Mercurial > repos > imgteam > 2d_auto_threshold
comparison auto_threshold.py @ 5:7db4fc31dbee draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/2d_auto_threshold/ commit 8b9f24cbfaf54f140705f0bf4b6732269bd401da
author | imgteam |
---|---|
date | Mon, 11 Mar 2024 17:12:33 +0000 |
parents | 0c777d708acc |
children | 8bccb36e055a |
comparison
equal
deleted
inserted
replaced
4:3df9f0a4bf34 | 5:7db4fc31dbee |
---|---|
1 """ | 1 """ |
2 Copyright 2017-2022 Biomedical Computer Vision Group, Heidelberg University. | 2 Copyright 2017-2024 Biomedical Computer Vision Group, Heidelberg University. |
3 | 3 |
4 Distributed under the MIT license. | 4 Distributed under the MIT license. |
5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
6 | |
7 """ | 6 """ |
8 | 7 |
9 import argparse | 8 import argparse |
10 | 9 |
10 import numpy as np | |
11 import skimage.filters | 11 import skimage.filters |
12 import skimage.io | 12 import skimage.io |
13 import skimage.util | 13 import skimage.util |
14 import tifffile | 14 import tifffile |
15 | 15 |
16 thOptions = { | 16 th_methods = { |
17 'otsu': lambda img_raw, bz: skimage.filters.threshold_otsu(img_raw), | 17 'manual': lambda thres, **kwargs: thres, |
18 'li': lambda img_raw, bz: skimage.filters.threshold_li(img_raw), | |
19 'yen': lambda img_raw, bz: skimage.filters.threshold_yen(img_raw), | |
20 'isodata': lambda img_raw, bz: skimage.filters.threshold_isodata(img_raw), | |
21 | 18 |
22 'loc_gaussian': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='gaussian'), | 19 'otsu': lambda img_raw, **kwargs: skimage.filters.threshold_otsu(img_raw), |
23 'loc_median': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='median'), | 20 'li': lambda img_raw, **kwargs: skimage.filters.threshold_li(img_raw), |
24 'loc_mean': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='mean') | 21 'yen': lambda img_raw, **kwargs: skimage.filters.threshold_yen(img_raw), |
22 'isodata': lambda img_raw, **kwargs: skimage.filters.threshold_isodata(img_raw), | |
23 | |
24 'loc_gaussian': lambda img_raw, bz, **kwargs: skimage.filters.threshold_local(img_raw, bz, method='gaussian'), | |
25 'loc_median': lambda img_raw, bz, **kwargs: skimage.filters.threshold_local(img_raw, bz, method='median'), | |
26 'loc_mean': lambda img_raw, bz, **kwargs: skimage.filters.threshold_local(img_raw, bz, method='mean') | |
25 } | 27 } |
26 | 28 |
27 | 29 |
28 def auto_thresholding(in_fn, out_fn, th_method, block_size=5, dark_bg=True): | 30 def do_thresholding(in_fn, out_fn, th_method, block_size=5, threshold=0, invert_output=False): |
29 img = skimage.io.imread(in_fn) | 31 img = skimage.io.imread(in_fn) |
30 th = thOptions[th_method](img, block_size) | 32 th = th_methods[th_method](img_raw=img, bz=block_size, thres=threshold) |
31 if dark_bg: | 33 res = img > th |
32 res = img > th | 34 if invert_output: |
33 else: | 35 res = np.logical_not(res) |
34 res = img <= th | |
35 tifffile.imwrite(out_fn, skimage.util.img_as_ubyte(res)) | 36 tifffile.imwrite(out_fn, skimage.util.img_as_ubyte(res)) |
36 | 37 |
37 | 38 |
38 if __name__ == "__main__": | 39 if __name__ == "__main__": |
39 parser = argparse.ArgumentParser(description='Automatic Image Thresholding') | 40 parser = argparse.ArgumentParser(description='Automatic Image Thresholding') |
40 parser.add_argument('im_in', help='Path to the input image') | 41 parser.add_argument('im_in', help='Path to the input image') |
41 parser.add_argument('im_out', help='Path to the output image (TIFF)') | 42 parser.add_argument('im_out', help='Path to the output image (TIFF)') |
42 parser.add_argument('th_method', choices=thOptions.keys(), help='Thresholding method') | 43 parser.add_argument('th_method', choices=th_methods.keys(), help='Thresholding method') |
43 parser.add_argument('block_size', type=int, default=5, help='Odd size of pixel neighborhood for calculating the threshold') | 44 parser.add_argument('block_size', type=int, default=5, help='Odd size of pixel neighborhood for calculating the threshold') |
44 parser.add_argument('dark_bg', default=True, type=bool, help='True if background is dark') | 45 parser.add_argument('threshold', type=float, default=0, help='Manual thresholding value') |
46 parser.add_argument('invert_output', default=False, type=bool, help='Values below/above the threshold are labeled with 0/255 if False, and with 255/0 otherwise') | |
45 args = parser.parse_args() | 47 args = parser.parse_args() |
46 | 48 |
47 auto_thresholding(args.im_in, args.im_out, args.th_method, args.block_size, args.dark_bg) | 49 do_thresholding(args.im_in, args.im_out, args.th_method, args.block_size, args.threshold, args.invert_output) |