changeset 4:959a14c1f2dd draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/falco commit a71120623d1dc818a107ca32f2c232fd47d819ea
author iuc
date Fri, 27 Sep 2024 17:41:40 +0000
parents babbcf02d35c
children
files falco.xml test-data/1000trimmed.fastq.bz2 test-data/contaminant_list.txt test-data/fastqc_customlimits.txt test-data/fastqc_data.txt test-data/fastqc_data_adapters.txt test-data/fastqc_data_adapters_summary.txt test-data/fastqc_data_contaminant_summary.txt test-data/fastqc_data_contaminants.txt test-data/fastqc_data_customlimits.txt test-data/fastqc_data_customlimits_summary.txt test-data/fastqc_data_hisat.txt test-data/fastqc_data_nogroup.txt test-data/fastqc_data_nogroup_summary.txt test-data/fastqc_data_summary.txt test-data/fastqc_report.html test-data/fastqc_report_adapters.html test-data/fastqc_report_bisulfite.html test-data/fastqc_report_bisulfite.txt test-data/fastqc_report_bisulfite_summary.txt test-data/fastqc_report_contaminants.html test-data/fastqc_report_customlimits.html test-data/fastqc_report_hisat.html test-data/fastqc_report_kmer.html test-data/fastqc_report_min_length.html test-data/fastqc_report_nogroup.html test-data/fastqc_report_reverse_complement.html test-data/fastqc_report_reverse_complement.txt test-data/fastqc_report_reverse_complement_summary.txt test-data/fastqc_report_subsample.html test-data/fastqc_report_subsample.txt test-data/limits.txt test-data/summary.txt
diffstat 33 files changed, 1623 insertions(+), 3463 deletions(-) [+]
line wrap: on
line diff
--- a/falco.xml	Tue Sep 10 19:02:42 2024 +0000
+++ b/falco.xml	Fri Sep 27 17:41:40 2024 +0000
@@ -1,7 +1,7 @@
 <tool id="falco" name="Falco" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="21.05">
     <description>An alternative, more performant implementation of FastQC for high throughput sequence quality control</description>
     <macros>
-        <token name="@TOOL_VERSION@">1.2.3</token>
+        <token name="@TOOL_VERSION@">1.2.4</token>
         <token name="@VERSION_SUFFIX@">0</token>
     </macros>
     <xrefs>
@@ -74,28 +74,81 @@
         </data>
     </outputs>
     <tests>
+        <!-- Test with fastq input -->
         <test expect_num_outputs="2">
             <param name="input_file" value="1000trimmed.fastq"/>
-            <output name="html_file" file="fastqc_report.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_data.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <!-- two lines diff to allow for reported version to change -->
+            <output name="text_file" file="fastqc_data.txt" ftype="txt" lines_diff="2"/>
+        </test>
+        <!-- Test with fastq.gz input -->
+        <test expect_num_outputs="2">
+            <param name="input_file" value="1000trimmed.fastq.gz"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq_gz - report.+"/>
+                </assert_contents>
+            </output>
+            <!-- four lines diff to allow for reported version to change; two more to accomodate changed input file name -->
+            <output name="text_file" file="fastqc_data.txt" ftype="txt" lines_diff="4"/>
+        </test>
+        <!-- Test with BAM input -->
+        <test expect_num_outputs="2">
+            <param name="input_file" value="hisat_output_1.bam"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     hisat_output_1_bam - report.+"/>
+                </assert_contents>
+            </output>
+            <!-- four lines diff to allow for reported version to change; two more to accomodate changed input file name -->
+            <output name="text_file" file="fastqc_data_hisat.txt" ftype="txt" lines_diff="4"/>
+        </test>
+        <!-- Test summary file option -->
+        <test expect_num_outputs="3">
+            <param name="input_file" value="1000trimmed.fastq"/>
+            <param name="generate_summary" value="true"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_data.txt" ftype="txt" lines_diff="2"/>
+            <output name="summary_file" file="fastqc_data_summary.txt" ftype="txt"/>
         </test>
         <test expect_num_outputs="2">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="contaminants" value="contaminant_list.txt" ftype="tabular"/>
-            <output name="html_file" file="fastqc_report_contaminants.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_data_contaminants.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_data_contaminants.txt" ftype="txt" lines_diff="2"/>
         </test>
         <test expect_num_outputs="2">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="adapters" value="adapter_list.txt" ftype="tabular"/>
-            <output name="html_file" file="fastqc_report_adapters.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_data_adapters.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_data_adapters.txt" ftype="txt" lines_diff="2"/>
         </test>
-        <test expect_num_outputs="2">
+        <test expect_num_outputs="3">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="limits" value="limits.txt" ftype="txt"/>
-            <output name="html_file" file="fastqc_report_customlimits.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_data_customlimits.txt" ftype="txt"/>
+            <param name="generate_summary" value="true"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="summary_file" file="fastqc_data_customlimits_summary.txt" ftype="txt"/>
         </test>
         <!-- ## The kmers param is ignored in Falco and always set to 7. If this ever gets reconsidered, this test could be uncommented.
         <test expect_num_outputs="2">
@@ -116,40 +169,49 @@
             <output name="html_file" file="fastqc_report_min_length.html" ftype="html" lines_diff="2"/>
             <output name="text_file" file="fastqc_data_min_length.txt" ftype="txt"/>
         </test> -->
-        <test expect_num_outputs="3">
+        <test expect_num_outputs="2">
             <param name="input_file" value="1000trimmed.fastq" ftype="fastq"/>
             <param name="nogroup" value="--nogroup"/>
-            <param name="generate_summary" value="true"/>
-            <output name="html_file" file="fastqc_report_nogroup.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_data_nogroup.txt" ftype="txt"/>
-            <output name="summary_file" file="fastqc_data_nogroup_summary.txt" ftype="txt"/>
-            <assert_command>
-                <has_text text="--nogroup"/>
-            </assert_command>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_data_nogroup.txt" ftype="txt" lines_diff="2"/>
         </test>
         <test expect_num_outputs="3">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="subsample" value="10"/>
             <param name="generate_summary" value="true"/>
-            <output name="html_file" file="fastqc_report_subsample.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_report_subsample.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_report_subsample.txt" ftype="txt" lines_diff="2"/>
             <output name="summary_file" file="fastqc_report_subsample_summary.txt" ftype="txt"/>
         </test>
         <test expect_num_outputs="3">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="bisulfite" value="-bisulfite"/>
             <param name="generate_summary" value="true"/>
-            <output name="html_file" file="fastqc_report_bisulfite.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_report_bisulfite.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_report_bisulfite.txt" ftype="txt" lines_diff="2"/>
             <output name="summary_file" file="fastqc_report_bisulfite_summary.txt" ftype="txt"/>
         </test>
-        <test expect_num_outputs="3">
+        <test expect_num_outputs="2">
             <param name="input_file" value="1000trimmed.fastq"/>
             <param name="reverse_complement" value="-reverse-complement"/>
-            <param name="generate_summary" value="true"/>
-            <output name="html_file" file="fastqc_report_reverse_complement.html" ftype="html" lines_diff="2"/>
-            <output name="text_file" file="fastqc_report_reverse_complement.txt" ftype="txt"/>
-            <output name="summary_file" file="fastqc_report_reverse_complement_summary.txt" ftype="txt"/>
+            <output name="html_file" ftype="html">
+                <assert_contents>
+                  <has_line_matching expression="&lt;html&gt;&lt;head&gt;.+&lt;title&gt;     1000trimmed_fastq - report.+"/>
+                </assert_contents>
+            </output>
+            <output name="text_file" file="fastqc_report_reverse_complement.txt" ftype="txt" lines_diff="2"/>
         </test>
     </tests>
     <help><![CDATA[
@@ -159,15 +221,15 @@
 
 💚️ With its superior performance Falco saves computational resources and gives you back results faster than FastQC.
