Mercurial > repos > iss > eurl_vtec_wgs_pt
view scripts/ReMatCh/rematch.py @ 6:20ff3dca457f draft default tip
planemo upload commit 6857c749c21f580c828aba3543e294b69d32b662
author | iss |
---|---|
date | Mon, 23 Oct 2023 11:45:36 +0000 |
parents | c6bab5103a14 |
children |
line wrap: on
line source
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ rematch.py - Reads mapping against target sequences, checking mapping and consensus sequences production <https://github.com/B-UMMI/ReMatCh/> Copyright (C) 2019 Miguel Machado <mpmachado@medicina.ulisboa.pt> Last modified: August 08, 2019 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import os import sys import time import argparse try: from __init__ import __version__ import modules.utils as utils import modules.seqFromWebTaxon as seq_from_web_taxon import modules.download as download import modules.rematch_module as rematch_module import modules.checkMLST as check_mlst except ImportError: from ReMatCh.__init__ import __version__ from ReMatCh.modules import utils as utils from ReMatCh.modules import seqFromWebTaxon as seq_from_web_taxon from ReMatCh.modules import download as download from ReMatCh.modules import rematch_module as rematch_module from ReMatCh.modules import checkMLST as check_mlst def search_fastq_files(directory): files_extensions = ['.fastq.gz', '.fq.gz'] pair_end_files_separation = [['_R1_001.f', '_R2_001.f'], ['_1.f', '_2.f']] list_ids = {} directories = [d for d in os.listdir(directory) if not d.startswith('.') and os.path.isdir(os.path.join(directory, d, ''))] for directory_found in directories: if directory_found != 'pubmlst': directory_path = os.path.join(directory, directory_found, '') fastq_found = [] files = [f for f in os.listdir(directory_path) if not f.startswith('.') and os.path.isfile(os.path.join(directory_path, f))] for file_found in files: if file_found.endswith(tuple(files_extensions)): fastq_found.append(file_found) if len(fastq_found) == 1: list_ids[directory_found] = [os.path.join(directory_path, f) for f in fastq_found] elif len(fastq_found) >= 2: file_pair = [] # Search pairs for pe_separation in pair_end_files_separation: for fastq in fastq_found: if pe_separation[0] in fastq or pe_separation[1] in fastq: file_pair.append(fastq) if len(file_pair) == 2: break else: file_pair = [] # Search single if len(file_pair) == 0: for pe_separation in pair_end_files_separation: for fastq in fastq_found: if pe_separation[0] not in fastq or pe_separation[1] not in fastq: file_pair.append(fastq) if len(file_pair) >= 1: file_pair = file_pair[0] if len(file_pair) >= 1: list_ids[directory_found] = [os.path.join(directory_path, f) for f in file_pair] return list_ids def get_list_ids_from_file(file_list_ids): list_ids = [] with open(file_list_ids, 'rtU') as lines: for line in lines: line = line.rstrip('\r\n') if len(line) > 0: list_ids.append(line) if len(list_ids) == 0: sys.exit('No runIDs were found in ' + file_list_ids) return list_ids def get_taxon_run_ids(taxon_name, outputfile): seq_from_web_taxon.run_seq_from_web_taxon(taxon_name, outputfile, True, True, True, False) run_ids = [] with open(outputfile, 'rtU') as reader: for line in reader: line = line.rstrip('\r\n') if len(line) > 0: if not line.startswith('#'): line = line.split('\t') run_ids.append(line[0]) return run_ids def get_list_ids(workdir, file_list_ids, taxon_name): searched_fastq_files = False list_ids = [] if file_list_ids is None and taxon_name is None: list_ids = search_fastq_files(workdir) searched_fastq_files = True elif file_list_ids is not None: list_ids = get_list_ids_from_file(os.path.abspath(file_list_ids)) elif taxon_name is not None and file_list_ids is None: list_ids = get_taxon_run_ids(taxon_name, os.path.join(workdir, 'IDs_list.seqFromWebTaxon.tab')) if len(list_ids) == 0: sys.exit('No IDs were found') return list_ids, searched_fastq_files def format_gene_info(gene_specific_info, minimum_gene_coverage, minimum_gene_identity, reported_data_type, summary, sample, genes_present): info = None if