Mercurial > repos > iuc > deepmicro
comparison deepmicro.xml @ 2:2d20b3a1babd draft default tip
planemo upload for repository https://github.com/paulzierep/DeepMicro commit 574cb8c241e18a15f006bf307235c7dd23f07c69
author | iuc |
---|---|
date | Tue, 23 Jul 2024 15:56:32 +0000 |
parents | c58c1a99578b |
children |
comparison
equal
deleted
inserted
replaced
1:c58c1a99578b | 2:2d20b3a1babd |
---|---|
16 #if $mode.mode_type == "only_encoding": | 16 #if $mode.mode_type == "only_encoding": |
17 | 17 |
18 #for $params in $mode.parameter_set: | 18 #for $params in $mode.parameter_set: |
19 | 19 |
20 #if $params.rl_type.rl_type_choice == "--pca" or $params.rl_type.rl_type_choice == "--rp": | 20 #if $params.rl_type.rl_type_choice == "--pca" or $params.rl_type.rl_type_choice == "--rp": |
21 DM.py -r 1 -cd features.csv '$params.rl_type.rl_type_choice' --save_rep --no_clf -t \${GALAXY_SLOTS:-8} && | 21 DM.py -r 1 |
22 -cd features.csv | |
23 '$params.rl_type.rl_type_choice' | |
24 --save_rep | |
25 --no_clf | |
26 -t \${GALAXY_SLOTS:-8} && | |
22 #else: | 27 #else: |
23 DM.py -r 1 -cd features.csv '$params.rl_type.rl_type_choice' -dm '$params.rl_type.dm' --save_rep --no_clf -t \${GALAXY_SLOTS:-8} && | 28 DM.py -r 1 |
29 -cd features.csv | |
30 '$params.rl_type.rl_type_choice' | |
31 -dm '$params.rl_type.dm' | |
32 --save_rep | |
33 --no_clf | |
34 -t \${GALAXY_SLOTS:-8} && | |
24 #end if | 35 #end if |
25 #end for | 36 #end for |
26 | 37 |
27 #else: | 38 #else: |
28 | 39 |
29 ln -s '$mode.class_labels' data/labels.csv && | 40 ln -s '$mode.class_labels' data/labels.csv && |
30 | 41 |
31 #for $params in $mode.parameter_set: | 42 #for $params in $mode.parameter_set: |
32 | 43 |
44 ## general args | |
45 DM.py | |
46 -r '$mode.repeat' | |
47 -cd features.csv | |
48 -cl labels.csv | |
49 --save_rep | |
50 -m '$params.rl_type.classifier' | |
51 --scoring '$mode.scoring' | |
52 -f '$mode.folds' | |
53 -t \${GALAXY_SLOTS:-8} | |
54 | |
33 ## only train classifier without encoding | 55 ## only train classifier without encoding |
34 #if $params.rl_type.rl_type_choice == "no_rl": | 56 #if $params.rl_type.rl_type_choice == "no_rl": |
35 DM.py -r 1 -cd features.csv -cl labels.csv --save_rep -m '$params.rl_type.classifier' -t \${GALAXY_SLOTS:-8} && | 57 && echo "Only train Clf - no encoding!" |
58 ## add rl type | |
36 #elif $params.rl_type.rl_type_choice == "--pca" or $params.rl_type.rl_type_choice == "--rp": | 59 #elif $params.rl_type.rl_type_choice == "--pca" or $params.rl_type.rl_type_choice == "--rp": |
37 DM.py -r 1 -cd features.csv -cl labels.csv '$params.rl_type.rl_type_choice' --save_rep -m '$params.rl_type.classifier' -t \${GALAXY_SLOTS:-8} && | 60 '$params.rl_type.rl_type_choice' |
61 ## add rl type and dm options | |
38 #else: | 62 #else: |
39 DM.py -r 1 -cd features.csv -cl labels.csv '$params.rl_type.rl_type_choice' -dm '$params.rl_type.dm' --save_rep -m '$params.rl_type.classifier' -t \${GALAXY_SLOTS:-8} && | 63 '$params.rl_type.rl_type_choice' |
64 -dm '$params.rl_type.dm' | |
40 #end if | 65 #end if |
66 && | |
41 #end for | 67 #end for |
42 | 68 |
43 #end if | 69 #end if |
44 | 70 |
45 echo Done ! | 71 echo Done ! |
57 <repeat name="parameter_set" title="Parameter Set"> | 83 <repeat name="parameter_set" title="Parameter Set"> |
58 <conditional name="rl_type"> | 84 <conditional name="rl_type"> |
59 <param name="rl_type_choice" type="select" label="Representation learning type" help="The type of representation learning" > | 85 <param name="rl_type_choice" type="select" label="Representation learning type" help="The type of representation learning" > |
60 <option value="--pca">PCA</option> | 86 <option value="--pca">PCA</option> |
61 <option value="--rp">Random Projection</option> | 87 <option value="--rp">Random Projection</option> |
62 <option value="--ae">Autoencoder or Deep Autoencoder</option> | 88 <option value="--ae">Shallow Autoencoder or Deep Autoencoder (SAE, DAE)</option> |
63 <option value="--vae">Variational Autoencoder</option> | 89 <option value="--vae">Variational Autoencoder (VAE)</option> |
64 <option value="--cae">Convolutional Autoencoder</option> | 90 <option value="--cae">Convolutional Autoencoder (CAE)</option> |
65 </param> | 91 </param> |
66 <when value="--pca"/> | 92 <when value="--pca"/> |
67 <when value="--rp"/> | 93 <when value="--rp"/> |
68 <when value="--ae"> | 94 <when value="--ae"> |
69 <expand macro="dm" /> | 95 <expand macro="dm" /> |
77 </conditional> | 103 </conditional> |
78 </repeat> | 104 </repeat> |
79 </when> | 105 </when> |
