Mercurial > repos > iuc > charts
view heatmap.r @ 1:344ac3ca7557 draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/charts/ commit 4494db13b69987fbc97d47177d2a5956e46e927b"
author | iuc |
---|---|
date | Wed, 17 Nov 2021 09:06:59 +0000 |
parents | a87a3773d8ed |
children |
line wrap: on
line source
# load sparse matrix package suppressPackageStartupMessages(library("Matrix")) # access a numeric column get_numeric <- function(table, column_key) { column <- as.numeric(column_key) column_data <- suppressWarnings(as.numeric(as.character(table[column][[1]]))) return(c(column_data)) } # access a label column get_label <- function(table, column_key) { column <- as.numeric(column_key) column_data <- as.character(table[column][[1]]) return(c(column_data)) } # inflate three columns into matrix matrify <- function(data) { if (ncol(data) != 3) stop("Data frame must have three column format") plt <- data[, 1] spc <- data[, 2] abu <- data[, 3] plt_codes <- levels(factor(plt)) spc_codes <- levels(factor(spc)) taxa <- Matrix(0, nrow = length(plt_codes), ncol = length(spc_codes), sparse = TRUE) row <- match(plt, plt_codes) col <- match(spc, spc_codes) for (i in seq_len(length(abu))) { taxa[row[i], col[i]] <- abu[i] } colnames(taxa) <- spc_codes rownames(taxa) <- plt_codes taxa } # flatten data.frame into three column format flatten <- function(my_matrix) { summ <- summary(my_matrix) summ <- data.frame(i = rownames(my_matrix)[summ$i], j = colnames(my_matrix)[summ$j], x = summ$x) summ } # wrapper wrapper <- function(table, columns, options) { # initialize output list l <- list() # get number of columns n <- length(columns) # consistency check if (n %% 3 != 0) { print("heatmap::wrapper() - Data not consistent (n mod 3 != 0)") return(l) } # create index sequence index <- seq(1, n, by = 3) # get keys keys <- names(columns) # loop through blocks for (i in index) { # create columns ci <- get_label(table, columns[keys[i]]) cj <- get_label(table, columns[keys[i + 1]]) cx <- get_numeric(table, columns[keys[i + 2]]) # create a frame from columns my_frame <- data.frame(ci = ci, cj = cj, cx = cx) # create matrix out of the frame my_matrix <- matrify(my_frame) # create/cluster matrix row_order <- hclust(dist(my_matrix))$order col_order <- hclust(dist(t(my_matrix)))$order # reorder matrix my_matrix <- my_matrix[row_order, col_order] # transform back to three columns my_flatmatrix <- flatten(my_matrix) # append to result list l <- append(l, list(my_flatmatrix$i)) l <- append(l, list(my_flatmatrix$j)) l <- append(l, list(my_flatmatrix$x)) } # return return(l) }