gene_specific_info['gene_coverage'] >= minimum_gene_coverage and \ gene_specific_info['gene_identity'] >= minimum_gene_identity: if summary and sample not in genes_present: genes_present[sample] = {} if gene_specific_info['gene_number_positions_multiple_alleles'] == 0: s = str(gene_specific_info[reported_data_type]) info = str(s) if summary: genes_present[sample][gene_specific_info['header']] = str(s) else: s = 'multiAlleles_' + str(gene_specific_info[reported_data_type]) info = str(s) if summary: genes_present[sample][gene_specific_info['header']] = str(s) else: info = 'absent_' + str(gene_specific_info[reported_data_type]) return info, genes_present def write_data_by_gene(gene_list_reference, minimum_gene_coverage, sample, data_by_gene, outdir, time_str, run_times, minimum_gene_identity, reported_data_type, summary, genes_present): combined_report = \ os.path.join(outdir, 'combined_report.data_by_gene.' + run_times + '.' + reported_data_type + '.' + time_str + '.tab') if reported_data_type == 'coverage_depth': reported_data_type = 'gene_mean_read_coverage' elif reported_data_type == 'sequence_coverage': reported_data_type = 'gene_coverage' combined_report_exist = os.path.isfile(combined_report) with open(combined_report, 'at') as writer: seq_list = sorted(gene_list_reference.keys()) if not combined_report_exist: writer.write('#sample' + '\t' + '\t'.join([gene_list_reference[seq] for seq in seq_list]) + '\n') results = {} headers = [] for i in data_by_gene: results[data_by_gene[i]['header']], genes_present = format_gene_info(data_by_gene[i], minimum_gene_coverage, minimum_gene_identity, reported_data_type, summary, sample, genes_present) headers.append(data_by_gene[i]['header']) if len(headers) != gene_list_reference: for gene in gene_list_reference: if gene not in headers: results[gene] = 'NA' writer.write(sample + '\t' + '\t'.join([results[seq] for seq in seq_list]) + '\n') return genes_present def write_sample_report(sample, outdir, time_str, file_size, run_successfully_fastq, run_successfully_rematch_first, run_successfully_rematch_second, time_taken_fastq, time_taken_rematch_first, time_taken_rematch_second, time_taken_sample, sequencing_information, sample_data_general_first, sample_data_general_second, fastq_used): sample_report = os.path.join(outdir, 'sample_report.' + time_str + '.tab') report_exist = os.path.isfile(sample_report) header_general = ['sample', 'sample_run_successfully', 'sample_run_time', 'files_size', 'download_run_successfully', 'download_run_time', 'rematch_run_successfully_first', 'rematch_run_time_first', 'rematch_run_successfully_second', 'rematch_run_time_second'] header_data_general = ['number_absent_genes', 'number_genes_multiple_alleles', 'mean_sample_coverage'] header_sequencing = ['run_accession', 'instrument_platform', 'instrument_model', 'library_layout', 'library_source', 'extra_run_accession', 'nominal_length', 'read_count', 'base_count', 'date_download'] with open(sample_report, 'at') as writer: if not report_exist: writer.write('#' + '\t'.join(header_general) + '\t' + '_first\t'.join(header_data_general) + '_first\t' + '_second\t'.join(header_data_general) + '_second\t' + '\t'.join(header_sequencing) + '\t' + 'fastq_used' + '\n') writer.write('\t'.join([sample, str(all([run_successfully_fastq is not False, run_successfully_rematch_first is not False, run_successfully_rematch_second is not False])), str(time_taken_sample), str(file_size), str(run_successfully_fastq), str(time_taken_fastq), str(run_successfully_rematch_first), str(time_taken_rematch_first), str(run_successfully_rematch_second), str(time_taken_rematch_second)]) + '\t' + '\t'.join([str(sample_data_general_first[i]) for i in header_data_general]) + '\t' + '\t'.join([str(sample_data_general_second[i]) for i in header_data_general]) + '\t' + '\t'.join([str(sequencing_information[i]) for i in header_sequencing]) + '\t' + ','.join(fastq_used) + '\n') def concatenate_extra_seq_2_consensus(consensus_sequence, reference_sequence, extra_seq_length, outdir): reference_dict, ignore, ignore = rematch_module.get_sequence_information(reference_sequence, extra_seq_length) consensus_dict, genes, ignore = rematch_module.get_sequence_information(consensus_sequence, 0) number_consensus_with_sequences = 0 for k, values_consensus in list(consensus_dict.items()): for values_reference in list(reference_dict.values()): if values_reference['header'] == values_consensus['header']: if len(set(consensus_dict[k]['sequence'])) > 1: number_consensus_with_sequences += 1 if extra_seq_length <= len(values_reference['sequence']): right_extra_seq = \ '' if extra_seq_length == 0 else values_reference['sequence'][-extra_seq_length:] consensus_dict[k]['sequence'] = \ values_reference['sequence'][:extra_seq_length] + \ consensus_dict[k]['sequence'] + \ right_extra_seq consensus_dict[k]['length'] += extra_seq_length + len(right_extra_seq) consensus_concatenated = os.path.join(outdir, 'consensus_concatenated_extraSeq.fasta') with open(consensus_concatenated, 'wt') as writer: for i in consensus_dict: writer.write('>' + consensus_dict[i]['header'] + '\n') fasta_sequence_lines = rematch_module.chunkstring(consensus_dict[i]['sequence'], 80) for line in fasta_sequence_lines: writer.write(line + '\n') return consensus_concatenated, genes, consensus_dict, number_consensus_with_sequences def clean_headers_reference_file(reference_file, outdir, extra_seq): problematic_characters = ["|", " ", ",", ".", "(", ")", "'", "/", ":"] print('Checking if reference sequences contain ' + str(problematic_characters) + '\n') # headers_changed = False new_reference_file = str(reference_file) sequences, genes, headers_changed = rematch_module.get_sequence_information(reference_file, extra_seq) if headers_changed: print('At least one of the those characters was found. Replacing those with _' + '\n') new_reference_file = \ os.path.join(outdir, os.path.splitext(os.path.basename(reference_file))[0] + '.headers_renamed.fasta') with open(new_reference_file, 'wt') as writer: for i in sequences: writer.write('>' + sequences[i]['header'] + '\n') fasta_sequence_lines = rematch_module.chunkstring(sequences[i]['sequence'], 80) for line in fasta_sequence_lines: writer.write(line + '\n') return new_reference_file, genes, sequences def write_mlst_report(sample, run_times, consensus_type, st, alleles_profile, loci_order, outdir, time_str): mlst_report = os.path.join(outdir, 'mlst_report.' + time_str + '.tab') mlst_report_exist = os.path.isfile(mlst_report) with open(mlst_report, 'at') as writer: if not mlst_report_exist: writer.write('\t'.join(['#sample', 'ReMatCh_run', 'consensus_type', 'ST'] + loci_order) + '\n') writer.write('\t'.join([sample, run_times, consensus_type, str(st)] + alleles_profile.split(',')) + '\n') def run_get_st(sample, mlst_dicts, consensus_sequences, mlst_consensus, run_times, outdir, time_str): if mlst_consensus == 'all': for consensus_type in consensus_sequences: print('Searching MLST for ' + consensus_type + ' consensus') st, alleles_profile = check_mlst.get_st(mlst_dicts, consensus_sequences[consensus_type]) write_mlst_report(sample, run_times, consensus_type, st, alleles_profile, mlst_dicts[2], outdir, time_str) print('ST found: ' + str(st) + ' (' + alleles_profile + ')') else: st, alleles_profile = check_mlst.get_st(mlst_dicts, consensus_sequences[mlst_consensus]) write_mlst_report(sample, run_times, mlst_consensus, st, alleles_profile, mlst_dicts[2], outdir, time_str) print('ST found for ' + mlst_consensus + ' consensus: ' + str(st) + ' (' + alleles_profile + ')') def write_summary_report(outdir, reported_data_type, time_str, gene_list_reference, genes_present): with open(os.path.join(outdir, 'summary.{reported_data_type}.