80 <when value="e_and_c"> | 106 <when value="e_and_c"> |
81 <param argument="--class_labels" type="data" format="tabular" label="Class labels" help="Dataset containing the class labels corresponding to the features"/> | 107 <param argument="--class_labels" type="data" format="tabular" label="Class labels" help="Dataset containing the class labels corresponding to the features"/> |
108 <param name="scoring" type="select" label="Scoring function for the classifiere" help="The classifiere will be optimized for this scoring function." > | |
109 <option value="roc_auc">ROC AUC</option> | |
110 <option value="accuracy">Accuracy</option> | |
111 <option value="f1">F1 Score</option> | |
112 <option value="recall">Recall</option> | |
113 <option value="precision">Precision</option> | |
114 </param> | |
115 <param name="folds" type="integer" value="5" label="Cross-validation folds" min="2" max="10" help="The number of folds for cross-validation in the tranining set"/> | |
116 <param name="repeat" type="integer" value="1" label="Repeat the experiment with different seed" min="1" max="5" help="Repeat the experiment with different seeds. Leads to a different train / test split each time."/> | |
82 <repeat name="parameter_set" title="Parameter Set"> | 117 <repeat name="parameter_set" title="Parameter Set"> |
83 <conditional name="rl_type"> | 118 <conditional name="rl_type"> |
84 <param name="rl_type_choice" type="select" label="Representation learning type" help="The type of representation learning. `Train on input` trains the classifier on the input features without representation learning" > | 119 <param name="rl_type_choice" type="select" label="Representation learning type" help="The type of representation learning. `Train on input` trains the classifier on the input features without representation learning" > |
85 <option value="--pca">PCA</option> | 120 <option value="--pca">PCA</option> |
86 <option value="--rp">Random Projection</option> | 121 <option value="--rp">Random Projection</option> |
87 <option value="--ae">Autoencoder or Deep Autoencoder</option> | 122 <option value="--ae">Shallow Autoencoder or Deep Autoencoder (SAE, DAE)</option> |
88 <option value="--vae">Variational Autoencoder</option> | 123 <option value="--vae">Variational Autoencoder (VAE)</option> |
89 <option value="--cae">Convolutional Autoencoder</option> | 124 <option value="--cae">Convolutional Autoencoder (CAE)</option> |
90 <option value="no_rl">Train on input</option> | 125 <option value="no_rl">Train on input</option> |
91 </param> | 126 </param> |
92 <when value="no_rl"> | 127 <when value="no_rl"> |
93 <expand macro="clfs" /> | 128 <expand macro="clfs" /> |
94 </when> | 129 </when> |
124 <!-- the encoded features generated by the tool are only for the training set, this is not very useful, therefore omitting | 159 <!-- the encoded features generated by the tool are only for the training set, this is not very useful, therefore omitting |
125 todo change tool do export features complete dataset also when classification is performed --> | 160 todo change tool do export features complete dataset also when classification is performed --> |
126 <filter>mode["mode_type"] == "only_encoding"</filter> | 161 <filter>mode["mode_type"] == "only_encoding"</filter> |
127 <discover_datasets directory="results" pattern="(?P<designation>.*)_rep\.csv" format="tabular" visible="false" /> | 162 <discover_datasets directory="results" pattern="(?P<designation>.*)_rep\.csv" format="tabular" visible="false" /> |
128 </collection> | 163 </collection> |
164 <collection name="model" type="list" label="Keras Models"> | |
165 <!-- the encoded features generated by the tool are only for the training set, this is not very useful, therefore omitting | |
166 todo change tool do export features complete dataset also when classification is performed --> | |
167 <filter>mode["mode_type"] == "only_encoding"</filter> | |
168 <discover_datasets directory="." pattern="(?P<designation>.*).h5" format="data" visible="false" /> | |
169 </collection> | |
129 </outputs> | 170 </outputs> |
130 <tests> | 171 <tests> |
131 | 172 |
132 <!-- only encoding --> | 173 <!-- only encoding --> |
133 <!-- test one parameter sets --> | 174 <!-- test one parameter sets --> |
134 | 175 |
135 <test expect_num_outputs="1"> | 176 <test expect_num_outputs="2"> |
136 <param name="mode_type" value="only_encoding" /> | 177 <param name="mode_type" value="only_encoding" /> |
137 <param name="features" value="UserDataExample.csv" /> | 178 <param name="features" value="UserDataExample.csv" /> |