 
-We recommend it for most use cases (but see below for exceptions). 💚️
+We recommend it for most use cases (but see below for rare exceptions). 💚️
 
 The main functions of Falco are very similar to those of FastQC:
 
 - Import of data from BAM, SAM or FastQ/FastQ.gz files (any variant),
 - Providing a quick overview to tell you in which areas there may be problems
 - Summary graphs and tables to quickly assess your data
-- Export of results to an HTML based permanent report
-- Offline operation to allow automated generation of reports without running the interactive application
+- Export of results to an HTML-based report
+
 
 .. class:: infomark
 
@@ -181,13 +243,10 @@
 
   Falco doesn't currently support fastq.bz2 as input format meaning Galaxy has to perform a relatively slow format conversion before running the tool, which together makes the analysis slower than with FastQC.
 
-- you are interested in PolyA and PolyG statistics in the Adapter Content section of the quality report
-
-  Falco doesn't currently calculate statistics for these "Adapters" by default.
+- you need the HTML report to be viewable offline
 
-- your input consists of *mapped* reads in SAM/BAM format
-
-  Due to a bug in the current version of Falco, reads mapped to the reverse strand of the reference genome are not handled correctly and reported metrics are wrong!
+  The current version of Falco relies on plotly to generate the graphs in the HTML report dynamically each time it's viewed.
+  MultiQC plots generated from Falco's raw data output are, of course, viewable offline just like the ones generated from FastQC output.
 
 -----
 
Binary file test-data/1000trimmed.fastq.bz2 has changed
--- a/test-data/contaminant_list.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/contaminant_list.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,192 +1,194 @@
-# This file contains a list of potential contaminants which are
-# frequently found in high throughput sequencing reactions.  These
-# are mostly sequences of adapters / primers used in the various
-# sequencing chemistries.
-# 
-# Please DO NOT rely on these sequences to design your own oligos, some
-# of them are truncated at ambiguous positions, and none of them are
-# definitive sequences from the manufacturers so don't blame us if you
-# try to use them and they don't work.
-#
-# You can add more sequences to the file by putting one line per entry
-# and specifying a name[tab]sequence.  If the contaminant you add is 
-# likely to be of use to others please consider sending it to the FastQ
-# authors, either via a bug report at www.bioinformatics.babraham.ac.uk/bugzilla/
-# or by directly emailing simon.andrews@babraham.ac.uk so other users of
-# the program can benefit.
-
-Illumina Single End Adapter 1					GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
-Illumina Single End Adapter 2					CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
-Illumina Single End PCR Primer 1				AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Single End PCR Primer 2				CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
-Illumina Single End Sequencing Primer			ACACTCTTTCCCTACACGACGCTCTTCCGATCT
-
-Illumina Paired End Adapter 1					ACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Paired End Adapter 2					GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
-Illumina Paried End PCR Primer 1				AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Paired End PCR Primer 2				CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
-Illumina Paried End Sequencing Primer 1			ACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Paired End Sequencing Primer 2			CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
-
-Illumina DpnII expression Adapter 1				ACAGGTTCAGAGTTCTACAGTCCGAC
-Illumina DpnII expression Adapter 2				CAAGCAGAAGACGGCATACGA
-Illumina DpnII expression PCR Primer 1			CAAGCAGAAGACGGCATACGA
-Illumina DpnII expression PCR Primer 2			AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
-Illumina DpnII expression Sequencing Primer		CGACAGGTTCAGAGTTCTACAGTCCGACGATC
-
-Illumina NlaIII expression Adapter 1			ACAGGTTCAGAGTTCTACAGTCCGACATG
-Illumina NlaIII expression Adapter 2			CAAGCAGAAGACGGCATACGA
-Illumina NlaIII expression PCR Primer 1			CAAGCAGAAGACGGCATACGA
-Illumina NlaIII expression PCR Primer 2			AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
-Illumina NlaIII expression Sequencing Primer	CCGACAGGTTCAGAGTTCTACAGTCCGACATG
-
-Illumina Small RNA Adapter 1					GTTCAGAGTTCTACAGTCCGACGATC
-Illumina Small RNA Adapter 2					TGGAATTCTCGGGTGCCAAGG
-Illumina Small RNA RT Primer					CAAGCAGAAGACGGCATACGA
-Illumina Small RNA PCR Primer 2					AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
-Illumina Small RNA Sequencing Primer			CGACAGGTTCAGAGTTCTACAGTCCGACGATC
-
-Illumina Multiplexing Adapter 1					GATCGGAAGAGCACACGTCT
-Illumina Multiplexing Adapter 2					ACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Multiplexing PCR Primer 1.01			AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Multiplexing PCR Primer 2.01			GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
-Illumina Multiplexing Read1 Sequencing Primer	ACACTCTTTCCCTACACGACGCTCTTCCGATCT
-Illumina Multiplexing Index Sequencing Primer	GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
-Illumina Multiplexing Read2 Sequencing Primer	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
-
-Illumina PCR Primer Index 1						CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC
-Illumina PCR Primer Index 2						CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTC
-Illumina PCR Primer Index 3						CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTC
-Illumina PCR Primer Index 4						CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTC
-Illumina PCR Primer Index 5						CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTC
-Illumina PCR Primer Index 6						CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTC
-Illumina PCR Primer Index 7						CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTC
-Illumina PCR Primer Index 8						CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTC
-Illumina PCR Primer Index 9						CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTC
-Illumina PCR Primer Index 10					CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTC
-Illumina PCR Primer Index 11					CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTC
-Illumina PCR Primer Index 12					CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTC
-
-Illumina DpnII Gex Adapter 1					GATCGTCGGACTGTAGAACTCTGAAC
-Illumina DpnII Gex Adapter 1.01					ACAGGTTCAGAGTTCTACAGTCCGAC
-Illumina DpnII Gex Adapter 2					CAAGCAGAAGACGGCATACGA
-Illumina DpnII Gex Adapter 2.01					TCGTATGCCGTCTTCTGCTTG
-Illumina DpnII Gex PCR Primer 1					CAAGCAGAAGACGGCATACGA
-Illumina DpnII Gex PCR Primer 2					AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
-Illumina DpnII Gex Sequencing Primer			CGACAGGTTCAGAGTTCTACAGTCCGACGATC
-
-Illumina NlaIII Gex Adapter 1.01				TCGGACTGTAGAACTCTGAAC
-Illumina NlaIII Gex Adapter 1.02				ACAGGTTCAGAGTTCTACAGTCCGACATG
-Illumina NlaIII Gex Adapter 2.01				CAAGCAGAAGACGGCATACGA
-Illumina NlaIII Gex Adapter 2.02				TCGTATGCCGTCTTCTGCTTG
-Illumina NlaIII Gex PCR Primer 1				CAAGCAGAAGACGGCATACGA
-Illumina NlaIII Gex PCR Primer 2				AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
-Illumina NlaIII Gex Sequencing Primer			CCGACAGGTTCAGAGTTCTACAGTCCGACATG
-
-Illumina 5p RNA Adapter							GTTCAGAGTTCTACAGTCCGACGATC
-Illumina RNA Adapter1							TGGAATTCTCGGGTGCCAAGG
-
-Illumina Small RNA 3p Adapter 1					ATCTCGTATGCCGTCTTCTGCTTG
-Illumina Small RNA PCR Primer 1					CAAGCAGAAGACGGCATACGA
-
-TruSeq Universal Adapter						AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
-TruSeq Adapter, Index 1							GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 2							GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 3							GATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 4							GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 5							GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 6							GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 7							GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 8							GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 9							GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 10						GATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 11						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 12						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 13						GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 14						GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCGTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 15						GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 16						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 18						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 19						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAACTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 20						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCTTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 21						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTTCGGTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 22						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTACGTTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 23						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCACTCTTCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 25						GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATCTCGTATGCCGTCTTCTGCTTG
-TruSeq Adapter, Index 27						GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTCCTTTCTCGTATGCCGTCTTCTGCTTG
-
-Illumina RNA RT Primer							GCCTTGGCACCCGAGAATTCCA
-Illumina RNA PCR Primer							AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA
-
