Mercurial > repos > iuc > deseq2
diff deseq2.R @ 30:8fe98f7094de draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/deseq2 commit 6868b66f73ddbe947986d1a20b546873cbd515a9
author | iuc |
---|---|
date | Fri, 26 Aug 2022 11:16:15 +0000 |
parents | cd9874cb9019 |
children | 9a882d108833 |
line wrap: on
line diff
--- a/deseq2.R Mon Nov 29 18:16:48 2021 +0000 +++ b/deseq2.R Fri Aug 26 11:16:15 2022 +0000 @@ -31,8 +31,9 @@ # 3 "mean" # setup R error handling to go to stderr -options(show.error.messages = F, error = function() { - cat(geterrmessage(), file = stderr()); q("no", 1, F) +options(show.error.messages = FALSE, error = function() { + cat(geterrmessage(), file = stderr()) + q("no", 1, FALSE) }) # we need that to not crash galaxy with an UTF8 error on German LC settings. @@ -69,7 +70,9 @@ "outlier_filter_off", "b", 0, "logical", "auto_mean_filter_off", "c", 0, "logical", "beta_prior_off", "d", 0, "logical", - "alpha_ma", "A", 1, "numeric" + "alpha_ma", "A", 1, "numeric", + "prefilter", "P", 0, "logical", + "prefilter_value", "V", 1, "numeric" ), byrow = TRUE, ncol = 4) opt <- getopt(spec) @@ -239,7 +242,7 @@ size_factors <- estimateSizeFactorsForMatrix(counts(dds)) } } - write.table(size_factors, file = opt$sizefactorsfile, sep = "\t", col.names = F, quote = FALSE) + write.table(size_factors, file = opt$sizefactorsfile, sep = "\t", col.names = FALSE, quote = FALSE) } apply_batch_factors <- function(dds, batch_factors) { @@ -253,7 +256,7 @@ dds_data <- colData(dds) # Merge dds_data with batch_factors using indexes, which are sample names # Set sort to False, which maintains the order in dds_data - reordered_batch <- merge(dds_data, batch_factors, by.x = 0, by.y = 0, sort = F) + reordered_batch <- merge(dds_data, batch_factors, by.x = 0, by.y = 0, sort = FALSE) batch_factors <- reordered_batch[, ncol(dds_data):ncol(reordered_batch)] for (factor in colnames(batch_factors)) { dds[[factor]] <- batch_factors[[factor]] @@ -263,7 +266,7 @@ } if (!is.null(opt$batch_factors)) { - batch_factors <- read.table(opt$batch_factors, sep = "\t", header = T) + batch_factors <- read.table(opt$batch_factors, sep = "\t", header = TRUE) dds <- apply_batch_factors(dds = dds, batch_factors = batch_factors) batch_design <- colnames(batch_factors)[-c(1, 2)] design_formula <- as.formula(paste("~", paste(c(batch_design, rev(factors)), collapse = " + "))) @@ -280,6 +283,12 @@ cat(paste(ncol(dds), "samples with counts over", nrow(dds), "genes\n")) } +# minimal pre-filtering +if (!is.null(opt$prefilter)) { + keep <- rowSums(counts(dds)) >= opt$prefilter_value + dds <- dds[keep, ] +} + # optional outlier behavior if (is.null(opt$outlier_replace_off)) { min_rep <- 7