Mercurial > repos > imgteam > binary2labelimage
view 2d_split_binaryimage_by_watershed.py @ 5:7f8102bdbfa1 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/binary2labelimage/ commit 48df7d9c58fb88e472caeb4d4a1e14170d79b643
author | imgteam |
---|---|
date | Mon, 12 May 2025 08:15:44 +0000 |
parents | 984358e43242 |
children |
line wrap: on
line source
import argparse import sys import numpy as np import skimage.io import skimage.util from scipy import ndimage as ndi from skimage.feature import peak_local_max from skimage.segmentation import watershed if __name__ == "__main__": parser = argparse.ArgumentParser(description='Split binaryimage by watershed') parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file') parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)') parser.add_argument('min_distance', type=int, default=100, help='Minimum distance to next object') args = parser.parse_args() img_in = skimage.io.imread(args.input_file.name) distance = ndi.distance_transform_edt(img_in) local_max_indices = peak_local_max( distance, min_distance=args.min_distance, labels=img_in, ) local_max_mask = np.zeros(img_in.shape, dtype=bool) local_max_mask[tuple(local_max_indices.T)] = True markers = ndi.label(local_max_mask)[0] res = watershed(-distance, markers, mask=img_in) res = skimage.util.img_as_uint(res) skimage.io.imsave(args.out_file.name, res, plugin="tifffile")