{time_str}.tab'.format(reported_data_type=reported_data_type, time_str=time_str)), 'wt') as writer: seq_list = [] for info in list(genes_present.values()): seq_list.extend(list(info.keys())) seq_list = list(set(seq_list)) writer.write('#sample' + '\t' + '\t'.join([gene_list_reference[seq] for seq in sorted(seq_list)]) + '\n') for sample, info in list(genes_present.items()): data = [] for seq in sorted(seq_list): if seq in info: data.append(info[seq]) else: data.append('NF') writer.write(sample + '\t' + '\t'.join(data) + '\n') def run_rematch(args): workdir = os.path.abspath(args.workdir) if not os.path.isdir(workdir): os.makedirs(workdir) aspera_key = os.path.abspath(args.asperaKey.name) if args.asperaKey is not None else None # Start logger logfile, time_str = utils.start_logger(workdir) # Get general information script_path = utils.general_information(logfile, __version__, workdir, time_str, args.doNotUseProvidedSoftware, aspera_key, args.downloadCramBam, args.SRA, args.SRAopt) # Set list_ids list_ids, searched_fastq_files = get_list_ids(workdir, args.listIDs.name if args.listIDs is not None else None, args.taxon) mlst_sequences = None mlst_dicts = None if args.mlst is not None: time_taken_pub_mlst, mlst_dicts, mlst_sequences = check_mlst.download_pub_mlst_xml(args.mlst, args.mlstSchemaNumber, workdir) args.softClip_recodeRun = 'first' if args.reference is None: if args.mlst is not None: reference_file = check_mlst.check_existing_schema(args.mlst, args.mlstSchemaNumber, script_path) args.extraSeq = 200 if reference_file is None: print('It was not found provided MLST scheme sequences for ' + args.mlst) print('Trying to obtain reference MLST sequences from PubMLST') if len(mlst_sequences) > 0: reference_file = check_mlst.write_mlst_reference(args.mlst, mlst_sequences, workdir, time_str) args.extraSeq = 0 else: sys.exit('It was not possible to download MLST sequences from PubMLST!') else: print('Using provided scheme as referece: ' + reference_file) else: sys.exit('Need to provide at least one of the following options: "--reference" and "--mlst"') else: reference_file = os.path.abspath(args.reference.name) # Run ReMatCh for each sample print('\n' + 'STARTING ReMatCh' + '\n') # Clean sequences headers reference_file, gene_list_reference, reference_dict = clean_headers_reference_file(reference_file, workdir, args.extraSeq) if args.mlst is not None: problem_genes = False for header in mlst_sequences: if header not in gene_list_reference: print('MLST gene {header} not found between reference sequences'.format(header=header)) problem_genes = True if problem_genes: sys.exit('Missing MLST genes from reference sequences (at least sequences names do not match)!') if len(gene_list_reference) == 0: sys.exit('No sequences left') # To use in combined report number_samples_successfully = 0 genes_present_coverage_depth = {} genes_present_sequence_coverage = {} for sample in list_ids: sample_start_time = time.time() print('\n\n' + 'Sample ID: ' + sample) # Create sample outdir sample_outdir = os.path.join(workdir, sample, '') if not os.path.isdir(sample_outdir): os.mkdir(sample_outdir) run_successfully_fastq = None time_taken_fastq = 0 sequencing_information = {'run_accession': None, 'instrument_platform': None, 'instrument_model': None, 'library_layout': None, 'library_source': None, 'extra_run_accession': None, 'nominal_length': None, 'read_count': None, 'base_count': None, 'date_download': None} if not searched_fastq_files: # Download Files time_taken_fastq, run_successfully_fastq, fastq_files, sequencing_information = \ download.run_download(sample, args.downloadLibrariesType, aspera_key, sample_outdir, args.downloadCramBam, args.threads, args.downloadInstrumentPlatform, args.SRA, args.SRAopt) else: fastq_files = list_ids[sample] file_size = None run_successfully_rematch_first = None run_successfully_rematch_second = None time_taken_rematch_first = 0 time_taken_rematch_second = 0 sample_data_general_first = None sample_data_general_second = None if run_successfully_fastq is not False: file_size = sum(os.path.getsize(fastq) for fastq in fastq_files) # Run ReMatCh time_taken_rematch_first, run_successfully_rematch_first, data_by_gene, sample_data_general_first, \ consensus_files, consensus_sequences = \ rematch_module.run_rematch_module(sample, fastq_files, reference_file, args.threads, sample_outdir, args.extraSeq, args.minCovPresence, args.minCovCall, args.minFrequencyDominantAllele, args.minGeneCoverage, args.debug, args.numMapLoc, args.minGeneIdentity, 