diff predict.py @ 0:b856d3d95413 draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/decontaminator commit 3f8e87001f3dfe7d005d0765aeaa930225c93b72
author iuc
date Mon, 09 Jan 2023 13:27:09 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/predict.py	Mon Jan 09 13:27:09 2023 +0000
@@ -0,0 +1,242 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+# Credits: Grigorii Sukhorukov, Macha Nikolski
+import argparse
+import os
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from Bio import SeqIO
+from models import model_10
+from utils import preprocess as pp
+
+os.environ["CUDA_VISIBLE_DEVICES"] = ""
+os.environ["TF_XLA_FLAGS"] = "--tf_xla_cpu_global_jit"
+# loglevel :
+# 0 all printed
+# 1 I not printed
+# 2 I and W not printed
+# 3 nothing printed
+os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
+
+
+def predict_nn(ds_path, nn_weights_path, length, batch_size=256):
+    """
+    Breaks down contigs into fragments
+    and uses pretrained neural networks to give predictions for fragments
+    """
+    try:
+        seqs_ = list(SeqIO.parse(ds_path, "fasta"))
+    except FileNotFoundError:
+        raise Exception("test dataset was not found. Change ds variable")
+
+    out_table = {
+        "id": [],
+        "length": [],
+        "fragment": [],
+        "pred_vir": [],
+        "pred_other": [],
+    }
+    if not seqs_:
+        raise ValueError("All sequences were smaller than length of the model")
+    test_fragments = []
+    test_fragments_rc = []
+    for seq in seqs_:
+        fragments_, fragments_rc, _ = \
+            pp.fragmenting(
+                [seq],
+                length,
+                max_gap=0.8,
+                sl_wind_step=int(length / 2)
+            )
+        test_fragments.extend(fragments_)
+        test_fragments_rc.extend(fragments_rc)
+        for j in range(len(fragments_)):
+            out_table["id"].append(seq.id)
+            out_table["length"].append(len(seq.seq))
+            out_table["fragment"].append(j)
+    test_encoded = pp.one_hot_encode(test_fragments)
+    test_encoded_rc = pp.one_hot_encode(test_fragments_rc)
+    model = model_10.model(length)
+    model.load_weights(Path(nn_weights_path, f"model_{length}.h5"))
+    prediction = model.predict([test_encoded, test_encoded_rc], batch_size)
+    out_table['pred_vir'].extend(list(prediction[..., 1]))
+    out_table['pred_other'].extend(list(prediction[..., 0]))
+    print('Exporting predictions to csv file')
+    df = pd.DataFrame(out_table)
+    df['NN_decision'] = np.where(df['pred_vir'] > df['pred_other'], 'virus', 'other')
+    return df
+
+
+def predict_test(ds_path, length):
+    """
+    Breaks down contigs into fragments
+    and gives 1 as prediction to all fragments
+    use only for testing!
+    """
+    try:
+        seqs_ = list(SeqIO.parse(ds_path, "fasta"))
+    except FileNotFoundError:
+        raise Exception("test dataset was not found. Change ds variable")
+
+    out_table = {
+        "id": [],
+        "length": [],
+        "fragment": [],
+    }
+    if not seqs_:
+        raise ValueError("All sequences were smaller than length of the model")
+    for seq in seqs_:
+        fragments_, fragments_rc, _ = \
+            pp.fragmenting(
+                [seq],
+                length,
+                max_gap=0.8,
+                sl_wind_step=int(length / 2)
+            )
+        for j in range(len(fragments_)):
+            out_table["id"].append(seq.id)
+            out_table["length"].append(len(seq.seq))
+            out_table["fragment"].append(j)
+    print('Exporting predictions to tsv file')
+    df = pd.DataFrame(out_table)
+    df['pred_vir'] = 1
+    df['pred_other'] = 0
+    df['NN_decision'] = 'virus'
+    return df
+
+
+def predict_contigs(df):
+    """
+    Based on predictions of predict_rf for fragments
+    gives a final prediction for the whole contig
+    """
+    df = (
+        df.groupby(
+            ["id",
+             "length",
+             'NN_decision'],
+            sort=False
+        ).size().unstack(fill_value=0)
+    )
+    df = df.reset_index()
+    df = df.reindex(
+        ['length', 'id', 'virus', 'other', ],
+        axis=1
+    ).fillna(value=0)
+    df['decision'] = np.where(df['virus'] >= df['other'], 'virus', 'other')
+    df = df.sort_values(by='length', ascending=False)
+    df = df.loc[:, ['length', 'id', 'virus', 'other', 'decision']]
+    df = df.rename(
+        columns={
+            'virus': '# viral fragments',
+            'other': '# other fragments',
+        }
+    )
+    df['# viral / # total'] = (df['# viral fragments'] / (df['# viral fragments'] + df['# other fragments'])).round(3)
+    df['# viral / # total * length'] = df['# viral / # total'] * df['length']
+    df = df.sort_values(by='# viral / # total * length', ascending=False)
+    return df
+
+
+def predict(test_ds, weights, out_path, return_viral=True):
+    """filters out contaminant contigs from the fasta file.
