Mercurial > repos > imgteam > projective_transformation
view projective_transformation.py @ 1:974cf4357707 draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation/ commit 3d389fdec0db29cf6fbd783c0501455bf624fa90"
author | imgteam |
---|---|
date | Wed, 18 Dec 2019 05:03:09 -0500 |
parents | 17f5d0c3f8a3 |
children | 1ffdb07020ee |
line wrap: on
line source
import skimage.io from skimage.transform import ProjectiveTransform from scipy.ndimage import map_coordinates import numpy as np import pandas as pd import argparse import warnings import shutil def _stackcopy(a, b): if a.ndim == 3: a[:] = b[:, :, np.newaxis] else: a[:] = b def warp_coords_batch(coord_map, shape, dtype=np.float64, batch_size=1000000): rows, cols = shape[0], shape[1] coords_shape = [len(shape), rows, cols] if len(shape) == 3: coords_shape.append(shape[2]) coords = np.empty(coords_shape, dtype=dtype) tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T for i in range(0, (tf_coords.shape[0]//batch_size+1)): tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) _stackcopy(coords[1, ...], tf_coords[0, ...]) _stackcopy(coords[0, ...], tf_coords[1, ...]) if len(shape) == 3: coords[2, ...] = range(shape[2]) return coords def transform(moving_image, fixed_image, warp_matrix, out): moving_image = skimage.io.imread(moving_image) fixed_image = skimage.io.imread(fixed_image) warp_matrix = pd.read_csv(warp_matrix, delimiter="\t", header=None) warp_matrix = np.array(warp_matrix) trans = ProjectiveTransform(matrix=warp_matrix) warped_coords = warp_coords_batch(trans, fixed_image.shape) t = map_coordinates(moving_image, warped_coords, mode='reflect') with warnings.catch_warnings(): warnings.simplefilter("ignore") skimage.io.imsave(out, t) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Transform the image") parser.add_argument("fixed_image", help="Paste path to image.png that should be transformed") parser.add_argument("moving_image", help="Paste path to fixed image.png") parser.add_argument("warp_matrix", help="Paste path to warp_matrix.csv that should be used for transformation") parser.add_argument("out", help="Paste path to file in which transformed image should be saved") args = parser.parse_args() transform(args.moving_image, args.fixed_image, args.warp_matrix, args.out)