'first', args.softClip_baseQuality, args.softClip_recodeRun, reference_dict, args.softClip_cigarFlagRecode, args.bowtieAlgo, args.bowtieOPT, gene_list_reference, args.notWriteConsensus, clean_run=True) if run_successfully_rematch_first: if args.mlst is not None and (args.mlstRun == 'first' or args.mlstRun == 'all'): run_get_st(sample, mlst_dicts, consensus_sequences, args.mlstConsensus, 'first', workdir, time_str) genes_present_coverage_depth = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, data_by_gene, workdir, time_str, 'first_run', args.minGeneIdentity, 'coverage_depth', args.summary, genes_present_coverage_depth) if args.reportSequenceCoverage: genes_present_sequence_coverage = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, data_by_gene, workdir, time_str, 'first_run', args.minGeneIdentity, 'sequence_coverage', args.summary, genes_present_sequence_coverage) if args.doubleRun: rematch_second_outdir = os.path.join(sample_outdir, 'rematch_second_run', '') if not os.path.isdir(rematch_second_outdir): os.mkdir(rematch_second_outdir) consensus_concatenated_fasta, consensus_concatenated_gene_list, consensus_concatenated_dict, \ number_consensus_with_sequences = \ concatenate_extra_seq_2_consensus(consensus_files['noMatter'], reference_file, args.extraSeq, rematch_second_outdir) if len(consensus_concatenated_gene_list) > 0: if args.mlst is None or \ (args.mlst is not None and number_consensus_with_sequences == len(gene_list_reference)): time_taken_rematch_second, run_successfully_rematch_second, data_by_gene, \ sample_data_general_second, consensus_files, consensus_sequences = \ rematch_module.run_rematch_module(sample, fastq_files, consensus_concatenated_fasta, args.threads, rematch_second_outdir, args.extraSeq, args.minCovPresence, args.minCovCall, args.minFrequencyDominantAllele, args.minGeneCoverage, args.debug, args.numMapLoc, args.minGeneIdentity, 'second', args.softClip_baseQuality, args.softClip_recodeRun, consensus_concatenated_dict, args.softClip_cigarFlagRecode, args.bowtieAlgo, args.bowtieOPT, gene_list_reference, args.notWriteConsensus, clean_run=True) if not args.debug: os.remove(consensus_concatenated_fasta) if run_successfully_rematch_second: if args.mlst is not None and (args.mlstRun == 'second' or args.mlstRun == 'all'): run_get_st(sample, mlst_dicts, consensus_sequences, args.mlstConsensus, 'second', workdir, time_str) _ = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, data_by_gene, workdir, time_str, 'second_run', args.minGeneIdentity, 'coverage_depth', False, {}) if args.reportSequenceCoverage: _ = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, data_by_gene, workdir, time_str, 'second_run', args.minGeneIdentity, 'sequence_coverage', False, {}) else: print('Some sequences missing after ReMatCh module first run. Second run will not be' ' performed') if os.path.isfile(consensus_concatenated_fasta): os.remove(consensus_concatenated_fasta) if os.path.isdir(rematch_second_outdir): utils.remove_directory(rematch_second_outdir) else: print('No sequences left after ReMatCh module first run. Second run will not be performed') if os.path.isfile(consensus_concatenated_fasta): os.remove(consensus_concatenated_fasta) if os.path.isdir(rematch_second_outdir): utils.remove_directory(rematch_second_outdir) if not searched_fastq_files and not args.keepDownloadedFastq and fastq_files is not None: for fastq in fastq_files: if os.path.isfile(fastq): os.remove(fastq) time_taken = utils.run_time(sample_start_time) write_sample_report(sample, workdir, time_str, file_size, run_successfully_fastq, run_successfully_rematch_first, run_successfully_rematch_second, time_taken_fastq, time_taken_rematch_first, time_taken_rematch_second, time_taken, sequencing_information, sample_data_general_first if run_successfully_rematch_first else {'number_absent_genes': None, 'number_genes_multiple_alleles': None, 'mean_sample_coverage': None}, sample_data_general_second