Mercurial > repos > imgteam > 2d_auto_threshold
view auto_threshold.py @ 3:0c777d708acc draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/2d_auto_threshold/ commit b1b3c63ab021aa77875c3b04127f6836024812f9"
author | imgteam |
---|---|
date | Sat, 19 Feb 2022 15:17:40 +0000 |
parents | 81f0cbca04a7 |
children | 7db4fc31dbee |
line wrap: on
line source
""" Copyright 2017-2022 Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import skimage.filters import skimage.io import skimage.util import tifffile thOptions = { 'otsu': lambda img_raw, bz: skimage.filters.threshold_otsu(img_raw), 'li': lambda img_raw, bz: skimage.filters.threshold_li(img_raw), 'yen': lambda img_raw, bz: skimage.filters.threshold_yen(img_raw), 'isodata': lambda img_raw, bz: skimage.filters.threshold_isodata(img_raw), 'loc_gaussian': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='gaussian'), 'loc_median': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='median'), 'loc_mean': lambda img_raw, bz: skimage.filters.threshold_local(img_raw, bz, method='mean') } def auto_thresholding(in_fn, out_fn, th_method, block_size=5, dark_bg=True): img = skimage.io.imread(in_fn) th = thOptions[th_method](img, block_size) if dark_bg: res = img > th else: res = img <= th tifffile.imwrite(out_fn, skimage.util.img_as_ubyte(res)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Automatic Image Thresholding') parser.add_argument('im_in', help='Path to the input image') parser.add_argument('im_out', help='Path to the output image (TIFF)') parser.add_argument('th_method', choices=thOptions.keys(), help='Thresholding method') parser.add_argument('block_size', type=int, default=5, help='Odd size of pixel neighborhood for calculating the threshold') parser.add_argument('dark_bg', default=True, type=bool, help='True if background is dark') args = parser.parse_args() auto_thresholding(args.im_in, args.im_out, args.th_method, args.block_size, args.dark_bg)