Mercurial > repos > iuc > clustering_from_distmat
view clustering_from_distmat.xml @ 1:c0b01c55a0e0 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/clustering_from_distmat/ commit 65b5c6f177478883ce664aeb6f27d0bec7155fdc
author | iuc |
---|---|
date | Mon, 19 Aug 2024 15:33:16 +0000 |
parents | 8192b416f945 |
children | f8ee933de3ca |
line wrap: on
line source
<tool id="clustering_from_distmat" name="Distance matrix-based hierarchical clustering" version="1.1" profile="23.0"> <description>using Scipy</description> <macros> <xml name="cluster_assignment_options"> <param name="min_cluster_size" type="integer" value="2" min="1" label="Mask clusters with less than this number of samples" help="Samples assigned to clusters smaller than this threshold will have '-' in the corresponding cluster ID column" /> <param name="generate_dendrogram" type="boolean" label="Produce also the dendrogram of clustering results" /> </xml> </macros> <edam_topics> <edam_topic>topic_2269</edam_topic> <edam_topic>topic_0084</edam_topic> </edam_topics> <edam_operations> <edam_operation>operation_3432</edam_operation> </edam_operations> <requirements> <requirement type="package" version="3.12">python</requirement> <requirement type="package" version="1.14.0">scipy</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ python '$__tool_directory__/clustering_from_distmat.py' '$distmat' result --method $method $missing_names #if str($cluster_assignment.select) == 'n-cluster': --n-clusters $cluster_assignment.n_cluster #elif str($cluster_assignment.select) == 'height': --height $cluster_assignment.height #end if #if str($cluster_assignment.select) != 'dendrogram-only' and $cluster_assignment.min_cluster_size != 2: --min-cluster-size $cluster_assignment.min_cluster_size #end if ]]></command> <inputs> <param name="distmat" type="data" format="tabular" label="Distance matrix" /> <param name="method" type="select" label="Clustering method"> <option value="single">Nearest Point (scipy 'single' method)</option> <option value="complete">Farthest Point (scipy 'complete' method)</option> <option value="average" selected="true">UPGMA (scipy 'average' method)</option> <option value="weighted">WPGMA (scipy 'weighted' method)</option> <option value="centroid">UPGMC (scipy 'centroid' method)</option> <option value="median">WPGMC (scipy 'median' method)</option> <option value="ward">Ward/Incremental (scipy 'ward' method)</option> </param> <param name="missing_names" type="select" label="How does the input specify sample names?"> <option value="">First line and first column specify sample names (fully symmetric input)</option> <option value="--nr">First line specifies sample names, subsequent lines only data</option> <option value="--nc">Each line specifies sample name in first column, first line is not special</option> </param> <conditional name="cluster_assignment"> <param name="select" type="select" label="Generate cluster assignments?"> <option value="dendrogram-only">No, just generate the dendrogram of clustering results</option> <option value="n-cluster">Yes, and divide into specified number of clusters </option> <option value="height">Yes, and use distance threshold to divide into clusters</option> </param> <when value="dendrogram-only" /> <when value="n-cluster"> <param name="n_cluster" type="integer" value="5" min="1" label="How many clusters to divide into?" /> <expand macro="cluster_assignment_options" /> </when> <when value="height"> <param name="height" type="float" value="5.0" label="Distance threshold for clusters to be reported" /> <expand macro="cluster_assignment_options" /> </when> </conditional> </inputs> <outputs> <data name="clustering_dendrogram" format="newick" from_work_dir="result.tree.newick" label="${tool.name} on ${on_string}: Dendrogram"> <filter>cluster_assignment["select"] == "dendrogram-only" or cluster_assignment["generate_dendrogram"]</filter> </data> <data name="clustering_assignment" format="tabular" from_work_dir="result.cluster_assignments.tsv" label="${tool.name} on ${on_string}: Cluster assignment"> <filter>cluster_assignment["select"] in ["n-cluster", "height"]</filter> </data> </outputs> <tests> <!-- Test data and expected results taken from https://en.wikipedia.org/wiki/UPGMA#Working_example --> <test expect_num_outputs="1"> <param name="distmat" value="test_matrix.tsv"/> <output name="clustering_dendrogram" ftype="newick" file="test_tree_average.newick" /> </test> <test expect_num_outputs="1"> <param name="distmat" value="test_matrix.tsv" /> <param name="method" value="complete" /> <output name="clustering_dendrogram" ftype="newick" file="test_tree_complete.newick" /> </test> <test expect_num_outputs="1"> <param name="distmat" value="test_matrix.tsv"/> <conditional name="cluster_assignment"> <param name="select" value="height" /> <param name="height" value="18" /> <param name="min_cluster_size" value="1" /> </conditional> <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_h18.tsv" /> </test> <test expect_num_outputs="1"> <param name="distmat" value="test_matrix.tsv"/> <conditional name="cluster_assignment"> <param name="select" value="height" /> <param name="height" value="18" /> </conditional> <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_h18_s2.tsv" /> </test> <test expect_num_outputs="2"> <param name="distmat" value="test_matrix.tsv"/> <conditional name="cluster_assignment"> <param name="select" value="n-cluster" /> <param name="n_cluster" value="4" /> <param name="min_cluster_size" value="1" /> <param name="generate_dendrogram" value="true" /> </conditional> <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_n4.tsv" /> </test> <test expect_num_outputs="2"> <param name="distmat" value="test_matrix_nr.tsv" /> <param name="missing_names" value="--nr" /> <conditional name="cluster_assignment"> <param name="select" value="n-cluster" /> <param name="n_cluster" value="4" /> <param name="min_cluster_size" value="1" /> <param name="generate_dendrogram" value="true" /> </conditional> <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_n4.tsv" /> </test> <test expect_num_outputs="2"> <param name="distmat" value="test_matrix_nc.tsv" /> <param name="missing_names" value="--nc" /> <conditional name="cluster_assignment"> <param name="select" value="n-cluster" /> <param name="n_cluster" value="4" /> <param name="min_cluster_size" value="1" /> <param name="generate_dendrogram" value="true" /> </conditional> <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_n4.tsv" /> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** This tool lets you perform hierarchical clustering of samples using the `scipy.cluster.hierarchy.linkage`_ function and any of the clustering methods supported by it. As input it expects a symmetrical distance matrix with sample names on the first row and/or in the first column. The clustering result can be reported in the form of a dendrogram in newick format. Additionally, the tool can report the assignment of the samples to clusters "cut" from the clustering tree using the `scipy.cluster.hierarchy.cut_tree`_ function. Reflecting the parameters of that function, you can specify *how* to cut the tree by specifying either the number of clusters to cut into or a distance threshold, i.e., the height at which to cut the tree as SciPy calls it. .. _`scipy.cluster.hierarchy.linkage`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html .. _`scipy.cluster.hierarchy.cut_tree`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.cut_tree.html ]]></help> <citations> <citation type="doi">10.1038/s41592-019-0686-2</citation> </citations> </tool>