if run_successfully_rematch_second else {'number_absent_genes': None, 'number_genes_multiple_alleles': None, 'mean_sample_coverage': None}, fastq_files if fastq_files is not None else '') if all([run_successfully_fastq is not False, run_successfully_rematch_first is not False, run_successfully_rematch_second is not False]): number_samples_successfully += 1 if args.summary: write_summary_report(workdir, 'coverage_depth', time_str, gene_list_reference, genes_present_coverage_depth) if args.reportSequenceCoverage: write_summary_report(workdir, 'sequence_coverage', time_str, gene_list_reference, genes_present_sequence_coverage) return number_samples_successfully, len(list_ids) def main(): if sys.version_info[0] < 3: sys.exit('Must be using Python 3. Try calling "python3 rematch.py"') parser = argparse.ArgumentParser(prog='rematch.py', description='Reads mapping against target sequences, checking mapping and' ' consensus sequences production', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--version', help='Version information', action='version', version='{prog} v{version}'.format(prog=parser.prog, version=__version__)) parser_optional_general = parser.add_argument_group('General facultative options') parser_optional_general.add_argument('-r', '--reference', type=argparse.FileType('r'), metavar='/path/to/reference_sequence.fasta', help='Fasta file containing reference sequences', required=False) parser_optional_general.add_argument('-w', '--workdir', type=str, metavar='/path/to/workdir/directory/', help='Path to the directory where ReMatCh will run and produce the outputs' ' with reads (ended with fastq.gz/fq.gz and, in case of PE data, pair-end' ' direction coded as _R1_001 / _R2_001 or _1 / _2) already' ' present (organized in sample folders) or to be downloaded', required=False, default='.') parser_optional_general.add_argument('-j', '--threads', type=int, metavar='N', help='Number of threads to use', required=False, default=1) parser_optional_general.add_argument('--mlst', type=str, metavar='"Streptococcus agalactiae"', help='Species name (same as in PubMLST) to be used in MLST' ' determination. ReMatCh will use Bowtie2 very-sensitive-local mapping' ' parameters and will recode the soft clip CIGAR flags of the first run', required=False) parser_optional_general.add_argument('--doNotUseProvidedSoftware', action='store_true', help='Tells ReMatCh to not use Bowtie2, Samtools and Bcftools that are' ' provided with it') parser_optional_download_exclusive = parser.add_mutually_exclusive_group() parser_optional_download_exclusive.add_argument('-l', '--listIDs', type=argparse.FileType('r'), metavar='/path/to/list_IDs.txt', help='Path to list containing the IDs to be' ' downloaded (one per line)', required=False) parser_optional_download_exclusive.add_argument('-t', '--taxon', type=str, metavar='"Streptococcus agalactiae"', help='Taxon name for which ReMatCh will download fastq files', required=False) parser_optional_rematch = parser.add_argument_group('ReMatCh module facultative options') parser_optional_rematch.add_argument('--extraSeq', type=int, metavar='N', help='Sequence length added to both ends of target sequences (usefull to' ' improve reads mapping to the target one) that will be trimmed in' ' ReMatCh outputs', required=False, default=0) parser_optional_rematch.add_argument('--minCovPresence', type=int, metavar='N', help='Reference position minimum coverage depth to consider the position to be' ' present in the sample', required=False, default=5) parser_optional_rematch.add_argument('--minCovCall', type=int, metavar='N', help='Reference position minimum coverage depth to perform a base call. Lower' ' coverage will be coded as N', required=False, default=10) parser_optional_rematch.add_argument('--minFrequencyDominantAllele', type=float, metavar='0.6', help='Minimum relative frequency of the dominant allele coverage depth (value' ' between [0, 1]). Positions with lower values will be considered as' ' having multiple alleles (and will be coded as