Mercurial > repos > iuc > edger
comparison test-data/out_rscript.txt @ 3:d79ed3ec25fe draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/edger commit e646be741e315df9332b5206cec1e47c11370ff1
author | iuc |
---|---|
date | Sun, 06 May 2018 13:38:41 -0400 |
parents | a1634a9c2ee1 |
children |
comparison
equal
deleted
inserted
replaced
2:a1634a9c2ee1 | 3:d79ed3ec25fe |
---|---|
304 | 304 |
305 bcvOutPdf <- makeOut("bcvplot.pdf") | 305 bcvOutPdf <- makeOut("bcvplot.pdf") |
306 bcvOutPng <- makeOut("bcvplot.png") | 306 bcvOutPng <- makeOut("bcvplot.png") |
307 qlOutPdf <- makeOut("qlplot.pdf") | 307 qlOutPdf <- makeOut("qlplot.pdf") |
308 qlOutPng <- makeOut("qlplot.png") | 308 qlOutPng <- makeOut("qlplot.png") |
309 mdsOutPdf <- makeOut("mdsplot.pdf") | 309 mdsOutPdf <- character() # Initialise character vector |
310 mdsOutPng <- makeOut("mdsplot.png") | 310 mdsOutPng <- character() |
311 mdOutPdf <- character() # Initialise character vector | 311 for (i in 1:ncol(factors)) { |
312 mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) | |
313 mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) | |
314 } | |
315 mdOutPdf <- character() | |
312 mdOutPng <- character() | 316 mdOutPng <- character() |
313 topOut <- character() | 317 topOut <- character() |
314 for (i in 1:length(contrastData)) { | 318 for (i in 1:length(contrastData)) { |
315 mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) | 319 mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) |
316 mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) | 320 mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) |
336 | 340 |
337 # Extract counts and annotation data | 341 # Extract counts and annotation data |
338 data <- list() | 342 data <- list() |
339 data$counts <- counts | 343 data$counts <- counts |
340 if (haveAnno) { | 344 if (haveAnno) { |
341 data$genes <- geneanno | 345 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) |
346 annoord <- geneanno[match(row.names(counts), geneanno[,1]), ] | |
347 data$genes <- annoord | |
342 } else { | 348 } else { |
343 data$genes <- data.frame(GeneID=row.names(counts)) | 349 data$genes <- data.frame(GeneID=row.names(counts)) |
344 } | 350 } |
345 | 351 |
346 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | 352 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of |
408 ### Data Output | 414 ### Data Output |
409 ################################################################################ | 415 ################################################################################ |
410 | 416 |
411 # Plot MDS | 417 # Plot MDS |
412 labels <- names(counts) | 418 labels <- names(counts) |
419 | |
420 # MDS plot | |
413 png(mdsOutPng, width=600, height=600) | 421 png(mdsOutPng, width=600, height=600) |
414 # Currently only using a single factor | 422 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) |
415 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot") | 423 imgName <- paste0("MDS Plot_", names(factors)[1], ".png") |
416 imageData[1, ] <- c("MDS Plot", "mdsplot.png") | 424 imgAddr <- paste0("mdsplot_", names(factors)[1], ".png") |
425 imageData[1, ] <- c(imgName, imgAddr) | |
417 invisible(dev.off()) | 426 invisible(dev.off()) |
418 | 427 |
419 pdf(mdsOutPdf) | 428 pdf(mdsOutPdf) |
420 plotMDS(data, labels=labels, cex=0.5) | 429 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) |
421 linkData[1, ] <- c("MDS Plot.pdf", "mdsplot.pdf") | 430 linkName <- paste0("MDS Plot_", names(factors)[1], ".pdf") |
431 linkAddr <- paste0("mdsplot_", names(factors)[1], ".pdf") | |
432 linkData[1, ] <- c(linkName, linkAddr) | |
422 invisible(dev.off()) | 433 invisible(dev.off()) |
434 | |
435 # If additional factors create additional MDS plots coloured by factor | |
436 if (ncol(factors) > 1) { | |
437 for (i in 2:ncol(factors)) { | |
438 png(mdsOutPng[i], width=600, height=600) | |
439 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | |
440 imgName <- paste0("MDS Plot_", names(factors)[i], ".png") | |
441 imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") | |
442 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
443 invisible(dev.off()) | |
444 | |
445 pdf(mdsOutPdf[i]) | |
446 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | |
447 linkName <- paste0("MDS Plot_", names(factors)[i], ".pdf") | |
448 linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") | |
449 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
450 invisible(dev.off()) | |
451 } | |
452 } | |
423 | 453 |
424 # BCV Plot | 454 # BCV Plot |
