self, nbunch, data, default)
+
+    # String Methods
+    def __str__(self):
+        return str(list(self))
+
+    def __repr__(self):
+        return "{0.__class__.__name__}({1!r})".format(self, list(self))
+
+
+class EdgeView(OutEdgeView):
+    """A EdgeView class for edges of a Graph
+
+    This densely packed View allows iteration over edges, data lookup
+    like a dict and set operations on edges represented by node-tuples.
+    In addition, edge data can be controlled by calling this object
+    possibly creating an EdgeDataView. Typically edges are iterated over
+    and reported as `(u, v)` node tuples or `(u, v, key)` node/key tuples
+    for multigraphs. Those edge representations can also be using to
+    lookup the data dict for any edge. Set operations also are available
+    where those tuples are the elements of the set.
+    Calling this object with optional arguments `data`, `default` and `keys`
+    controls the form of the tuple (see EdgeDataView). Optional argument
+    `nbunch` allows restriction to edges only involving certain nodes.
+
+    If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
+    If `data is True` iterate over 3-tuples `(u, v, datadict)`.
+    Otherwise iterate over `(u, v, datadict.get(data, default))`.
+    For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` above.
+
+    Parameters
+    ==========
+    graph : NetworkX graph-like class
+    nbunch : (default= all nodes in graph) only report edges with these nodes
+    keys : (only for MultiGraph. default=False) report edge key in tuple
+    data : bool or string (default=False) see above
+    default : object (default=None)
+
+    Examples
+    ========
+    >>> G = nx.path_graph(4)
+    >>> EV = G.edges()
+    >>> (2, 3) in EV
+    True
+    >>> for u, v in EV: print((u, v))
+    (0, 1)
+    (1, 2)
+    (2, 3)
+    >>> assert(EV & {(1, 2), (3, 4)} == {(1, 2)})
+
+    >>> EVdata = G.edges(data='color', default='aqua')
+    >>> G.add_edge(2, 3, color='blue')
+    >>> assert((2, 3, 'blue') in EVdata)
+    >>> for u, v, c in EVdata: print("({}, {}) has color: {}".format(u, v, c))
+    (0, 1) has color: aqua
+    (1, 2) has color: aqua
+    (2, 3) has color: blue
+
+    >>> EVnbunch = G.edges(nbunch=2)
+    >>> assert((2, 3) in EVnbunch)
+    >>> assert((0, 1) in EVnbunch)   #  nbunch is ignored in __contains__
+    >>> for u, v in EVnbunch: assert(u == 2 or v == 2)
+
+    >>> MG = nx.path_graph(4, create_using=nx.MultiGraph)
+    >>> EVmulti = MG.edges(keys=True)
+    >>> (2, 3, 0) in EVmulti
+    True
+    >>> (2, 3) in EVmulti   # 2-tuples work even when keys is True
+    True
+    >>> key = MG.add_edge(2, 3)
+    >>> for u, v, k in EVmulti: print((u, v, k))
+    (0, 1, 0)
+    (1, 2, 0)
+    (2, 3, 0)
+    (2, 3, 1)
+    """
+    __slots__ = ()
+
+    dataview = EdgeDataView
+
+    def __len__(self):
+        num_nbrs = (len(nbrs) + (n in nbrs) for n, nbrs in self._nodes_nbrs())
+        return sum(num_nbrs) // 2
+
+    def __iter__(self):
+        seen = {}
+        for n, nbrs in self._nodes_nbrs():
+            for nbr in list(nbrs):
+                if nbr not in seen:
+                    yield (n, nbr)
+            seen[n] = 1
+        del seen
+
+    def __contains__(self, e):
+        try:
+            u, v = e[:2]
+            return v in self._adjdict[u] or u in self._adjdict[v]
+        except (KeyError, ValueError):
+            return False
+
+
+class InEdgeView(OutEdgeView):
+    """A EdgeView class for inward edges of a DiGraph"""
+    __slots__ = ()
+
+    def __setstate__(self, state):
+        self._graph = G = state['_graph']
+        self._adjdict = G._pred if hasattr(G, "pred") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    dataview = InEdgeDataView
