Mercurial > repos > imgteam > slice_image
view slice_image.py @ 3:1faa7e3c94ff draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/slice_image/ commit c045f067a57e8308308cf6329060c7ccd3fc372f
author | imgteam |
---|---|
date | Thu, 04 Apr 2024 15:26:38 +0000 |
parents | f312d414f234 |
children | a72590196440 |
line wrap: on
line source
import argparse import os.path import random import warnings import numpy as np import skimage.feature import skimage.io import skimage.util def slice_image(input_file, out_folder, window_size=64, stride=1, bg_thresh=1, limit_slices=False, n_thresh=5000, seed=None): # Primarily for testing purposes if seed is not None: random.seed(seed) img_raw = skimage.io.imread(input_file) if len(img_raw.shape) == 2: img_raw = np.expand_dims(img_raw, 3) with warnings.catch_warnings(): # ignore FutureWarning warnings.simplefilter("ignore") patches_raw = skimage.util.view_as_windows(img_raw, (window_size, window_size, img_raw.shape[2]), step=stride) patches_raw = patches_raw.reshape([-1, window_size, window_size, img_raw.shape[2]]) new_path = os.path.join(out_folder, "%d.tiff") # samples for thresholding the amount of slices sample = random.sample(range(patches_raw.shape[0]), n_thresh) for i in range(0, patches_raw.shape[0]): # TODO improve sum_image = np.sum(patches_raw[i], 2) / img_raw.shape[2] if bg_thresh > 0: sum_image = skimage.util.img_as_uint(sum_image) g = skimage.feature.greycomatrix(sum_image, [1, 2], [0, np.pi / 2], nnormed=True, symmetric=True) hom = np.var(skimage.feature.greycoprops(g, prop='homogeneity')) if hom > bg_thresh: continue if limit_slices: if i in sample: res = skimage.util.img_as_uint(patches_raw[i]) # Attention: precision loss skimage.io.imsave(new_path % i, res, plugin='tifffile') else: res = skimage.util.img_as_uint(patches_raw[i]) # Attention: precision loss skimage.io.imsave(new_path % i, res, plugin='tifffile') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('input_file', type=argparse.FileType('r'), help='Input file') parser.add_argument('out_folder', help='Output directory') parser.add_argument('--stride', dest='stride', type=int, default=1, help='Applied stride') parser.add_argument('--window_size', dest='window_size', type=int, default=64, help='Size of resulting patches') parser.add_argument('--bg_thresh', dest='bg_thresh', type=float, default=0, help='Skip background patches without information using a treshold') parser.add_argument('--n_thresh', dest='n_thresh', type=int, default=5000, help='Maximum number of slices to retain') parser.add_argument('--seed', dest='seed', type=int, default=None, help='Seed for random choice of slices') args = parser.parse_args() slice_image( args.input_file.name, args.out_folder, stride=args.stride, window_size=args.window_size, bg_thresh=args.bg_thresh, limit_slices=args.n_thresh > 0, n_thresh=args.n_thresh, seed=args.seed, )