Mercurial > repos > iuc > clustering_from_distmat
diff clustering_from_distmat.py @ 0:8192b416f945 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/clustering_from_distmat/ commit a34052b87a2d05cabed5001c50f1bb10e74f97ee
author | iuc |
---|---|
date | Thu, 08 Aug 2024 19:34:36 +0000 |
parents | |
children | c0b01c55a0e0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/clustering_from_distmat.py Thu Aug 08 19:34:36 2024 +0000 @@ -0,0 +1,147 @@ +import argparse +import sys + +import scipy + + +def linkage_as_newick(linkage, tip_names): + newick_parts = tip_names[::] + within_cluster_distances = [0] * len(tip_names) + for step in linkage: + n1 = int(step[0]) + n2 = int(step[1]) + d = float(step[2]) + d1 = d - within_cluster_distances[n1] + d2 = d - within_cluster_distances[n2] + id1 = newick_parts[n1] + id2 = newick_parts[n2] + part = f'({id1}:{d1 / 2},{id2}:{d2 / 2})' + within_cluster_distances.append(d) + newick_parts.append(part) + return newick_parts[-1].format(*newick_parts) + ';' + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + 'infile', + help='Distance matrix input file' + ) + parser.add_argument( + 'out_prefix', + help="Output prefix" + ) + parser.add_argument + parser.add_argument( + '-m', '--method', default="average", + choices=[ + "single", + "complete", + "average", + "weighted", + "centroid", + "median", + "ward" + ], + help="Clustering method to use" + ) + cut_mode = parser.add_mutually_exclusive_group() + cut_mode.add_argument( + "-n", "--n-clusters", nargs="*", type=int + ) + cut_mode.add_argument( + "--height", nargs="*", type=float + ) + args = parser.parse_args() + + # TO DO: + # - parse outputs to generate + + # read from input and check that + # we have been passed a symmetric distance matrix + with open(args.infile) as i: + col_names = next(i).rstrip("\n\r").split("\t")[1:] + col_count = len(col_names) + if not col_count: + sys.exit( + 'No data columns found. ' + 'This tool expects tabular input with column names on the first line ' + 'and a row name in the first column of each row followed by data columns.' + ) + row_count = 0 + matrix = [] + for line in i: + if not line.strip(): + # skip empty lines + continue + row_count += 1 + if row_count > col_count: + sys.exit( + 'This tool expects a symmetric distance matrix with an equal number of rows and columns, ' + 'but got more rows than columns.' + ) + row_name, *row_data = line.strip(" \n\r").split("\t") + col_name = col_names[row_count - 1] + if not row_name: + # tolerate omitted row names, use col name instead + row_name = col_name + if row_name != col_name: + sys.exit( + 'This tool expects a symmetric distance matrix with identical names for rows and columns, ' + f'but got "{col_name}" in column {row_count} and "{row_name}" on row {row_count}.' + ) + if len(row_data) != col_count: + sys.exit( + 'This tool expects a symmetric distance matrix with the same number of columns on each row, ' + f'but row {row_count} ("{row_name}") has {len(row_data)} columns instead of {col_count}.' + ) + try: + matrix.append([float(x) for x in row_data]) + except ValueError as e: + sys.exit(str(e) + f' on row {row_count} ("{row_name}")') + if row_count < col_count: + sys.exit( + 'This tool expects a symmetric distance matrix with an equal number of rows and columns, ' + 'but got more columns than rows.' + ) + + # turn the distance matrix into "condensed" vector form + # this gives us further checks and raises ValueErrors if: + # - the values on the diagonal aren't zero + # - the upper and lower triangle of the matrix aren't identical + D = scipy.spatial.distance.squareform(matrix) + + # perform the requested clustering and retrieve the result as a linkage object + linkage = scipy.cluster.hierarchy.linkage(D, args.method) + + with open(args.out_prefix + '.tree.newick', 'w') as o: + o.write(linkage_as_newick(linkage, col_names)) + + # cut the tree as specified and report sample to cluster assignments + if args.n_clusters or args.height: + if args.n_clusters: + cut_values = args.n_clusters + colname_template = "cluster_id_n{}" + else: + cut_values = args.height + colname_template = "cluster_id_h{}" + header_cols = ["sample"] + [ + colname_template.format(x) for x in cut_values + ] + cluster_assignments = [] + for name, cluster_ids in zip( + col_names, + scipy.cluster.hierarchy.cut_tree( + linkage, + args.n_clusters, + args.height + ) + ): + cluster_assignments.append( + [name] + + [str(c + 1) for c in cluster_ids] + ) + with open(args.out_prefix + '.cluster_assignments.tsv', 'w') as o: + print("\t".join(header_cols), file=o) + for ass in cluster_assignments: + print("\t".join(ass), file=o)