-RNA PCR Primer, Index 1							CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 2							CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 3							CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 4							CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 5							CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 6							CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 7							CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 8							CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 9							CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 10						CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 11						CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 12						CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 13						CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 14						CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 15						CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 16						CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 17						CAAGCAGAAGACGGCATACGAGATCTCTACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 18						CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 19						CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 20						CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 21						CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 22						CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 23						CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 24						CAAGCAGAAGACGGCATACGAGATGCTACCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 25						CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 26						CAAGCAGAAGACGGCATACGAGATGCTCATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 27						CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 28						CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 29						CAAGCAGAAGACGGCATACGAGATTAGTTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 30						CAAGCAGAAGACGGCATACGAGATCCGGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 31						CAAGCAGAAGACGGCATACGAGATATCGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 32						CAAGCAGAAGACGGCATACGAGATTGAGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 33						CAAGCAGAAGACGGCATACGAGATCGCCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 34						CAAGCAGAAGACGGCATACGAGATGCCATGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 35						CAAGCAGAAGACGGCATACGAGATAAAATGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 36						CAAGCAGAAGACGGCATACGAGATTGTTGGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 37						CAAGCAGAAGACGGCATACGAGATATTCCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 38						CAAGCAGAAGACGGCATACGAGATAGCTAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 39						CAAGCAGAAGACGGCATACGAGATGTATAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 40						CAAGCAGAAGACGGCATACGAGATTCTGAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 41						CAAGCAGAAGACGGCATACGAGATGTCGTCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 42						CAAGCAGAAGACGGCATACGAGATCGATTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 43						CAAGCAGAAGACGGCATACGAGATGCTGTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 44						CAAGCAGAAGACGGCATACGAGATATTATAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 45						CAAGCAGAAGACGGCATACGAGATGAATGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 46						CAAGCAGAAGACGGCATACGAGATTCGGGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 47						CAAGCAGAAGACGGCATACGAGATCTTCGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-RNA PCR Primer, Index 48						CAAGCAGAAGACGGCATACGAGATTGCCGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
-
-ABI Dynabead EcoP Oligo							CTGATCTAGAGGTACCGGATCCCAGCAGT
-ABI Solid3 Adapter A							CTGCCCCGGGTTCCTCATTCTCTCAGCAGCATG
-ABI Solid3 Adapter B							CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT
-ABI Solid3 5' AMP Primer						CCACTACGCCTCCGCTTTCCTCTCTATG
-ABI Solid3 3' AMP Primer						CTGCCCCGGGTTCCTCATTCT
-ABI Solid3 EF1 alpha Sense Primer				CATGTGTGTTGAGAGCTTC
-ABI Solid3 EF1 alpha Antisense Primer			GAAAACCAAAGTGGTCCAC
-ABI Solid3 GAPDH Forward Primer					TTAGCACCCCTGGCCAAGG
-ABI Solid3 GAPDH Reverse Primer					CTTACTCCTTGGAGGCCATG
-
-
-
-Clontech Universal Primer Mix Short				CTAATACGACTCACTATAGGGC
-Clontech Universal Primer Mix Long				CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
-Clontech SMARTer II A Oligonucleotide			AAGCAGTGGTATCAACGCAGAGTAC
-Clontech SMART CDS Primer II A					AAGCAGTGGTATCAACGCAGAGTACT
-Clontech_Universal_Primer_Mix_Short CTAATACGACTCACTATAGGGC
-Clontech_Universal_Primer_Mix_Long  CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
-Clontech_SMARTer_II_A_Oligonucleotide AAGCAGTGGTATCAACGCAGAGTAC
-Clontech_SMART_CDS_Primer_II_A  AAGCAGTGGTATCAACGCAGAGTACT
-Clontech_SMART_CDS_Primer_II_A  ACGTACTCTGCGTTGATACCACTGCTTCCGCGGACAGGCGTGTAGATCTCGGTGGTCGC
-Clontech_SMART_CDS_Primer_II_A  GAGTACGTACTCTGCGTTGATACCACTGCTTCCGCGGACAGGCGTGTAGATCTCGGTGGT
-
+# This file contains a list of potential contaminants which are
+# frequently found in high throughput sequencing reactions.  These
+# are mostly sequences of adapters / primers used in the various
+# sequencing chemistries.
+# 
+# Please DO NOT rely on these sequences to design your own oligos, some
+# of them are truncated at ambiguous positions, and none of them are
+# definitive sequences from the manufacturers so don't blame us if you
+# try to use them and they don't work.
+#
+# You can add more sequences to the file by putting one line per entry
+# and specifying a name[tab]sequence.  If the contaminant you add is 
+# likely to be of use to others please consider sending it to the FastQ
+# authors, either via a bug report at www.bioinformatics.babraham.ac.uk/bugzilla/
+# or by directly emailing simon.andrews@babraham.ac.uk so other users of
+# the program can benefit.
+
+Test sequence				ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT
+
+Illumina Single End Adapter 1					GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
+Illumina Single End Adapter 2					CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
+Illumina Single End PCR Primer 1				AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Single End PCR Primer 2				CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
+Illumina Single End Sequencing Primer			ACACTCTTTCCCTACACGACGCTCTTCCGATCT
+
+Illumina Paired End Adapter 1					ACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Paired End Adapter 2					GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
+Illumina Paried End PCR Primer 1				AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Paired End PCR Primer 2				CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
+Illumina Paried End Sequencing Primer 1			ACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Paired End Sequencing Primer 2			CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
+
+Illumina DpnII expression Adapter 1				ACAGGTTCAGAGTTCTACAGTCCGAC
+Illumina DpnII expression Adapter 2				CAAGCAGAAGACGGCATACGA
+Illumina DpnII expression PCR Primer 1			CAAGCAGAAGACGGCATACGA
+Illumina DpnII expression PCR Primer 2			AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
+Illumina DpnII expression Sequencing Primer		CGACAGGTTCAGAGTTCTACAGTCCGACGATC
+
+Illumina NlaIII expression Adapter 1			ACAGGTTCAGAGTTCTACAGTCCGACATG
+Illumina NlaIII expression Adapter 2			CAAGCAGAAGACGGCATACGA
+Illumina NlaIII expression PCR Primer 1			CAAGCAGAAGACGGCATACGA
+Illumina NlaIII expression PCR Primer 2			AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
+Illumina NlaIII expression Sequencing Primer	CCGACAGGTTCAGAGTTCTACAGTCCGACATG
+
+Illumina Small RNA Adapter 1					GTTCAGAGTTCTACAGTCCGACGATC
+Illumina Small RNA Adapter 2					TGGAATTCTCGGGTGCCAAGG
+Illumina Small RNA RT Primer					CAAGCAGAAGACGGCATACGA
+Illumina Small RNA PCR Primer 2					AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
+Illumina Small RNA Sequencing Primer			CGACAGGTTCAGAGTTCTACAGTCCGACGATC
+
+Illumina Multiplexing Adapter 1					GATCGGAAGAGCACACGTCT
+Illumina Multiplexing Adapter 2					ACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Multiplexing PCR Primer 1.01			AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Multiplexing PCR Primer 2.01			GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
+Illumina Multiplexing Read1 Sequencing Primer	ACACTCTTTCCCTACACGACGCTCTTCCGATCT
+Illumina Multiplexing Index Sequencing Primer	GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
+Illumina Multiplexing Read2 Sequencing Primer	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
+
+Illumina PCR Primer Index 1						CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC
+Illumina PCR Primer Index 2						CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTC
+Illumina PCR Primer Index 3						CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTC
+Illumina PCR Primer Index 4						CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTC
+Illumina PCR Primer Index 5						CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTC
+Illumina PCR Primer Index 6						CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTC
+Illumina PCR Primer Index 7						CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTC
+Illumina PCR Primer Index 8						CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTC
+Illumina PCR Primer Index 9						CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTC
+Illumina PCR Primer Index 10					CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTC
+Illumina PCR Primer Index 11					CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTC
+Illumina PCR Primer Index 12					CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTC
+
+Illumina DpnII Gex Adapter 1					GATCGTCGGACTGTAGAACTCTGAAC
+Illumina DpnII Gex Adapter 1.01					ACAGGTTCAGAGTTCTACAGTCCGAC
+Illumina DpnII Gex Adapter 2					CAAGCAGAAGACGGCATACGA
+Illumina DpnII Gex Adapter 2.01					TCGTATGCCGTCTTCTGCTTG
+Illumina DpnII Gex PCR Primer 1					CAAGCAGAAGACGGCATACGA
+Illumina DpnII Gex PCR Primer 2					AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
+Illumina DpnII Gex Sequencing Primer			CGACAGGTTCAGAGTTCTACAGTCCGACGATC
+
+Illumina NlaIII Gex Adapter 1.01				TCGGACTGTAGAACTCTGAAC
+Illumina NlaIII Gex Adapter 1.02				ACAGGTTCAGAGTTCTACAGTCCGACATG
+Illumina NlaIII Gex Adapter 2.01				CAAGCAGAAGACGGCATACGA
+Illumina NlaIII Gex Adapter 2.02				TCGTATGCCGTCTTCTGCTTG