N)', required=False, default=0.6) parser_optional_rematch.add_argument('--minGeneCoverage', type=int, metavar='N', help='Minimum percentage of target reference gene sequence covered' ' by --minCovPresence to consider a gene to be present (value' ' between [0, 100])', required=False, default=70) parser_optional_rematch.add_argument('--minGeneIdentity', type=int, metavar='N', help='Minimum percentage of identity of reference gene sequence covered' ' by --minCovCall to consider a gene to be present (value' ' between [0, 100]). One INDEL will be considered as one difference', required=False, default=80) parser_optional_rematch.add_argument('--numMapLoc', type=int, metavar='N', help=argparse.SUPPRESS, required=False, default=1) # parser_optional_rematch.add_argument('--numMapLoc', type=int, metavar='N', help='Maximum number of locations to which a read can map (sometimes useful when mapping against similar sequences)', required=False, default=1) parser_optional_rematch.add_argument('--doubleRun', action='store_true', help='Tells ReMatCh to run a second time using as reference the noMatter' ' consensus sequence produced in the first run. This will improve' ' consensus sequence determination for sequences with high percentage of' ' target reference gene sequence covered') parser_optional_rematch.add_argument('--reportSequenceCoverage', action='store_true', help='Produce an extra combined_report.data_by_gene with the sequence coverage' ' instead of coverage depth') parser_optional_rematch.add_argument('--summary', action='store_true', help='Produce extra report files containing only sequences present in at least' ' one sample (usefull when using a large number of reference' ' sequences, and only for first run)') parser_optional_rematch.add_argument('--notWriteConsensus', action='store_true', help='Do not write consensus sequences') parser_optional_rematch.add_argument('--bowtieAlgo', type=str, metavar='"--very-sensitive-local"', help='Bowtie2 alignment mode. It can be an end-to-end alignment (unclipped' ' alignment) or local alignment (soft clipped alignment). Also, can' ' choose between fast or sensitive alignments. Please check Bowtie2' ' manual for extra' ' information: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml .' ' This option should be provided between quotes and starting with' ' an empty space (like --bowtieAlgo " --very-fast") or using equal' ' sign (like --bowtieAlgo="--very-fast")', required=False, default='--very-sensitive-local') parser_optional_rematch.add_argument('--bowtieOPT', type=str, metavar='"--no-mixed"', help='Extra Bowtie2 options. This option should be provided between quotes and' ' starting with an empty space (like --bowtieOPT " --no-mixed") or using' ' equal sign (like --bowtieOPT="--no-mixed")', required=False) parser_optional_rematch.add_argument('--debug', action='store_true', help='DeBug Mode: do not remove temporary files') parser_optional_mlst = parser.add_argument_group('MLST facultative options') parser_optional_rematch.add_argument('--mlstReference', action='store_true', help='If the curated scheme for MLST alleles is available, tells ReMatCh to' ' use these as reference (force Bowtie2 to run with very-sensitive-local' ' parameters, and sets --extraSeq to 200), otherwise ReMatCh uses the' ' first alleles of each MLST gene fragment in PubMLST as reference' ' sequences (force Bowtie2 to run with very-sensitive-local parameters,' ' and sets --extraSeq to 0)') parser_optional_mlst.add_argument('--mlstSchemaNumber', type=int, metavar='N', help='Number of the species PubMLST schema to be used in case of multiple schemes' ' available (by default will use the first schema)', required=False) parser_optional_mlst.add_argument('--mlstConsensus', choices=['noMatter', 'correct', 'alignment', 'all'], type=str, metavar='noMatter', help='Consensus sequence to be used in MLST' ' determination (available options: %(choices)s)', required=False, default='noMatter') parser_optional_mlst.add_argument('--mlstRun', choices=['first', 'second', 