Mercurial > repos > immport-devteam > run_flock
view runFlockMFI.py @ 2:b6b4d08b6858 draft default tip
"planemo upload for repository https://github.com/ImmPortDB/immport-galaxy-tools/tree/master/flowtools/run_flock commit 7e94637827c3637229f3b568fa7f9d38428d6607"
author | azomics |
---|---|
date | Fri, 17 Jul 2020 09:06:54 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python ###################################################################### # Copyright (c) 2016 Northrop Grumman. # All rights reserved. ###################################################################### # version 2 import sys import os from argparse import ArgumentParser import pandas as pd from scipy.stats import gmean def run_FLOCK(input_file, method, bins, density, output_file, mfi_file, mfi_calc, profile): run_command = method + " " + input_file if bins: run_command += " " + bins if density: run_command += " " + density os.system(run_command) move_command = "mv flock_results.txt " + output_file os.system(move_command) # Here add some way to calculate the count and tack it on to profile file. flockdf = pd.read_table(output_file) if mfi_calc == "mfi": MFIs = flockdf.groupby('Population').mean().round(decimals=2) elif mfi_calc == "gmfi": MFIs = flockdf.groupby('Population').agg(lambda x: gmean(list(x))).round(decimals=2) else: MFIs = flockdf.groupby('Population').median().round(decimals=2) with open(mfi_file, "w") as outf: MFIs.to_csv(outf, sep="\t", float_format='%.0f') (events, columns) = flockdf.shape fstats = {} fstats['population'] = flockdf.iloc[:, -1:].iloc[:, 0] fstats['population_freq'] = fstats['population'].value_counts() fstats['population_freq_sort'] = fstats['population_freq'].sort_index() fstats['population_per'] = (fstats['population'].value_counts(normalize=True) * 100).round(decimals=2) fstats['population_per_sort'] = fstats['population_per'].sort_index() fstats['population_all'] = pd.concat([fstats['population_freq_sort'], fstats['population_per_sort']], axis=1) fstats['population_all'].columns = ['Count', 'Percentage'] fstats['population_all']['Population_ID'] = fstats['population_all'].index flock_profile = pd.read_table('profile.txt') profile_pop = flock_profile.merge(fstats['population_all'], on='Population_ID') profile_pop.to_csv(profile, sep="\t", float_format='%.2f', index=False) # get_profile = "mv profile.txt " + profile # os.system(get_profile) return if __name__ == "__main__": parser = ArgumentParser( prog="runFlockMFI", description="Run Flock on text file and generate centroid file") parser.add_argument( '-i', dest="input_file", required=True, help="File location for the FCS file.") parser.add_argument( '-m', dest="method", required=True, help="Run flock1 or flock2.") parser.add_argument( '-M', dest="mfi_calc", required=True, help="what to calculate for centroids.") parser.add_argument( '-b', dest="bins", required=False, help="Number of Bins.") parser.add_argument( '-d', dest="density", required=False, help="Density.") parser.add_argument( '-o', dest="output_file", required=True, help="File location for the output file.") parser.add_argument( '-c', dest="centroids", required=True, help="File location for the output centroid file.") parser.add_argument( '-p', dest="profile", required=True, help="File location for the output profile file.") args = parser.parse_args() run_FLOCK(args.input_file, args.method, args.bins, args.density, args.output_file, args.centroids, args.mfi_calc, args.profile)