+Illumina NlaIII Gex PCR Primer 1				CAAGCAGAAGACGGCATACGA
+Illumina NlaIII Gex PCR Primer 2				AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
+Illumina NlaIII Gex Sequencing Primer			CCGACAGGTTCAGAGTTCTACAGTCCGACATG
+
+Illumina 5p RNA Adapter							GTTCAGAGTTCTACAGTCCGACGATC
+Illumina RNA Adapter1							TGGAATTCTCGGGTGCCAAGG
+
+Illumina Small RNA 3p Adapter 1					ATCTCGTATGCCGTCTTCTGCTTG
+Illumina Small RNA PCR Primer 1					CAAGCAGAAGACGGCATACGA
+
+TruSeq Universal Adapter						AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
+TruSeq Adapter, Index 1							GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 2							GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 3							GATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 4							GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 5							GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 6							GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 7							GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 8							GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 9							GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 10						GATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 11						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 12						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 13						GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 14						GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCGTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 15						GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 16						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 18						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 19						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAACTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 20						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCTTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 21						GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTTCGGTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 22						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTACGTTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 23						GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCACTCTTCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 25						GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATCTCGTATGCCGTCTTCTGCTTG
+TruSeq Adapter, Index 27						GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTCCTTTCTCGTATGCCGTCTTCTGCTTG
+
+Illumina RNA RT Primer							GCCTTGGCACCCGAGAATTCCA
+Illumina RNA PCR Primer							AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA
+
+RNA PCR Primer, Index 1							CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 2							CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 3							CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 4							CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 5							CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 6							CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 7							CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 8							CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 9							CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 10						CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 11						CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 12						CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 13						CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 14						CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 15						CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 16						CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 17						CAAGCAGAAGACGGCATACGAGATCTCTACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 18						CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 19						CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 20						CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 21						CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 22						CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 23						CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 24						CAAGCAGAAGACGGCATACGAGATGCTACCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 25						CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 26						CAAGCAGAAGACGGCATACGAGATGCTCATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 27						CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 28						CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 29						CAAGCAGAAGACGGCATACGAGATTAGTTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 30						CAAGCAGAAGACGGCATACGAGATCCGGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 31						CAAGCAGAAGACGGCATACGAGATATCGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 32						CAAGCAGAAGACGGCATACGAGATTGAGTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 33						CAAGCAGAAGACGGCATACGAGATCGCCTGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 34						CAAGCAGAAGACGGCATACGAGATGCCATGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 35						CAAGCAGAAGACGGCATACGAGATAAAATGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 36						CAAGCAGAAGACGGCATACGAGATTGTTGGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 37						CAAGCAGAAGACGGCATACGAGATATTCCGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 38						CAAGCAGAAGACGGCATACGAGATAGCTAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 39						CAAGCAGAAGACGGCATACGAGATGTATAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 40						CAAGCAGAAGACGGCATACGAGATTCTGAGGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 41						CAAGCAGAAGACGGCATACGAGATGTCGTCGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 42						CAAGCAGAAGACGGCATACGAGATCGATTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 43						CAAGCAGAAGACGGCATACGAGATGCTGTAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 44						CAAGCAGAAGACGGCATACGAGATATTATAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 45						CAAGCAGAAGACGGCATACGAGATGAATGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 46						CAAGCAGAAGACGGCATACGAGATTCGGGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 47						CAAGCAGAAGACGGCATACGAGATCTTCGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+RNA PCR Primer, Index 48						CAAGCAGAAGACGGCATACGAGATTGCCGAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
+
+ABI Dynabead EcoP Oligo							CTGATCTAGAGGTACCGGATCCCAGCAGT
+ABI Solid3 Adapter A							CTGCCCCGGGTTCCTCATTCTCTCAGCAGCATG
+ABI Solid3 Adapter B							CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT
+ABI Solid3 5' AMP Primer						CCACTACGCCTCCGCTTTCCTCTCTATG
+ABI Solid3 3' AMP Primer						CTGCCCCGGGTTCCTCATTCT
+ABI Solid3 EF1 alpha Sense Primer				CATGTGTGTTGAGAGCTTC
+ABI Solid3 EF1 alpha Antisense Primer			GAAAACCAAAGTGGTCCAC
+ABI Solid3 GAPDH Forward Primer					TTAGCACCCCTGGCCAAGG
+ABI Solid3 GAPDH Reverse Primer					CTTACTCCTTGGAGGCCATG
+
+
+
+Clontech Universal Primer Mix Short				CTAATACGACTCACTATAGGGC
+Clontech Universal Primer Mix Long				CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
+Clontech SMARTer II A Oligonucleotide			AAGCAGTGGTATCAACGCAGAGTAC
+Clontech SMART CDS Primer II A					AAGCAGTGGTATCAACGCAGAGTACT
+Clontech_Universal_Primer_Mix_Short CTAATACGACTCACTATAGGGC
+Clontech_Universal_Primer_Mix_Long  CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT
+Clontech_SMARTer_II_A_Oligonucleotide AAGCAGTGGTATCAACGCAGAGTAC
+Clontech_SMART_CDS_Primer_II_A  AAGCAGTGGTATCAACGCAGAGTACT
+Clontech_SMART_CDS_Primer_II_A  ACGTACTCTGCGTTGATACCACTGCTTCCGCGGACAGGCGTGTAGATCTCGGTGGTCGC
+Clontech_SMART_CDS_Primer_II_A  GAGTACGTACTCTGCGTTGATACCACTGCTTCCGCGGACAGGCGTGTAGATCTCGGTGGT
+
--- a/test-data/fastqc_customlimits.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,84 +0,0 @@
-# For each of the modules you can choose to not run that
-# module at all by setting the value below to 1 for the
-# modules you want to remove.
-duplication 		ignore 		0
-kmer 				ignore 		0
-n_content 			ignore 		0
-overrepresented 	ignore 		0
-quality_base 		ignore 		0
-sequence 			ignore 		0
-gc_sequence			ignore 		0
-quality_sequence	ignore		0
-tile				ignore		0
-sequence_length		ignore		0
-adapter				ignore		0
-
-# For the duplication module the value is the percentage
-# remaining after deduplication.  Measured levels below
-# these limits trigger the warning / error.
-duplication	warn	70
-duplication error	50
-
-# For the kmer module the filter is on the -log10 binomial
-# pvalue for the most significant Kmer, so 5 would be 
-# 10^-5 = p<0.00001
-kmer	warn	2
-kmer	error	5
-
-# For the N module the filter is on the percentage of Ns
-# at any position in the library
-n_content	warn	5
-n_content	error	20
-
-# For the overrepresented seqs the warn value sets the
-# threshold for the overrepresented sequences to be reported
-# at all as the proportion of the library which must be seen
-# as a single sequence
-overrepresented	warn	0.1
-overrepresented	error	1
-
-# The per base quality filter uses two values, one for the value
-# of the lower quartile, and the other for the value of the
-# median quality.  Failing either of these will trigger the alert
-quality_base_lower	warn	10
-quality_base_lower	error	5
-quality_base_median	warn	25
-quality_base_median	error	20
-
-# The per base sequence content module tests the maximum deviation
-# between A and T or C and G
-sequence	warn	10
-sequence	error	20
-
-# The per sequence GC content tests the maximum deviation between
-# the theoretical distribution and the real distribution
-gc_sequence	warn	15
-gc_sequence	error	30
-
-# The per sequence quality module tests the phred score which is
-# most frequently observed
-quality_sequence	warn	27
-quality_sequence	error	20
-
-# The per tile module tests the maximum phred score loss between 
-# and individual tile and the average for that base across all tiles
-tile	warn	5
-tile	error	10
-
-# The sequence length module tests are binary, so the values here
-# simply turn them on or off.  The actual tests warn if you have
-# sequences of different length, and error if you have sequences
-# of zero length.