+
+    def __init__(self, G):
+        self._graph = G
+        self._adjdict = G._pred if hasattr(G, "pred") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    def __iter__(self):
+        for n, nbrs in self._nodes_nbrs():
+            for nbr in nbrs:
+                yield (nbr, n)
+
+    def __contains__(self, e):
+        try:
+            u, v = e
+            return u in self._adjdict[v]
+        except KeyError:
+            return False
+
+    def __getitem__(self, e):
+        u, v = e
+        return self._adjdict[v][u]
+
+
+class OutMultiEdgeView(OutEdgeView):
+    """A EdgeView class for outward edges of a MultiDiGraph"""
+    __slots__ = ()
+
+    dataview = OutMultiEdgeDataView
+
+    def __len__(self):
+        return sum(len(kdict) for n, nbrs in self._nodes_nbrs()
+                   for nbr, kdict in nbrs.items())
+
+    def __iter__(self):
+        for n, nbrs in self._nodes_nbrs():
+            for nbr, kdict in nbrs.items():
+                for key in kdict:
+                    yield (n, nbr, key)
+
+    def __contains__(self, e):
+        N = len(e)
+        if N == 3:
+            u, v, k = e
+        elif N == 2:
+            u, v = e
+            k = 0
+        else:
+            raise ValueError("MultiEdge must have length 2 or 3")
+        try:
+            return k in self._adjdict[u][v]
+        except KeyError:
+            return False
+
+    def __getitem__(self, e):
+        u, v, k = e
+        return self._adjdict[u][v][k]
+
+    def __call__(self, nbunch=None, data=False, keys=False, default=None):
+        if nbunch is None and data is False and keys is True:
+            return self
+        return self.dataview(self, nbunch, data, keys, default)
+
+    def data(self, data=True, keys=False, default=None, nbunch=None):
+        if nbunch is None and data is False and keys is True:
+            return self
+        return self.dataview(self, nbunch, data, keys, default)
+
+
+class MultiEdgeView(OutMultiEdgeView):
+    """A EdgeView class for edges of a MultiGraph"""
+    __slots__ = ()
+
+    dataview = MultiEdgeDataView
+
+    def __len__(self):
+        return sum(1 for e in self)
+
+    def __iter__(self):
+        seen = {}
+        for n, nbrs in self._nodes_nbrs():
+            for nbr, kd in nbrs.items():
+                if nbr not in seen:
+                    for k, dd in kd.items():
+                        yield (n, nbr, k)
+            seen[n] = 1
+        del seen
+
+
+class InMultiEdgeView(OutMultiEdgeView):
+    """A EdgeView class for inward edges of a MultiDiGraph"""
+    __slots__ = ()
+
+    def __setstate__(self, state):
+        self._graph = G = state['_graph']
+        self._adjdict = G._pred if hasattr(G, "pred") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    dataview = InMultiEdgeDataView
+
+    def __init__(self, G):
+        self._graph = G
+        self._adjdict = G._pred if hasattr(G, "pred") else G._adj
+        self._nodes_nbrs = self._adjdict.items
+
+    def __iter__(self):
+        for n, nbrs in self._nodes_nbrs():
+            for nbr, kdict in nbrs.items():
+                for key in kdict:
+                    yield (nbr, n, key)
+
+    def __contains__(self, e):
+        N = len(e)
+        if N == 3:
+            u, v, k = e
+        elif N == 2:
+            u, v = e
+            k = 0
+        else:
+            raise ValueError("MultiEdge must have length 2 or 3")
+        try:
+            return k in self._adjdict[v][u]
+        except KeyError:
+            return False
+
+    def __getitem__(self, e):
+        u, v, k = e
+        return self._adjdict[v][u][k]