+
+    test_ds: path to the input file with
+        contigs in fasta format (str or list of str)
+    weights: path to the folder containing weights
+        for NN and RF modules trained on 500 and 1000 fragment lengths (str)
+    out_path: path to the folder to store predictions (str)
+    return_viral: whether to return contigs annotated as
+        viral in separate fasta file (True/False)
+    """
+
+    test_ds = test_ds
+    if isinstance(test_ds, list):
+        pass
+    elif isinstance(test_ds, str):
+        test_ds = [test_ds]
+    else:
+        raise ValueError('test_ds was incorrectly assigned in the config file')
+
+    assert Path(test_ds[0]).exists(), f'{test_ds[0]} does not exist'
+    # assert Path(weights).exists(), f'{weights} does not exist'
+    limit = 0
+    Path(out_path).mkdir(parents=True, exist_ok=True)
+
+    # parameter to activate test function. Only for debugging on github
+    # test is launched when the weights directory is empty
+    use_test_f = not Path(weights, 'model_1000.h5').exists()
+    for ts in test_ds:
+        dfs_fr = []
+        dfs_cont = []
+        for l_ in 500, 1000:
+            print(f'starting prediction for {Path(ts).name} '
+                  f'for fragment length {l_}')
+            if use_test_f:
+                df = predict_test(ds_path=ts, length=l_, )
+            else:
+                df = predict_nn(
+                    ds_path=ts,
+                    nn_weights_path=weights,
+                    length=l_,
+                )
+            df = df.round(3)
+            dfs_fr.append(df)
+            df = predict_contigs(df)
+            dfs_cont.append(df)
+            print('prediction finished')
+        df_500 = dfs_fr[0][(dfs_fr[0]['length'] >= limit) & (dfs_fr[0]['length'] < 1500)]
+        df_1000 = dfs_fr[1][(dfs_fr[1]['length'] >= 1500)]
+        df = pd.concat([df_1000, df_500], ignore_index=True)
+        pred_fr = Path(out_path, "predicted_fragments.tsv")
+        df.to_csv(pred_fr, sep='\t')
+
+        df_500 = dfs_cont[0][(dfs_cont[0]['length']
+                              >= limit) & (dfs_cont[0]['length'] < 1500)]
+        df_1000 = dfs_cont[1][(dfs_cont[1]['length']
+                               >= 1500)]
+        df = pd.concat([df_1000, df_500], ignore_index=True)
+        pred_contigs = Path(out_path, "predicted.tsv")
+        df.to_csv(pred_contigs, sep='\t')
+
+        if return_viral:
+            viral_ids = list(df[df["decision"] == "virus"]["id"])
+            seqs_ = list(SeqIO.parse(ts, "fasta"))
+            viral_seqs = [s_ for s_ in seqs_ if s_.id in viral_ids]
+            SeqIO.write(
+                viral_seqs,
+                Path(
+                    out_path,
+                    "viral.fasta"), 'fasta')
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--test_ds", help="path to the input "
+                                          "file with contigs "
+                                          "in fasta format "
+                                          "(str or list of str)")
+    parser.add_argument("--weights", help="path to the folder containing "
+                                          "weights for NN and RF modules "
+                                          "trained on 500 and 1000 "
+                                          "fragment lengths (str)")
+    parser.add_argument("--out_path", help="path to the folder to store "
+                                           "predictions (str)")
+    parser.add_argument("--return_viral", help="whether to return "
+                                               "contigs annotated "
+                                               "as viral in separate "
+                                               "fasta file (True/False)")
+
+    args = parser.parse_args()
+    if args.test_ds:
+        test_ds = args.test_ds
+    if args.weights:
+        weights = args.weights
+    if args.out_path:
+        out_path = args.out_path
+    if args.return_viral:
+        return_viral = args.return_viral
+
+    predict(test_ds, weights, out_path, return_viral)