Mercurial > repos > imgteam > segmetrics
view run-segmetrics.py @ 2:c90b52773d2e draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/segmetrics/ commit fc2ed9f0259912912507567c81241f695dc8c33a
author | imgteam |
---|---|
date | Sat, 08 Oct 2022 19:54:28 +0000 |
parents | 0729657d9e4e |
children | c496306c1cba |
line wrap: on
line source
""" Copyright 2022 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import csv import itertools import pathlib import tempfile import zipfile import numpy as np import segmetrics as sm import skimage.io measures = [ ('dice', 'Dice', sm.regional.Dice()), ('seg', 'SEG', sm.regional.ISBIScore()), ('jc', 'Jaccard coefficient', sm.regional.JaccardSimilarityIndex()), ('ji', 'Jaccard index', sm.regional.JaccardIndex()), ('ri', 'Rand index', sm.regional.RandIndex()), ('ari', 'Adjusted Rand index', sm.regional.AdjustedRandIndex()), ('hsd_sym', 'HSD (sym)', sm.boundary.Hausdorff('sym')), ('hsd_e2a', 'HSD (e2a)', sm.boundary.Hausdorff('e2a')), ('hsd_a2e', 'HSD (a2e)', sm.boundary.Hausdorff('a2e')), ('nsd', 'NSD', sm.boundary.NSD()), ('o_hsd_sym', 'Ob. HSD (sym)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('sym'))), ('o_hsd_e2a', 'Ob. HSD (e2a)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('e2a'))), ('o_hsd_a2e', 'Ob. HSD (a2e)', sm.boundary.ObjectBasedDistance(sm.boundary.Hausdorff('a2e'))), ('o_nsd', 'Ob. NSD', sm.boundary.ObjectBasedDistance(sm.boundary.NSD())), ('fs', 'Split', sm.detection.FalseSplit()), ('fm', 'Merge', sm.detection.FalseMerge()), ('fp', 'Spurious', sm.detection.FalsePositive()), ('fn', 'Missing', sm.detection.FalseNegative()), ] def process_batch(study, gt_filelist, seg_filelist, namelist, gt_is_unique, seg_is_unique): for gt_filename, seg_filename, name in zip(gt_filelist, seg_filelist, namelist): img_ref = skimage.io.imread(gt_filename) img_seg = skimage.io.imread(seg_filename) study.set_expected(img_ref, unique=gt_is_unique) study.process(img_seg, unique=seg_is_unique, chunk_id=name) def aggregate(measure, values): fnc = np.sum if measure.ACCUMULATIVE else np.mean return fnc(values) def is_zip_filepath(filepath): return filepath.lower().endswith('.zip') def is_image_filepath(filepath): suffixes = ['png', 'tif', 'tiff'] return any((filepath.lower().endswith(f'.{suffix}') for suffix in suffixes)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Image segmentation and object detection performance measures for 2-D image data') parser.add_argument('input_seg', help='Path to the segmented image or image archive (ZIP)') parser.add_argument('input_gt', help='Path to the ground truth image or image archive (ZIP)') parser.add_argument('results', help='Path to the results file (CSV)') parser.add_argument('-unzip', action='store_true') parser.add_argument('-seg_unique', action='store_true') parser.add_argument('-gt_unique', action='store_true') for measure in measures: parser.add_argument(f'-measure-{measure[0]}', action='store_true', help=f'Include {measure[1]}') args = parser.parse_args() study = sm.study.Study() used_measures = [] for measure in measures: if getattr(args, f'measure_{measure[0]}'): used_measures.append(measure) study.add_measure(measure[2], measure[1]) if args.unzip: zipfile_seg = zipfile.ZipFile(args.input_seg) zipfile_gt = zipfile.ZipFile(args.input_gt) namelist = [filepath for filepath in zipfile_seg.namelist() if is_image_filepath(filepath) and filepath in zipfile_gt.namelist()] print('namelist:', namelist) with tempfile.TemporaryDirectory() as tmpdir: basepath = pathlib.Path(tmpdir) gt_path, seg_path = basepath / 'gt', basepath / 'seg' zipfile_seg.extractall(str(seg_path)) zipfile_gt.extractall(str(gt_path)) gt_filelist, seg_filelist = list(), list() for filepath in namelist: seg_filelist.append(str(seg_path / filepath)) gt_filelist.append(str(gt_path / filepath)) process_batch(study, gt_filelist, seg_filelist, namelist, args.gt_unique, args.seg_unique) else: namelist = [''] process_batch(study, [args.input_gt], [args.input_seg], namelist, args.gt_unique, args.seg_unique) # define header rows = [[''] + [measure[1] for measure in used_measures]] # define rows if len(namelist) > 1: for chunk_id in namelist: row = [chunk_id] for measure in used_measures: measure_name = measure[1] measure = study.measures[measure_name] chunks = study.results[measure_name] row += [aggregate(measure, chunks[chunk_id])] rows.append(row) # define footer rows.append(['']) for measure in used_measures: measure_name = measure[1] measure = study.measures[measure_name] chunks = study.results[measure_name] values = list(itertools.chain(*[chunks[chunk_id] for chunk_id in chunks])) val = aggregate(measure, values) rows[-1].append(val) # write results with open(args.results, 'w', newline='') as fout: csv_writer = csv.writer(fout, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in rows: csv_writer.writerow(row)