-
-sequence_length	warn	1
-sequence_length	error	1
-
-# The adapter module's warnings and errors are based on the 
-# percentage of reads in the library which have been observed
-# to contain an adapter associated Kmer at any point
-
-adapter	warn	5
-adapter	error	10
-
-
-	
--- a/test-data/fastqc_data.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1597,114 +1597,114 @@
 #Sequence	Count	Percentage	Possible Source
 ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
 >>END_MODULE
->>Adapter Content	warn
+>>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
+2	0	0	0	0	0.0611621	0
+3	0	0	0	0	0.0611621	0
+4	0	0	0	0	0.0611621	0
+5	0	0	0	0	0.122324	0
+6	0	0	0	0	0.122324	0
+7	0	0	0	0	0.122324	0
+8	0	0	0	0	0.142712	0
+9	0	0	0	0	0.142712	0
+10	0	0	0	0	0.142712	0
+11	0	0	0	0	0.142712	0
+12	0	0	0	0	0.142712	0
+13	0	0	0	0	0.163099	0
+14	0	0	0	0	0.163099	0
+15	0	0	0	0	0.183486	0
+16	0	0	0	0	0.203874	0
+17	0	0	0	0	0.224261	0
+18	0	0	0	0	0.224261	0
+19	0	0	0	0	0.224261	0
+20	0.122324	0	0	0	0.244648	0
+21	0.122324	0	0	0	0.244648	0
+22	0.122324	0	0	0	0.244648	0
+23	0.122324	0	0	0	0.244648	0
+24	0.122324	0	0	0	0.244648	0
+25	0.122324	0	0	0	0.244648	0
+26	0.122324	0	0	0	0.244648	0
+27	0.142712	0	0	0	0.244648	0
+28	0.183486	0	0	0	0.244648	0
+29	0.224261	0	0	0	0.244648	0
+30	0.224261	0	0	0	0.244648	0
+31	0.224261	0	0	0	0.244648	0
+32	0.224261	0	0	0	0.244648	0
+33	0.224261	0	0	0	0.285423	0
+34	0.224261	0	0	0	0.285423	0
+35	0.265036	0	0	0	0.30581	0
+36	0.285423	0	0	0	0.30581	0
+37	0.326198	0	0	0	0.326198	0
+38	0.407747	0	0	0	0.326198	0
+39	0.468909	0	0	0	0.326198	0
+40	0.468909	0	0	0	0.326198	0
+41	0.468909	0	0	0	0.326198	0
+42	0.468909	0	0	0	0.326198	0
+43	0.468909	0	0	0	0.326198	0
+44	0.468909	0	0	0	0.326198	0
+45	0.468909	0	0	0	0.326198	0
+46	0.468909	0	0	0	0.326198	0
+47	0.468909	0	0	0	0.326198	0
+48	0.468909	0	0	0	0.326198	0
+49	0.468909	0	0	0	0.326198	0
+50	0.468909	0	0	0	0.326198	0
+51	0.468909	0	0	0	0.326198	0
+52	0.468909	0	0	0	0.326198	0
+53	0.468909	0	0	0	0.326198	0
+54	0.468909	0	0	0	0.326198	0
+55	0.468909	0	0	0	0.326198	0
+56	0.468909	0	0	0	0.326198	0
+57	0.468909	0	0	0	0.326198	0
+58	0.468909	0	0	0	0.326198	0
+59	0.468909	0	0	0	0.326198	0
+60	0.468909	0	0	0	0.326198	0
+61	0.468909	0	0	0	0.326198	0
+62	0.468909	0	0	0	0.326198	0
+63	0.468909	0	0	0	0.326198	0
+64	0.468909	0	0	0	0.326198	0
+65	0.468909	0	0	0	0.326198	0
+66	0.468909	0	0	0	0.326198	0
+67	0.468909	0	0	0	0.326198	0
+68	0.468909	0	0	0	0.326198	0
+69	0.468909	0	0	0	0.326198	0
+70	0.468909	0	0	0	0.326198	0
+71	0.468909	0	0	0	0.326198	0
+72	0.468909	0	0	0	0.326198	0
+73	0.468909	0	0	0	0.326198	0
+74	0.468909	0	0	0	0.326198	0
+75	0.468909	0	0	0	0.326198	0
+76	0.468909	0	0	0	0.326198	0
+77	0.468909	0	0	0	0.326198	0
+78	0.468909	0	0	0	0.326198	0
+79	0.468909	0	0	0	0.326198	0
+80	0.468909	0	0	0	0.326198	0
+81	0.468909	0	0	0	0.326198	0
+82	0.468909	0	0	0	0.326198	0
+83	0.468909	0	0	0	0.326198	0
+84	0.468909	0	0	0	0.326198	0
+85	0.468909	0	0	0	0.326198	0
+86	0.468909	0	0	0	0.326198	0
+87	0.468909	0	0	0	0.326198	0
+88	0.468909	0	0	0	0.326198	0
+89	0.468909	0	0	0	0.326198	0
+90	0.468909	0	0	0	0.326198	0
+91	0.468909	0	0	0	0.326198	0
+92	0.468909	0	0	0	0.326198	0
+93	0.468909	0	0	0	0.326198	0
+94	0.468909	0	0	0	0.326198	0
+95	0.468909	0	0	0	0.326198	0
+96	0.468909	0	0	0	0.326198	0
+97	0.468909	0	0	0	0.326198	0
+98	0.468909	0	0	0	0.326198	0
+99	0.468909	0	0	0	0.326198	0
+100	0.468909	0	0	0	0.326198	0
+101	0.468909	0	0	0	0.326198	0
+102	0.468909	0	0	0	0.326198	0
+103	0.468909	0	0	0	0.326198	0
+104	0.468909	0	0	0	0.326198	0
+105	0.468909	0	0	0	0.326198	0
+106	0.468909	0	0	0	0.326198	0
+107	0.468909	0	0	0	0.326198	0
+108	0.468909	0	0	0	0.326198	0
 >>END_MODULE
--- a/test-data/fastqc_data_adapters.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data_adapters.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1672,39 +1672,39 @@
 71	0.468909	0	0	0	0
 72	0.468909	0	0	0	0
 73	0.468909	0	0	0	0
-74	0.489297	0	0	0	0
-75	0.489297	0	0	0	0
-76	0.489297	0	0	0	0
-77	0.489297	0	0	0	0
-78	0.489297	0	0	0	0
-79	0.489297	0	0	0	0
-80	0.489297	0	0	0	0
-81	0.489297	0	0	0	0
-82	0.489297	0	0	0	0
-83	0.509684	0	0	0	0
-84	0.509684	0	0	0	0
-85	0.509684	0	0	0	0
-86	0.509684	0	0	0	0
-87	0.509684	0	0	0	0
-88	0.509684	0	0	0	0
-89	0.509684	0	0	0	0
-90	0.509684	0	0	0	0
-91	0.509684	0	0	0	0
-92	0.570846	0	0	0	0
-93	0.632008	0	0	0	0
-94	0.632008	0	0	0	0
-95	0.632008	0	0	0	0
-96	0.632008	0	0	0	0
-97	0.632008	0	0	0	0
-98	0.632008	0	0	0	0
-99	0.632008	0	0	0	0
-100	0.632008	0	0	0	0
-101	0.632008	0	0	0	0
-102	0.632008	0	0	0	0
-103	0.632008	0	0	0	0
-104	0.632008	0	0	0	0
-105	0.632008	0	0	0	0
-106	0.632008	0	0	0	0
-107	0.632008	0	0	0	0
-108	0.632008	0	0	0	0
+74	0.468909	0	0	0	0
+75	0.468909	0	0	0	0
+76	0.468909	0	0	0	0
+77	0.468909	0	0	0	0
+78	0.468909	0	0	0	0
+79	0.468909	0	0	0	0
+80	0.468909	0	0	0	0
+81	0.468909	0	0	0	0
+82	0.468909	0	0	0	0
+83	0.468909	0	0	0	0
+84	0.468909	0	0	0	0
+85	0.468909	0	0	0	0
+86	0.468909	0	0	0	0