'all'], type=str, metavar='first', help='ReMatCh run outputs to be used in MLST determination (available' ' options: %(choices)s)', required=False, default='all') parser_optional_download = parser.add_argument_group('Download facultative options') parser_optional_download.add_argument('-a', '--asperaKey', type=argparse.FileType('r'), metavar='/path/to/asperaweb_id_dsa.openssh', help='Tells ReMatCh to download fastq files from ENA using Aspera' ' Connect. With this option, the path to Private-key file' ' asperaweb_id_dsa.openssh must be provided (normaly found in' ' ~/.aspera/connect/etc/asperaweb_id_dsa.openssh).', required=False) parser_optional_download.add_argument('-k', '--keepDownloadedFastq', action='store_true', help='Tells ReMatCh to keep the fastq files downloaded') parser_optional_download.add_argument('--downloadLibrariesType', type=str, metavar='PAIRED', help='Tells ReMatCh to download files with specific library' ' layout (available options: %(choices)s)', choices=['PAIRED', 'SINGLE', 'BOTH'], required=False, default='BOTH') parser_optional_download.add_argument('--downloadInstrumentPlatform', type=str, metavar='ILLUMINA', help='Tells ReMatCh to download files with specific library layout (available' ' options: %(choices)s)', choices=['ILLUMINA', 'ALL'], required=False, default='ILLUMINA') parser_optional_download.add_argument('--downloadCramBam', action='store_true', help='Tells ReMatCh to also download cram/bam files and convert them to fastq' ' files') parser_optional_sra = parser.add_mutually_exclusive_group() parser_optional_sra.add_argument('--SRA', action='store_true', help='Tells getSeqENA.py to download reads in fastq format only from NCBI SRA' ' database (not recommended)') parser_optional_sra.add_argument('--SRAopt', action='store_true', help='Tells getSeqENA.py to download reads from NCBI SRA if the download from ENA' ' fails') parser_optional_soft_clip = parser.add_argument_group('Soft clip facultative options') parser_optional_soft_clip.add_argument('--softClip_baseQuality', type=int, metavar='N', help='Base quality phred score in reads soft clipped regions', required=False, default=7) parser_optional_soft_clip.add_argument('--softClip_recodeRun', type=str, metavar='first', help='ReMatCh run to recode soft clipped regions (available' ' options: %(choices)s)', choices=['first', 'second', 'both', 'none'], required=False, default='none') parser_optional_soft_clip.add_argument('--softClip_cigarFlagRecode', type=str, metavar='M', help='CIGAR flag to recode CIGAR soft clip (available options: %(choices)s)', choices=['M', 'I', 'X'], required=False, default='X') args = parser.parse_args() msg = [] if args.reference is None and not args.mlstReference: msg.append('At least --reference or --mlstReference should be provided') elif args.reference is not None and args.mlstReference: msg.append('Only --reference or --mlstReference should be provided') else: if args.mlstReference: if args.mlst is None: msg.append('Please provide species name using --mlst') if args.minFrequencyDominantAllele < 0 or args.minFrequencyDominantAllele > 1: msg.append('--minFrequencyDominantAllele should be a value between [0, 1]') if args.minGeneCoverage < 0 or args.minGeneCoverage > 100: msg.append('--minGeneCoverage should be a value between [0, 100]') if args.minGeneIdentity < 0 or args.minGeneIdentity > 100: msg.append('--minGeneIdentity should be a value between [0, 100]') if args.notWriteConsensus and args.doubleRun: msg.append('--notWriteConsensus and --doubleRun cannot be used together.' ' Maybe you only want to use --doubleRun') if len(msg) > 0: argparse.ArgumentParser.error('\n'.join(msg)) start_time = time.time() number_samples_successfully, samples_total_number = run_rematch(args) print('\n' + 'END ReMatCh') print('\n' + str(number_samples_successfully) + ' samples out of ' + str(samples_total_number) + ' run successfully') time_taken = utils.run_time(start_time) del time_taken if number_samples_successfully == 0: sys.exit('No samples run successfully!') if __name__ == "__main__": main()