Mercurial > repos > imgteam > imagej2_bunwarpj_elastic_transform
diff imagej2_find_maxima_jython_script.py @ 2:55bf135d6b0c draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 57a0433defa3cbc37ab34fbb0ebcfaeb680db8d5
author | imgteam |
---|---|
date | Sun, 05 Nov 2023 14:26:15 +0000 |
parents | 39b2bc251b2f |
children | f72f8e6787cd |
line wrap: on
line diff
--- a/imagej2_find_maxima_jython_script.py Mon Sep 28 17:00:25 2020 +0000 +++ b/imagej2_find_maxima_jython_script.py Sun Nov 05 14:26:15 2023 +0000 @@ -8,11 +8,11 @@ # provide support for argparse. error_log = sys.argv[-10] input_file = sys.argv[-9] -scale_when_converting = sys.argv[-8] == 'yes' -weighted_rgb_conversions = sys.argv[-7] == 'yes' +scale_when_converting = sys.argv[-8] == "yes" +weighted_rgb_conversions = sys.argv[-7] == "yes" noise_tolerance = int(sys.argv[-6]) output_type = sys.argv[-5] -exclude_edge_maxima = sys.argv[-4] == 'yes' +exclude_edge_maxima = sys.argv[-4] == "yes" light_background = sys.argv[-3] tmp_output_path = sys.argv[-2] output_datatype = sys.argv[-1] @@ -36,19 +36,19 @@ options.append("weighted") # Perform conversion - must happen even if no options are set. IJ.run(input_image_plus_copy, "Conversions...", "%s" % " ".join(options)) -if output_type in ['List', 'Count']: +if output_type in ["List", "Count"]: # W're generating a tabular file for the output. # Set the Find Maxima options. - options = ['noise=%d' % noise_tolerance] - if output_type.find('_') > 0: - output_type_str = 'output=[%s]' % output_type.replace('_', ' ') + options = ["noise=%d" % noise_tolerance] + if output_type.find("_") > 0: + output_type_str = "output=[%s]" % output_type.replace("_", " ") else: - output_type_str = 'output=%s' % output_type + output_type_str = "output=%s" % output_type options.append(output_type_str) if exclude_edge_maxima: - options.append('exclude') + options.append("exclude") if light_background: - options.append('light') + options.append("light") # Run the command. IJ.run(input_image_plus_copy, "Find Maxima...", "%s" % " ".join(options)) results_table = analyzer.getResultsTable() @@ -60,30 +60,32 @@ # may be improperly placed if local maxima are suppressed # by the tolerance. mf = MaximumFinder() - if output_type == 'Single_Points': + if output_type == "Single_Points": output_type_param = mf.SINGLE_POINTS - elif output_type == 'Maxima_Within_Tolerance': + elif output_type == "Maxima_Within_Tolerance": output_type_param = mf.IN_TOLERANCE - elif output_type == 'Segmented_Particles': + elif output_type == "Segmented_Particles": output_type_param = mf.SEGMENTED - elif output_type == 'List': + elif output_type == "List": output_type_param = mf.LIST - elif output_type == 'Count': + elif output_type == "Count": output_type_param = mf.COUNT # Get a new byteProcessor with a normal (uninverted) LUT where # the marked points are set to 255 (Background 0). Pixels outside # of the roi of the input image_processor_copy are not set. No # output image is created for output types POINT_SELECTION, LIST # and COUNT. In these cases findMaxima returns null. - byte_processor = mf.findMaxima(image_processor_copy, - noise_tolerance, - ImageProcessor.NO_THRESHOLD, - output_type_param, - exclude_edge_maxima, - False) + byte_processor = mf.findMaxima( + image_processor_copy, + noise_tolerance, + ImageProcessor.NO_THRESHOLD, + output_type_param, + exclude_edge_maxima, + False, + ) # Invert the image or ROI. byte_processor.invert() - if output_type == 'Segmented_Particles' and not light_background: + if output_type == "Segmented_Particles" and not light_background: # Invert the values in this image's LUT (indexed color model). byte_processor.invertLut() image_plus = ImagePlus("output", byte_processor)