+87	0.468909	0	0	0	0
+88	0.468909	0	0	0	0
+89	0.468909	0	0	0	0
+90	0.468909	0	0	0	0
+91	0.468909	0	0	0	0
+92	0.468909	0	0	0	0
+93	0.468909	0	0	0	0
+94	0.468909	0	0	0	0
+95	0.468909	0	0	0	0
+96	0.468909	0	0	0	0
+97	0.468909	0	0	0	0
+98	0.468909	0	0	0	0
+99	0.468909	0	0	0	0
+100	0.468909	0	0	0	0
+101	0.468909	0	0	0	0
+102	0.468909	0	0	0	0
+103	0.468909	0	0	0	0
+104	0.468909	0	0	0	0
+105	0.468909	0	0	0	0
+106	0.468909	0	0	0	0
+107	0.468909	0	0	0	0
+108	0.468909	0	0	0	0
 >>END_MODULE
--- a/test-data/fastqc_data_adapters_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
-PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
-WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-PASS	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_data_contaminant_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
-PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
-WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-PASS	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_data_contaminants.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data_contaminants.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1595,116 +1595,116 @@
 >>END_MODULE
 >>Overrepresented sequences	warn
 #Sequence	Count	Percentage	Possible Source
-ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
+ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	Test sequence
 >>END_MODULE
->>Adapter Content	warn
+>>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
+2	0	0	0	0	0.0611621	0
+3	0	0	0	0	0.0611621	0
+4	0	0	0	0	0.0611621	0
+5	0	0	0	0	0.122324	0
+6	0	0	0	0	0.122324	0
+7	0	0	0	0	0.122324	0
+8	0	0	0	0	0.142712	0
+9	0	0	0	0	0.142712	0
+10	0	0	0	0	0.142712	0
+11	0	0	0	0	0.142712	0
+12	0	0	0	0	0.142712	0
+13	0	0	0	0	0.163099	0
+14	0	0	0	0	0.163099	0
+15	0	0	0	0	0.183486	0
+16	0	0	0	0	0.203874	0
+17	0	0	0	0	0.224261	0
+18	0	0	0	0	0.224261	0
+19	0	0	0	0	0.224261	0
+20	0.122324	0	0	0	0.244648	0
+21	0.122324	0	0	0	0.244648	0
+22	0.122324	0	0	0	0.244648	0
+23	0.122324	0	0	0	0.244648	0
+24	0.122324	0	0	0	0.244648	0
+25	0.122324	0	0	0	0.244648	0
+26	0.122324	0	0	0	0.244648	0
+27	0.142712	0	0	0	0.244648	0
+28	0.183486	0	0	0	0.244648	0
+29	0.224261	0	0	0	0.244648	0
+30	0.224261	0	0	0	0.244648	0
+31	0.224261	0	0	0	0.244648	0
+32	0.224261	0	0	0	0.244648	0
+33	0.224261	0	0	0	0.285423	0
+34	0.224261	0	0	0	0.285423	0
+35	0.265036	0	0	0	0.30581	0
+36	0.285423	0	0	0	0.30581	0
+37	0.326198	0	0	0	0.326198	0
+38	0.407747	0	0	0	0.326198	0
+39	0.468909	0	0	0	0.326198	0
+40	0.468909	0	0	0	0.326198	0
+41	0.468909	0	0	0	0.326198	0
+42	0.468909	0	0	0	0.326198	0
+43	0.468909	0	0	0	0.326198	0
+44	0.468909	0	0	0	0.326198	0
+45	0.468909	0	0	0	0.326198	0
+46	0.468909	0	0	0	0.326198	0
+47	0.468909	0	0	0	0.326198	0
+48	0.468909	0	0	0	0.326198	0
+49	0.468909	0	0	0	0.326198	0
+50	0.468909	0	0	0	0.326198	0
+51	0.468909	0	0	0	0.326198	0
+52	0.468909	0	0	0	0.326198	0
+53	0.468909	0	0	0	0.326198	0
+54	0.468909	0	0	0	0.326198	0
+55	0.468909	0	0	0	0.326198	0
+56	0.468909	0	0	0	0.326198	0
+57	0.468909	0	0	0	0.326198	0
+58	0.468909	0	0	0	0.326198	0
+59	0.468909	0	0	0	0.326198	0
+60	0.468909	0	0	0	0.326198	0
+61	0.468909	0	0	0	0.326198	0
+62	0.468909	0	0	0	0.326198	0
+63	0.468909	0	0	0	0.326198	0
+64	0.468909	0	0	0	0.326198	0
+65	0.468909	0	0	0	0.326198	0
+66	0.468909	0	0	0	0.326198	0
+67	0.468909	0	0	0	0.326198	0
+68	0.468909	0	0	0	0.326198	0
+69	0.468909	0	0	0	0.326198	0
+70	0.468909	0	0	0	0.326198	0
+71	0.468909	0	0	0	0.326198	0
+72	0.468909	0	0	0	0.326198	0
+73	0.468909	0	0	0	0.326198	0
+74	0.468909	0	0	0	0.326198	0
+75	0.468909	0	0	0	0.326198	0
+76	0.468909	0	0	0	0.326198	0
+77	0.468909	0	0	0	0.326198	0
+78	0.468909	0	0	0	0.326198	0
+79	0.468909	0	0	0	0.326198	0
+80	0.468909	0	0	0	0.326198	0
+81	0.468909	0	0	0	0.326198	0
+82	0.468909	0	0	0	0.326198	0
+83	0.468909	0	0	0	0.326198	0
+84	0.468909	0	0	0	0.326198	0
+85	0.468909	0	0	0	0.326198	0
+86	0.468909	0	0	0	0.326198	0
+87	0.468909	0	0	0	0.326198	0
+88	0.468909	0	0	0	0.326198	0
+89	0.468909	0	0	0	0.326198	0
+90	0.468909	0	0	0	0.326198	0
+91	0.468909	0	0	0	0.326198	0
+92	0.468909	0	0	0	0.326198	0
+93	0.468909	0	0	0	0.326198	0
+94	0.468909	0	0	0	0.326198	0
+95	0.468909	0	0	0	0.326198	0
+96	0.468909	0	0	0	0.326198	0
+97	0.468909	0	0	0	0.326198	0
+98	0.468909	0	0	0	0.326198	0
+99	0.468909	0	0	0	0.326198	0
+100	0.468909	0	0	0	0.326198	0
+101	0.468909	0	0	0	0.326198	0
+102	0.468909	0	0	0	0.326198	0
+103	0.468909	0	0	0	0.326198	0
+104	0.468909	0	0	0	0.326198	0
+105	0.468909	0	0	0	0.326198	0
+106	0.468909	0	0	0	0.326198	0
+107	0.468909	0	0	0	0.326198	0
+108	0.468909	0	0	0	0.326198	0
 >>END_MODULE
--- a/test-data/fastqc_data_customlimits.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1710 +0,0 @@
-##Falco	1.2.3
->>Basic Statistics	pass
-#Measure	Value
-Filename	1000trimmed_fastq
-File type	Conventional base calls
-Encoding	Sanger / Illumina 1.9
-Total Sequences	4905
-Sequences flagged as poor quality	0
-Sequence length	1-108
-%GC	41
->>END_MODULE
