comparison hmm/hmm.xml @ 0:e090cf6dd3f5 draft

Imported from capsule None
author devteam
date Thu, 22 Jan 2015 10:40:18 -0500
parents
children 38f5cd46ffd3
comparison
equal deleted inserted replaced
-1:000000000000 0:e090cf6dd3f5
1 <tool id="hmm_1" name="Fit HMM " version="1.0.0">
2 <description>on numeric data</description>
3 <command interpreter="bash">\$R_SCRIPT_PATH/r_wrapper.sh $script_file</command>
4
5 <inputs>
6 <param name="input" type="data" format="tabular" label="Dataset"/>
7 <param name="var_cols" label="Select columns containing observations " type="data_column" data_ref="input" numerical="True" multiple="true" >
8 <validator type="no_options" message="Please select at least one column."/>
9 </param>
10 <param name="samp_col" label="Select column containing sample numbers " type="data_column" data_ref="input" numerical="True" multiple="false" >
11 <validator type="no_options" message="Please select a column."/>
12 </param>
13 <param name="header" type="select" label="Treat first line as header? ">
14 <option value="yes" selected="true">Yes</option>
15 <option value="no">No</option>
16 </param>
17 <param name="nStates" size="10" type="integer" value="2" label="Number of hidden states " />
18 <conditional name="disChoice">
19 <param name="dis" type="select" label="Distribution">
20 <option value="NORMAL" selected="true">Normal</option>
21 <option value="DISCRETE">Discrete</option>
22 <option value="MIXTURE">Mixture</option>
23 </param>
24 <when value="NORMAL" />
25 <when value="DISCRETE" />
26 <when value="MIXTURE">
27 <param name="nMixt" size="10" type="integer" value="2" label="Number of mixtures of normal distributions " />
28 </when>
29 </conditional>
30 <!--
31 <conditional name="asymptChoice">
32 <param name="asymptCov" type="select" label="Compute asymptotic covariance matrix? ">
33 <option value="FALSE" selected="true">No</option>
34 <option value="TRUE">Yes</option>
35 </param>
36 <when value="FALSE" />
37 <when value="TRUE">
38 <param name="asymptMethod" type="select" label="Method for computing asymptotic covariance matrix ">
39 <option value="nlme" selected="true">nlme</option>
40 <option value="optim">optim</option>
41 </param>
42 </when>
43 </conditional>
44 -->
45 </inputs>
46
47 <configfiles>
48 <configfile name="script_file">
49 ## Setup R error handling to go to stderr
50 options( show.error.messages=F,
51 error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) },
52 warn = -1 )
53 suppressPackageStartupMessages(library('RHmm'))
54
55 #if str($header) == "yes"
56 inp = read.table( "${input.file_name}", header=T )
57 #else
58 inp = read.table( "${input.file_name}", header=F )
59 #end if
60
61 samp_numbers = unique(inp[, ${samp_col}])
62
63 if (length(samp_numbers) == 1){
64 samp_list = inp[,c(${var_cols})]
65 } else {
66 samp_list=list()
67 for (i in 1:length(samp_numbers)) {
68 samp_list[[i]] = inp[(inp[,${samp_col}] == samp_numbers[i]),c(${var_cols})]
69 }
70 }
71
72 nStates = ${nStates}
73 dis = "$disChoice['dis']"
74 nMixt = 0
75
76 #if $disChoice['dis'] == "MIXTURE"
77 nMixt = ${disChoice.nMixt}
78 #end if
79
80 ##asymptCov = $asymptChoice['asymptCov']
81 asymptCov = "FALSE"
82 asymptMethod = "nlme"
83
84 ##if (asymptCov == "TRUE") {
85 ## asymptMethod = "${asymptChoice.asymptMethod}"
86 ##}
87
88 #if $disChoice['dis'] == "MIXTURE"
89 if (asymptCov == "TRUE") {
90 myfit = HMMFit(samp_list, nStates=nStates, dis=dis, nMixt=nMixt, asymptCov=asymptCov, asymptMethod=asymptMethod)
91 } else {
92 myfit = HMMFit(samp_list, nStates=nStates, dis=dis, nMixt=nMixt)
93 }
94 #else
95 if (asymptCov == "TRUE") {
96 myfit = HMMFit(samp_list, nStates=nStates, dis=dis, asymptCov=asymptCov, asymptMethod=asymptMethod)
97 } else {
98 myfit = HMMFit(samp_list, nStates=nStates, dis=dis)
99 }
100 #end if
101
102 myfittxt=capture.output(myfit)
103 cat(myfittxt,file="${out_file1}",sep="\n")
104
105
106 samp_list_stateSol = list()
107 if (length(samp_numbers) == 1){
108 samp_list_stateSol[[1]]=unlist(viterbi(myfit, samp_list)["states"])
109 } else {
110 for (i in 1:length(samp_numbers)) {
111 samp_list_stateSol[[i]]=unlist(viterbi(myfit, samp_list[[i]])["states"])
112 }
113 }
114 inp_stateSol=cbind(inp,unlist(samp_list_stateSol))
115 write.table(inp_stateSol,file="${out_file2}",sep="\t",row.names=F,col.names=F,quote=F)
116
117 </configfile>
118 </configfiles>
119
120 <outputs>
121 <data format="txt" name="out_file1" />
122 <data format="input" name="out_file2" />
123 </outputs>
124
125 <requirements>
126 <requirement type="set_environment">R_SCRIPT_PATH</requirement>
127 <requirement type="package" version="2.15.0">R</requirement>
128 </requirements>
129
130 <help>
131
132 .. class:: infomark
133
134 **What it does**
135
136 This tool uses the 'HMMFit' and 'viterbi' functions from 'RHmm' library from R statistical package to fit an Hidden Markov Model using Baum-Welch algorithm, and calculate the optimal hidden states sequence using Viterbi's algorithm.
137
138 It returns two outputs - one containing summary statistics for HMMFit, and the other containing state numbers appended as a new column to the input data.
139
140 *Ollivier TARAMASCO and Sebastian Bauer (2010). RHmm: Hidden Markov Models simulations and estimations. R package version 1.4.4. http://CRAN.R-project.org/package=RHmm.*
141
142 -----
143
144 .. class:: warningmark
145
146 **Note**
147
148 The tool fails if any of the observation columns contain non-numeric data.
149
150
151 </help>
152 </tool>