425 png(bcvOutPng, width=600, height=600) | 455 png(bcvOutPng, width=600, height=600) |
426 plotBCV(data, main="BCV Plot") | 456 plotBCV(data, main="BCV Plot") |
427 imgName <- "BCV Plot" | 457 imgName <- "BCV Plot" |
467 | 497 |
468 # Save normalised counts (log2cpm) | 498 # Save normalised counts (log2cpm) |
469 if (wantNorm) { | 499 if (wantNorm) { |
470 normalisedCounts <- cpm(data, normalized.lib.sizes=TRUE, log=TRUE) | 500 normalisedCounts <- cpm(data, normalized.lib.sizes=TRUE, log=TRUE) |
471 normalisedCounts <- data.frame(data$genes, normalisedCounts) | 501 normalisedCounts <- data.frame(data$genes, normalisedCounts) |
472 write.table (normalisedCounts, file=normOut, row.names=FALSE, sep="\t") | 502 write.table (normalisedCounts, file=normOut, row.names=FALSE, sep="\t", quote=FALSE) |
473 linkData <- rbind(linkData, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) | 503 linkData <- rbind(linkData, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) |
474 } | 504 } |
475 | 505 |
476 | 506 |
477 for (i in 1:length(contrastData)) { | 507 for (i in 1:length(contrastData)) { |
490 downCount[i] <- sumStatus["Down", ] | 520 downCount[i] <- sumStatus["Down", ] |
491 flatCount[i] <- sumStatus["NotSig", ] | 521 flatCount[i] <- sumStatus["NotSig", ] |
492 | 522 |
493 # Write top expressions table | 523 # Write top expressions table |
494 top <- topTags(res, n=Inf, sort.by="PValue") | 524 top <- topTags(res, n=Inf, sort.by="PValue") |
495 write.table(top, file=topOut[i], row.names=FALSE, sep="\t") | 525 write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) |
496 | 526 |
497 linkName <- paste0("edgeR_", contrastData[i], ".tsv") | 527 linkName <- paste0("edgeR_", contrastData[i], ".tsv") |
498 linkAddr <- paste0("edgeR_", contrastData[i], ".tsv") | 528 linkAddr <- paste0("edgeR_", contrastData[i], ".tsv") |
499 linkData <- rbind(linkData, c(linkName, linkAddr)) | 529 linkData <- rbind(linkData, c(linkName, linkAddr)) |
500 | 530 |
501 # Plot MD (log ratios vs mean difference) using limma package | 531 # Plot MD (log ratios vs mean difference) using limma package |
502 pdf(mdOutPdf[i]) | 532 pdf(mdOutPdf[i]) |
503 limma::plotMD(res, status=status, | 533 limma::plotMD(res, status=status, |
504 main=paste("MD Plot:", unmake.names(contrastData[i])), | 534 main=paste("MD Plot:", unmake.names(contrastData[i])), |
505 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | 535 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), |
506 xlab="Average Expression", ylab="logFC") | 536 xlab="Average Expression", ylab="logFC") |
507 | 537 |
508 abline(h=0, col="grey", lty=2) | 538 abline(h=0, col="grey", lty=2) |
509 | 539 |
510 linkName <- paste0("MD Plot_", contrastData[i], ".pdf") | 540 linkName <- paste0("MD Plot_", contrastData[i], ".pdf") |
513 invisible(dev.off()) | 543 invisible(dev.off()) |
514 | 544 |
515 png(mdOutPng[i], height=600, width=600) | 545 png(mdOutPng[i], height=600, width=600) |
516 limma::plotMD(res, status=status, | 546 limma::plotMD(res, status=status, |
517 main=paste("MD Plot:", unmake.names(contrastData[i])), | 547 main=paste("MD Plot:", unmake.names(contrastData[i])), |
518 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | 548 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), |
519 xlab="Average Expression", ylab="logFC") | 549 xlab="Average Expression", ylab="logFC") |
520 | 550 |
521 abline(h=0, col="grey", lty=2) | 551 abline(h=0, col="grey", lty=2) |
522 | 552 |
523 imgName <- paste0("MD Plot_", contrastData[i], ".png") | 553 imgName <- paste0("MD Plot_", contrastData[i], ".png") |
618 cata("<h4>Additional Information</h4>\n") | 648 cata("<h4>Additional Information</h4>\n") |
619 cata("<ul>\n") | 649 cata("<ul>\n") |
620 | 650 |
621 if (filtCPM || filtSmpCount || filtTotCount) { | 651 if (filtCPM || filtSmpCount || filtTotCount) { |
622 if (filtCPM) { | 652 if (filtCPM) { |
623 tempStr <- paste("Genes without more than", opt$cmpReq, | 653 tempStr <- paste("Genes without more than", opt$cpmReq, |
624 "CPM in at least", opt$sampleReq, "samples are insignificant", | 654 "CPM in at least", opt$sampleReq, "samples are insignificant", |
625 "and filtered out.") | 655 "and filtered out.") |
626 } else if (filtSmpCount) { | 656 } else if (filtSmpCount) { |
627 tempStr <- paste("Genes without more than", opt$cntReq, | 657 tempStr <- paste("Genes without more than", opt$cntReq, |
628 "counts in at least", opt$sampleReq, "samples are insignificant", | 658 "counts in at least", opt$sampleReq, "samples are insignificant", |