->>Per base sequence quality	pass
-#Base	Mean	Median	Lower Quartile	Upper Quartile	10th Percentile	90th Percentile
-1	29.2828	31	27	33	23	34
-2	28.8329	30	27	32	22	33
-3	28.897	30	27	32	23	34
-4	29.0068	30	27	32	23	34
-5	28.9378	30	27	32	22	34
-6	29.0029	30	27	32	23	34
-7	28.8998	30	27	32	22	34
-8	28.9007	30	27	32	22	33
-9	28.7546	30	27	32	22	34
-10-11	28.8221	30	27	32	22.5	33
-12-13	28.749	30	26.5	32	22	33
-14-15	28.5337	30	26	32	22	33.5
-16-17	28.5266	30	26	32	22	33
-18-19	28.6834	30	26	32	22.5	33
-20-21	28.3701	29.5	26	32	22	33
-22-23	28.1859	29	26	32	22	33
-24-25	28.1301	29	26	32	21.5	33
-26-27	28.0758	29	26	32	21.5	33
-28-29	27.828	29	25	32	21	33
-30-31	27.7928	29	25	31.5	21	33
-32-33	27.491	28	25	31	21	33
-34-35	27.3572	28	24.5	31	21	33
-36-37	27.0622	28	24	31	20.5	33
-38-39	27.238	28	24	31	21	33
-40-41	27.029	28	24	31	20.5	33
-42-43	26.9086	27	24	31	20.5	33
-44-45	26.632	27	24	30	20	32
-46-47	26.8304	27.5	24	31	20.5	32
-48-49	26.4317	27	23.5	30	20	32
-50-51	26.219	27	23	30	20	32
-52-53	25.9257	26.5	22.5	29.5	19.5	31.5
-54-55	27.9952	29.5	25.5	31.5	20.5	33
-56-57	30.4109	31.5	28.5	33	25.5	34
-58-59	30.4084	31.5	28.5	33	26	34
-60-61	30.4448	31.5	29	33	26	34
-62-63	30.4404	31.5	29	33	25.5	34
-64-65	30.4417	31.5	29	33	25.5	34
-66-67	30.5114	32	29	33	25.5	34
-68-69	30.0512	31	28	33	24.5	34
-70-71	30.2761	31	29	33	25	34
-72-73	30.3855	31.5	29	33	25.5	34
-74-75	30.2135	31	28.5	33	25.5	34
-76-77	29.6789	31	28	33	24.5	34
-78-79	30.0191	31	28	33	24.5	34
-80-81	29.6642	31	27.5	33	24	34
-82-83	29.6535	31	28	32.5	24.5	34
-84-85	29.4256	30.5	27	32	24	34
-86-87	29.3406	30	27	32.5	24	34
-88-89	28.7857	30	27	32	22.5	33.5
-90-91	28.6675	29.5	26	32	23	33
-92-93	28.5659	29	26	32	23	33
-94-95	28.2717	29	26	32	22.5	33
-96-97	27.9496	29	25.5	31	22	33
-98-99	27.3152	28	25	31	21.5	33
-100-101	27.6147	28	25	31	21.5	33
-102-103	27.1962	28	24.5	31	21	33
-104-105	26.8709	27.5	24	31	20	32.5
-106-107	26.3676	27	23.5	30	20.5	32
-108	27.5651	28	24	31	22	33
->>END_MODULE
->>Per tile sequence quality	fail
-#Tile	Base	Mean
-0	1	-29.4857
-0	2	-28.7721
-0	3	-28.5832
-0	4	-28.7282
-0	5	-28.9662
-0	6	-28.9765
-0	7	-29.0324
-0	8	-28.9563
-0	9	-28.4479
-0	10	-28.2935
-0	11	-28.6264
-0	12	-28.711
-0	13	-28.5163
-0	14	-28.3915
-0	15	-28.2392
-0	16	-28.5304
-0	17	-28.3975
-0	18	-28.5859
-0	19	-28.6272
-0	20	-28.1273
-0	21	-28.2058
-0	22	-28.1046
-0	23	-28.3908
-0	24	-28.0801
-0	25	-28.0111
-0	26	-27.9571
-0	27	-28.1062
-0	28	-27.7915
-0	29	-27.6043
-0	30	-27.7709
-0	31	-27.5781
-0	32	-27.8211
-0	33	-27.6197
-0	34	-27.447
-0	35	-27.3368
-0	36	-27.2226
-0	37	-27.2582
-0	38	-27.2825
-0	39	-26.7901
-0	40	-26.9377
-0	41	-27.17
-0	42	-27.1488
-0	43	-26.1931
-0	44	-26.6119
-0	45	-26.5613
-0	46	-26.7864
-0	47	-26.3367
-0	48	-26.2903
-0	49	-25.7095
-0	50	-26.3457
-0	51	-26.0927
-0	52	-25.7055
-0	53	-24.9716
-0	54	-26
-0	55	-30.4161
-0	56	-30.3869
-0	57	-30.1825
-0	58	-29.6569
-0	59	-30.0876
-0	60	-30.146
-0	61	-30.4891
-0	62	-30.9197
-0	63	-30.0511
-0	64	-29.5255
-0	65	-30.0956
-0	66	-30.4559
-0	67	-30.0588
-0	68	-30.1176
-0	69	-29.9853
-0	70	-30.4191
-0	71	-30.1029
-0	72	-30.2206
-0	73	-30.2132
-0	74	-29.2721
-0	75	-29.25
-0	76	-29.7206
-0	77	-29.8015
-0	78	-29.7794
-0	79	-29.6838
-0	80	-29.5956
-0	81	-29.4412
-0	82	-29.3824
-0	83	-29.375
-0	84	-29.6176
-0	85	-29.1544
-0	86	-29.2059
-0	87	-29.0074
-0	88	-28.8162
-0	89	-28.3603
-0	90	-28.0809
-0	91	-28.8309
-0	92	-28.5882
-0	93	-28.1618
-0	94	-27.8897
-0	95	-28.0074
-0	96	-28.1471
-0	97	-27.6471
-0	98	-27.5662
-0	99	-27.4485
-0	100	-27.4044
-0	101	-26.9265
-0	102	-27.2132
-0	103	-26.5882
-0	104	-26.8603
-0	105	-26.2868
-0	106	-26.0588
-0	107	-25.1343
-0	108	-27.2314
-1	1	0.904969
-1	2	0.618551
-1	3	0.463713
-1	4	-0.165716
-1	5	-0.0790766
-1	6	0.136407
-1	7	0.0643768
-1	8	-0.311171
-1	9	0.352106
-1	10	0.23988
-1	11	-0.059757
-1	12	-0.982196
-1	13	0.0260938
-1	14	0.367111
-1	15	1.12283
-1	16	0.00406913
-1	17	0.374399
-1	18	0.128427
-1	19	0.154569
-1	20	0.911943
-1	21	0.264783
-1	22	-0.124558
-1	23	-0.615325
-1	24	-0.794396
-1	25	-0.0315502
-1	26	-0.957143
-1	27	-0.780108
-1	28	-0.204584
-1	29	-0.343425
-1	30	0.540213
-1	31	-0.200347
-1	32	0.0425501
-1	33	0.213661
-1	34	0.124409
-1	35	0.419328
-1	36	0.0700681
-1	37	-0.437669
-1	38	-1.33516
-1	39	-0.654941
-1	40	0.170365
-1	41	-1.22718
-1	42	-0.266407
-1	43	0.473534
-1	44	-0.248236
-1	45	0.00117925
-1	46	-0.108988
-1	47	-0.30335
-1	48	-0.0980149
-1	49	-0.361671
-1	50	-0.302201
-1	51	-0.807001
-1	52	0.294521
-1	53	-1.12163
-1	54	0
-1	55	1.21552
-1	56	0.98156
-1	57	-0.656166
-1	58	-0.0253554
-1	59	-0.982328
-1	60	-1.40914
-1	61	-0.752209
-1	62	-1.13023
-1	63	-0.20899
-1	64	-1.26239
-1	65	-0.428922
-1	66	-1.06699
-1	67	0.885621
-1	68	0.0490196
-1	69	1.01471
-1	70	1.41422
-1	71	0.674837
-1	72	0.334967
-1	73	-0.602124
-1	74	-0.0498366
-1	75	-0.0833333
-1	76	-0.887255
-1	77	0.198529
-1	78	-0.668301
-1	79	0.705065
-1	80	-0.262255
-1	81	-1.10784
-1	82	0.506536
-1	83	-0.819444
-1	84	0.493464
-1	85	-0.154412
-1	86	0.627451
