Mercurial > repos > imgteam > projective_transformation
view projective_transformation.py @ 2:1ffdb07020ee draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation/ commit 40b2eeecc9e15be0b710f5e5195ac6f3b3b83c39"
author | imgteam |
---|---|
date | Fri, 14 Jan 2022 03:07:08 +0000 |
parents | 974cf4357707 |
children | be9a815e2240 |
line wrap: on
line source
""" Copyright 2019-2022 Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import imghdr import warnings import numpy as np import pandas as pd import skimage.color import skimage.io import tifffile from scipy.ndimage import map_coordinates from skimage.transform import ProjectiveTransform def _stackcopy(a, b): if a.ndim == 3: a[:] = b[:, :, np.newaxis] else: a[:] = b def warp_coords_batch(coord_map, shape, dtype=np.float64, batch_size=1000000): rows, cols = shape[0], shape[1] coords_shape = [len(shape), rows, cols] if len(shape) == 3: coords_shape.append(shape[2]) coords = np.empty(coords_shape, dtype=dtype) tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T for i in range(0, (tf_coords.shape[0] // batch_size + 1)): tf_coords[batch_size * i:batch_size * (i + 1)] = coord_map(tf_coords[batch_size * i:batch_size * (i + 1)]) tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) _stackcopy(coords[1, ...], tf_coords[0, ...]) _stackcopy(coords[0, ...], tf_coords[1, ...]) if len(shape) == 3: coords[2, ...] = range(shape[2]) return coords def transform(moving_fn, fixed_fn, warp_mat, output_fn): moving = skimage.io.imread(moving_fn) extension = imghdr.what(moving_fn) nDims = len(moving.shape) assert nDims in [2, 3, 4, 5, 6], 'this tool only supports up to 6 dimensions' if moving.shape[-1] in [3, 4] and nDims > 2: isRGB = True moving = np.transpose(moving, (nDims - 1,) + tuple(_ for _ in range(nDims - 1))) else: isRGB = False if nDims > 3 or (nDims == 3 and not isRGB): isMulCh = True else: isMulCh = False fixed = skimage.io.imread(fixed_fn) if fixed.shape[-1] in [3, 4] and len(fixed.shape) > 2: hw_fixed = fixed.shape[-3:-1] else: hw_fixed = fixed.shape[-2:] if isRGB or isMulCh: shapeCh = moving.shape[0:-2] nCh = np.prod(shapeCh) moving = np.reshape(moving, (nCh,) + moving.shape[-2:]) warped_moving = np.zeros((nCh,) + hw_fixed, dtype=moving.dtype) warp_mat = pd.read_csv(warp_mat, delimiter="\t", header=None) warp_mat = np.array(warp_mat) assert warp_mat.shape[0] in [3], 'only 2D image transformaton is supported' trans = ProjectiveTransform(matrix=warp_mat) warped_coords = warp_coords_batch(trans, hw_fixed) if isMulCh or isRGB: for i in range(nCh): warped_moving[i, ...] = map_coordinates(moving[i, ...], warped_coords, cval=0) warped_moving = np.reshape(warped_moving, shapeCh + warped_moving.shape[-2:]) if isRGB: warped_moving = np.transpose(warped_moving, tuple(_ for _ in range(1, nDims)) + (0,)) else: warped_moving = map_coordinates(moving, warped_coords, cval=0) with warnings.catch_warnings(): warnings.simplefilter("ignore") if isMulCh: tifffile.imwrite(output_fn + '.tif', warped_moving, imagej=True, metadata={'mode': 'composite'}) else: skimage.io.imsave(output_fn + '.' + extension, warped_moving) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Transform the image") parser.add_argument("fixed_image", help="Path to the fixed image") parser.add_argument("moving_image", help="Path to the moving image (to be transformed)") parser.add_argument("warp_matrix", help="Path to the transformation matrix") parser.add_argument("warped_image", help="Path to the output (transfirmed moving image)") args = parser.parse_args() transform(args.moving_image, args.fixed_image, args.warp_matrix, args.warped_image)