Mercurial > repos > iuc > dada2_learnerrors
view test-data/gentest.R @ 2:c48d42d65d2b draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/dada2 commit f2a33fe115fef9d711112b53136cf7619f1b19be"
author | iuc |
---|---|
date | Mon, 16 Mar 2020 07:44:03 -0400 |
parents | fd892c845981 |
children | afdfa35a89d9 |
line wrap: on
line source
library(dada2, quietly=T) library(ggplot2, quietly=T) sample.names <- c('F3D0_S188_L001', 'F3D141_S207_L001') fwd <- c('F3D0_S188_L001_R1_001.fastq.gz', 'F3D141_S207_L001_R1_001.fastq.gz') rev <- c('F3D0_S188_L001_R2_001.fastq.gz', 'F3D141_S207_L001_R2_001.fastq.gz') filt.fwd <- c('filterAndTrim_F3D0_R1.fq.gz', 'filterAndTrim_F3D141_R1.fq.gz') filt.rev <- c('filterAndTrim_F3D0_R2.fq.gz', 'filterAndTrim_F3D141_R2.fq.gz') print("filterAndTrim") for(i in 1:length(fwd)){ ftout <- filterAndTrim(fwd[i], filt.fwd[i], rev[i], filt.rev[i]) b <- paste(strsplit(fwd[i], ".", fixed=T)[[1]][1], "tab", sep=".") write.table(ftout, b, quote=F, sep="\t", col.names=NA) } # In the test only the 1st data set is used t <- data.frame() t <- rbind(t, ftout[1,]) colnames(t) <- colnames(ftout) rownames(t) <- rownames(ftout)[1] write.table(t, "filterAndTrim.tab", quote=F, sep="\t", col.names=NA) names(fwd) <- sample.names names(rev) <- sample.names names(filt.fwd) <- sample.names names(filt.rev) <- sample.names # Plot quality profile (just for one file, Galaxy compares with sim_size) print("plots") qp <- plotQualityProfile(fwd) ggsave('qualityProfile_fwd.pdf', qp, width = 20,height = 15,units = c("cm")) qp <- plotQualityProfile(rev) ggsave('qualityProfile_rev.pdf', qp, width = 20,height = 15,units = c("cm")) qp <- plotQualityProfile(fwd[1]) ggsave('qualityProfile.pdf', qp, width = 20,height = 15,units = c("cm")) # Plot complexity (just for one file, Galaxy compares with sim_size) cp <- plotComplexity(fwd) ggsave('complexity_fwd.pdf', cp, width = 20,height = 15,units = c("cm")) cp <- plotComplexity(rev) ggsave('complexity_rev.pdf', cp, width = 20,height = 15,units = c("cm")) cp <- plotComplexity(fwd[1]) ggsave('complexity.pdf', cp, width = 20,height = 15,units = c("cm")) # learn Errors print("learnErrors") err.fwd <- learnErrors(filt.fwd) saveRDS(err.fwd, file='learnErrors_R1.Rdata') plot <- plotErrors(err.fwd) ggsave('learnErrors_R1.pdf', plot, width = 20,height = 15,units = c("cm")) err.rev <- learnErrors(filt.rev) saveRDS(err.rev, file='learnErrors_R2.Rdata') plot <- plotErrors(err.rev) ggsave('learnErrors.pdf', plot, width = 20,height = 15,units = c("cm")) # dada print("dada") dada.fwd <- dada(filt.fwd, err.fwd) dada.rev <- dada(filt.rev, err.rev) for( id in sample.names ){ saveRDS(dada.fwd[[id]], file=paste("dada_", id,"_R1.Rdata", sep="")) saveRDS(dada.rev[[id]], file=paste("dada_", id,"_R2.Rdata", sep="")) } # merge pairs print("mergePairs") merged <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev) for( id in sample.names ){ saveRDS(merged[[id]], file=paste("mergePairs_", id,".Rdata", sep="")) } # make sequence table print("makeSequenceTable") seqtab <- makeSequenceTable(merged) write.table(t(seqtab), file="makeSequenceTable.tab", quote=F, sep="\t", row.names = T, col.names = NA) reads.per.seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum) df <- data.frame(length=as.numeric(names(reads.per.seqlen)), count=reads.per.seqlen) pdf( 'makeSequenceTable.pdf' ) ggplot(data=df, aes(x=length, y=count)) + geom_col() + theme_bw() bequiet <- dev.off() # remove bimera print("removeBimera") seqtab.nochim <- removeBimeraDenovo(seqtab) write.table(t(seqtab), file="removeBimeraDenovo.tab", quote=F, sep="\t", row.names = T, col.names = NA) # assign taxonomy/species tl <- 'Level1,Level2,Level3,Level4,Level5' tl <- strsplit(tl, ",")[[1]] set.seed(42) print("assignTaxonomyAndSpecies") taxa <- assignTaxonomy(seqtab.nochim, 'reference.fa.gz', outputBootstraps = T, taxLevels=tl, multithread = 1) taxa$tax <- addSpecies(taxa$tax, 'reference_species.fa.gz') write.table(taxa$tax, file = 'assignTaxonomyAddspecies.tab', quote = F, sep = "\t", row.names = T, col.names = NA) write.table(taxa$boot, file = 'assignTaxonomyAddspecies_boot.tab', quote = F, sep = "\t", row.names = T, col.names = NA) ## Generate extra test data for parameter testing print("alternatives") filterAndTrim(fwd, c('filterAndTrim_single_F3D0_R1.fq.gz', 'filterAndTrim_single_F3D141_R1.fq.gz'), rm.phix = T, orient.fwd = 'TACGG') filterAndTrim(fwd, c('filterAndTrim_single_trimmers_F3D0_R1.fq.gz', 'filterAndTrim_single_trimmers_F3D141_R1.fq.gz'), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2) filterAndTrim(fwd, c('filterAndTrim_single_filters_F3D0_R1.fq.gz', 'filterAndTrim_single_filters_F3D141_R1.fq.gz'), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1) merged_nondef <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE) for( id in sample.names ){ saveRDS(merged_nondef[[id]], file=paste("mergePairs_", id,"_nondefault.Rdata", sep="")) } rb.dada.fwd <- removeBimeraDenovo(dada.fwd[["F3D0_S188_L001"]]) write.table(rb.dada.fwd, file = 'removeBimeraDenovo_F3D0_dada_uniques.tab', quote = F, sep = "\t", row.names = T, col.names = F) rb.merged <- removeBimeraDenovo(merged, method="pooled") saveRDS(rb.merged, file='removeBimeraDenovo_F3D0_mergepairs.Rdata') # SeqCounts getN <- function(x){ sum(getUniques(x)) } read.uniques <- function ( fname ) { p <- read.table(fname, header=F, sep="\t") n <-x[,2] names(n)<-x[,1] } print("seqCounts ft") samples = list() samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1) dname <- "filter" tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] names(tdf) <- paste( dname, names(tdf) ) tdf <- cbind( data.frame(samples=names( samples )), tdf) write.table(tdf, "seqCounts_filter.tab", quote=F, sep="\t", row.names = F, col.names = T) samples = list() samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1) samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header=T, sep="\t", row.names=1) dname <- "filter" tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]]) names(tdf) <- paste( dname, names(tdf) ) tdf <- cbind( data.frame(samples=names( samples )), tdf) write.table(tdf, "seqCounts_filter_both.tab", quote=F, sep="\t", row.names = F, col.names = T) print("seqCounts dada") samples = list() samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS('dada_F3D0_S188_L001_R1.Rdata') samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS('dada_F3D141_S207_L001_R1.Rdata') dname <- "dadaF" tdf <- data.frame( samples = names(samples) ) tdf[[ dname ]] <- sapply(samples, getN) write.table(tdf, "seqCounts_dadaF.tab", quote=F, sep="\t", row.names = F, col.names = T) print("seqCounts mp") samples = list() samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS('mergePairs_F3D0_S188_L001.Rdata') samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS('mergePairs_F3D141_S207_L001.Rdata') dname <- "merge" tdf <- data.frame( samples = names(samples) ) tdf[[ dname ]] <- sapply(samples, getN) write.table(tdf, "seqCounts_merge.tab", quote=F, sep="\t", row.names = F, col.names = T) print("seqCounts st") samples = list() samples <- t(as.matrix( read.table("makeSequenceTable.tab", header=T, sep="\t", row.names=1) )) dname <- "seqtab" tdf <- data.frame( samples = row.names(samples) ) tdf[[ dname ]] <- rowSums(samples) write.table(tdf, "seqCounts_seqtab.tab", quote=F, sep="\t", row.names = F, col.names = T) print("seqCounts rb") samples = list() samples <- t(as.matrix( read.table("removeBimeraDenovo.tab", header=T, sep="\t", row.names=1) )) dname <- "nochim" tdf <- data.frame( samples = row.names(samples) ) tdf[[ dname ]] <- rowSums(samples) write.table(tdf, "seqCounts_nochim.tab", quote=F, sep="\t", row.names = F, col.names = T)