Mercurial > repos > imgteam > projective_transformation
diff projective_transformation.py @ 0:17f5d0c3f8a3 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation/ commit c3f4b766f03770f094fda6bda0a5882c0ebd4581
author | imgteam |
---|---|
date | Sat, 09 Feb 2019 14:44:40 -0500 |
parents | |
children | 974cf4357707 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/projective_transformation.py Sat Feb 09 14:44:40 2019 -0500 @@ -0,0 +1,61 @@ +import skimage.io +from skimage.transform import ProjectiveTransform +from scipy.ndimage import map_coordinates +import numpy as np +import pandas as pd +import argparse +import warnings +import shutil + + +def _stackcopy(a, b): + if a.ndim == 3: + a[:] = b[:, :, np.newaxis] + else: + a[:] = b + + +def warp_coords_batch(coord_map, shape, dtype=np.float64, batch_size=1000000): + rows, cols = shape[0], shape[1] + coords_shape = [len(shape), rows, cols] + if len(shape) == 3: + coords_shape.append(shape[2]) + coords = np.empty(coords_shape, dtype=dtype) + + tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T + + for i in range(0, (tf_coords.shape[0]//batch_size+1)): + tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) + tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) + + _stackcopy(coords[1, ...], tf_coords[0, ...]) + _stackcopy(coords[0, ...], tf_coords[1, ...]) + if len(shape) == 3: + coords[2, ...] = range(shape[2]) + + return coords + + +def transform(moving_image, fixed_image, warp_matrix, out): + moving_image = skimage.io.imread(moving_image) + fixed_image = skimage.io.imread(fixed_image) + warp_matrix = pd.read_csv(warp_matrix, delimiter="\t", header=None) + warp_matrix = np.array(warp_matrix) + + trans = ProjectiveTransform(matrix=warp_matrix) + warped_coords = warp_coords_batch(trans, fixed_image.shape) + t = map_coordinates(moving_image, warped_coords, mode='reflect') + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + skimage.io.imsave(out, t) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Transform the image") + parser.add_argument("fixed_image", help="Paste path to image.png that should be transformed") + parser.add_argument("moving_image", help="Paste path to fixed image.png") + parser.add_argument("warp_matrix", help="Paste path to warp_matrix.csv that should be used for transformation") + parser.add_argument("out", help="Paste path to file in which transformed image should be saved") + args = parser.parse_args() + transform(args.moving_image, args.fixed_image, args.warp_matrix, args.out)