138 <param name="rl_type_choice" value="--ae" /> | 179 <param name="rl_type_choice" value="--ae" /> |
139 <param name="dm" value="40" /> | 180 <param name="dm" value="40" /> |
140 <output_collection name="encoded_features" type="list"> | 181 <output_collection name="encoded_features" type="list"> |
146 </assert_contents> | 187 </assert_contents> |
147 </element> | 188 </element> |
148 </output_collection> | 189 </output_collection> |
149 </test> | 190 </test> |
150 | 191 |
151 <test expect_num_outputs="1"> | 192 <test expect_num_outputs="2"> |
152 <param name="mode_type" value="only_encoding" /> | 193 <param name="mode_type" value="only_encoding" /> |
153 <param name="features" value="UserDataExample.csv" /> | 194 <param name="features" value="UserDataExample.csv" /> |
154 <param name="rl_type_choice" value="--pca" /> | 195 <param name="rl_type_choice" value="--pca" /> |
155 <output_collection name="encoded_features" type="list"> | 196 <output_collection name="encoded_features" type="list"> |
156 <element name="PCA_features" ftype="tabular" > | 197 <element name="PCA_features" ftype="tabular" > |
160 </assert_contents> | 201 </assert_contents> |
161 </element> | 202 </element> |
162 </output_collection> | 203 </output_collection> |
163 </test> | 204 </test> |
164 | 205 |
206 <!-- only encoding --> | |
207 | |
208 <test expect_num_outputs="2"> | |
209 <param name="mode_type" value="only_encoding" /> | |
210 <param name="features" value="UserDataExample.csv" /> | |
211 <param name="rl_type_choice" value="--ae" /> | |
212 <param name="dm" value="40" /> | |
213 | |
214 <output_collection name="encoded_features" type="list"> | |
215 <!-- output is non determinisitc --> | |
216 <element name="AE[40]_features" ftype="tabular" > | |
217 <assert_contents> | |
218 <has_n_lines n="20"/> | |
219 <!-- <has_n_columns n="40" sep="," /> --> | |
220 </assert_contents> | |
221 </element> | |
222 </output_collection> | |
223 </test> | |
224 | |
165 <!-- test multiple parameter sets --> | 225 <!-- test multiple parameter sets --> |
166 <test expect_num_outputs="1"> | 226 <test expect_num_outputs="2"> |
167 <param name="features" value="UserDataExample.csv" /> | 227 <param name="features" value="UserDataExample.csv" /> |
168 <conditional name="mode"> | 228 <conditional name="mode"> |
169 <param name="mode_type" value="only_encoding" /> | 229 <param name="mode_type" value="only_encoding" /> |
170 | 230 |
171 <repeat name="parameter_set"> | 231 <repeat name="parameter_set"> |
200 | 260 |
201 </test> | 261 </test> |
202 | 262 |
203 <!-- encoding and clf --> | 263 <!-- encoding and clf --> |
204 <!-- test one parameter set --> | 264 <!-- test one parameter set --> |
205 | 265 <!-- test additional parameters scoring / folds and repeat --> |
206 <test expect_num_outputs="1"> | 266 <test expect_num_outputs="1"> |
207 <param name="features" value="UserDataExample.csv" /> | 267 <param name="features" value="UserDataExample.csv" /> |
208 <param name="mode_type" value="e_and_c" /> | 268 <param name="mode_type" value="e_and_c" /> |
209 <param name="class_labels" value="UserLabelExample.csv" /> | 269 <param name="class_labels" value="UserLabelExample.csv" /> |
210 <param name="rl_type_choice" value="--vae" /> | 270 <param name="rl_type_choice" value="--vae" /> |
211 <param name="dm" value="40" /> | 271 <param name="dm" value="40" /> |
272 <param name="scoring" value="roc_auc" /> | |
273 <param name="folds" value="2" /> | |
274 <param name="repeat" value="2" /> | |
212 <param name="classifier" value="rf" /> | 275 <param name="classifier" value="rf" /> |
213 <output ftype="tabular" name="results" > | 276 <output ftype="tabular" name="results" > |
214 <assert_contents> | 277 <assert_contents> |
215 <has_text text="VAE[40]_rf" /> | 278 <has_text text="VAE[40]_rf" /> |
216 </assert_contents> | 279 </assert_contents> |
217 </output> | 280 </output> |
218 | 281 |
219 </test> | 282 </test> |
220 | 283 |
284 | |
285 <!-- no rl --> | |
221 <test expect_num_outputs="1"> | 286 <test expect_num_outputs="1"> |
222 <param name="features" value="UserDataExample.csv" /> | 287 <param name="features" value="UserDataExample.csv" /> |
223 <param name="mode_type" value="e_and_c" /> | 288 <param name="mode_type" value="e_and_c" /> |
224 <param name="class_labels" value="UserLabelExample.csv" /> | 289 <param name="class_labels" value="UserLabelExample.csv" /> |
225 <param name="rl_type_choice" value="no_rl" /> | 290 <param name="rl_type_choice" value="no_rl" /> |