-1	87	-0.00735294
-1	88	1.18382
-1	89	0.750817
-1	90	0.585784
-1	91	-0.664216
-1	92	-1.2549
-1	93	0.504902
-1	94	0.110294
-1	95	-0.618464
-1	96	0.186275
-1	97	-0.202614
-1	98	0.489379
-1	99	-0.504085
-1	100	0.0955882
-1	101	0.740196
-1	102	-0.268791
-1	103	-0.699346
-1	104	0.250817
-1	105	-0.953431
-1	106	-0.392157
-1	107	-1.41211
-1	108	-0.878464
-2	1	0.530738
-2	2	-0.526172
-2	3	-0.829064
-2	4	-1.23641
-2	5	-0.542445
-2	6	-0.252358
-2	7	-1.1574
-2	8	-0.0836046
-2	9	-0.11456
-2	10	-0.351146
-2	11	-0.806424
-2	12	-0.791009
-2	13	-1.31628
-2	14	0.0459906
-2	15	-1.0309
-2	16	-0.721903
-2	17	-1.63666
-2	18	0.0569986
-2	19	-0.432127
-2	20	-0.127273
-2	21	-0.280805
-2	22	-0.929558
-2	23	-0.740836
-2	24	-0.874982
-2	25	-0.511142
-2	26	0.0984127
-2	27	-0.106195
-2	28	-0.379776
-2	29	-1.39217
-2	30	-2.25575
-2	31	-1.89062
-2	32	-1.38359
-2	33	-2.84548
-2	34	-2.41476
-2	35	-2.23677
-2	36	-2.40119
-2	37	-2.52741
-2	38	-2.0133
-2	39	-2.16508
-2	40	-1.06274
-2	41	0.258531
-2	42	-1.81543
-2	43	-1.03524
-2	44	-1.71714
-2	45	-1.09073
-2	46	-0.0989078
-2	47	-3.64918
-2	48	-1.07604
-2	49	-2.32488
-2	50	-0.845679
-2	51	-2.19272
-2	52	-1.50548
-2	53	-1.57163
-2	54	-3.9
-2	55	1.80616
-2	56	-0.053528
-2	57	0.595296
-2	58	-4.3236
-2	59	-2.30981
-2	60	1.18735
-2	61	-0.933496
-2	62	-1.36415
-2	63	-0.60665
-2	64	-0.636659
-2	65	-3.87337
-2	66	-1.01144
-2	67	-1.72549
-2	68	-0.00653595
-2	69	-2.31863
-2	70	-1.08578
-2	71	-3.32516
-2	72	-2.3317
-2	73	-0.65768
-2	74	0.61683
-2	75	0.638889
-2	76	-0.831699
-2	77	-1.35703
-2	78	-1.55719
-2	79	-0.572712
-2	80	-1.15114
-2	81	1.3366
-2	82	1.1732
-2	83	-1.59722
-2	84	-2.06209
-2	85	-4.82108
-2	86	-2.98366
-2	87	-3.78513
-2	88	-2.0384
-2	89	-3.24918
-2	90	-2.52533
-2	91	-3.49755
-2	92	-1.47712
-2	93	-2.16176
-2	94	-2.66748
-2	95	0.103758
-2	96	-2.36928
-2	97	-2.0915
-2	98	-2.7884
-2	99	-1.22631
-2	100	0.0400327
-2	101	-3.92647
-2	102	-1.8799
-2	103	-2.03268
-2	104	-1.86029
-2	105	-2.95343
-2	106	0.0522876
-2	107	-1.91211
-2	108	-2.94569
-3	1	-0.172223
-3	2	-0.339238
-3	3	0.670569
-3	4	0.347542
-3	5	0.503524
-3	6	-0.914957
-3	7	0.798372
-3	8	0.231168
-3	9	-0.6737
-3	10	0.14203
-3	11	-0.223198
-3	12	-0.415927
-3	13	0.29728
-3	14	-0.0294405
-3	15	-0.221377
-3	16	-0.601842
-3	17	-1.23682
-3	18	-1.22222
-3	19	-0.778193
-3	20	0.684048
-3	21	-0.436574
-3	22	0.0915208
-3	23	0.569164
-3	24	1.00322
-3	25	-0.181355
-3	26	-0.659271
-3	27	-0.795084
-3	28	-0.745029
-3	29	0.465473
-3	30	-0.212758
-3	31	0.00327035
-3	32	-0.00713277
-3	33	-0.224323
-3	34	-0.400508
-3	35	0.00469366
-3	36	0.602385
-3	37	0.00497608
-3	38	1.74525
-3	39	0.238495
-3	40	-0.967155
-3	41	0.314808
-3	42	0.302853
-3	43	-0.160875
-3	44	-2.07854
-3	45	-0.927987
-3	46	0.146926
-3	47	-0.372398
-3	48	1.01737
-3	49	1.21358
-3	50	1.21954
-3	51	1.31638
-3	52	-0.387298
-3	53	-0.521631
-3	54	-1.8
-3	55	-0.216058
-3	56	1.11314
-3	57	1.16752
-3	58	0.493066
-3	59	0.312409
-3	60	0.254015
-3	61	1.01095
-3	62	0.730292
-3	63	-0.701095
-3	64	0.374453
-3	65	-0.245588
-3	66	0.194118
-3	67	0.891176
-3	68	-0.767647
-3	69	0.464706
-3	70	-0.0691176
-3	71	-1.60294
-3	72	-2.62059
-3	73	-1.51324
-3	74	-0.772059
-3	75	-0.65
-3	76	-0.420588
-3	77	-0.351471
-3	78	-0.329412
-3	79	-1.53382
-3	80	-1.44559
-3	81	-1.74118
-3	82	-1.38235
-3	83	-0.475
-3	84	-1.51765
-3	85	0.145588
-3	86	-0.305882
-3	87	-0.307353
-3	88	-1.11618
-3	89	-0.660294
-3	90	0.869118
-3	91	-0.0808824
-3	92	1.51176
-3	93	-0.761765
-3	94	-2.23971
-3	95	0.742647
-3	96	0.352941
-3	97	-1.04706
-3	98	-2.86618
-3	99	-0.398529
-3	100	0.445588
-3	101	-0.626471
-3	102	0.836765
-3	103	0.911765
-3	104	0.839706
-3	105	1.41324
-3	106	-0.508824
-3	107	0.0235664
-3	108	-0.668905
-4	1	-0.00946526
-4	2	0.421474
-4	3	-0.599291
-4	4	-0.36756
-4	5	-0.310436
-4	6	-0.373047
-4	7	0.381396
-4	8	0.236651
-4	9	-0.851402
-4	10	-0.293454
-4	11	-0.11699
-4	12	0.0248399
-4	13	-0.138921
-4	14	-0.0141509
-4	15	-0.258465
-4	16	0.80292
-4	17	1.13308
-4	18	0.169243
-4	19	0.148261
-4	20	0.0564007
-4	21	-0.0833558
-4	22	-0.125391
-4	23	-0.474169
-4	24	-0.746777
-4	25	0.233302
-4	26	0.865079
-4	27	0.00491642
-4	28	-0.413763
-4	29	-0.715406
-4	30	-0.498171
-4	31	-0.53267
-4	32	-0.588528
-4	33	0.0946136
-4	34	0.35298
-4	35	0.191008
-4	36	-0.389282
-4	37	-0.22961
-4	38	-0.539671
-4	39	0.121688
-4	40	0.304681
-4	41	-1.10943
-4	42	0.00275482
-4	43	0.0649315
-4	44	0.745271
-4	45	-0.116876
-4	46	-1.00863
-4	47	-0.256683
-4	48	0.418011
-4	49	0.457169
-4	50	-2.05996
-4	51	-0.759382
-4	52	-0.455479
-4	53	0.659948
-4	54	-0.166667
-4	55	-0.471614
-4	56	-0.109084
-4	57	-0.738037
-4	58	-1.04582
-4	59	-0.698702
-4	60	0.0206813
-4	61	-0.155718
-4	62	0.746959
-4	63	-1.60665
-4	64	-0.636659
-4	65	-0.0400327
-4	66	-0.678105
-4	67	-1.55882
-4	68	-0.839869
-4	69	-0.429739
-4	70	-1.03023
-4	71	0.674837
-4	72	0.501634
-4	73	0.0645425
-4	74	-0.716503
-4	75	0.638889
-4	76	0.612745
-4	77	-0.857026
-4	78	-0.723856
-4	79	-0.0171569
-4	80	-0.762255
-4	81	0.614379
-4	82	-0.993464
-4	83	-1.26389
-4	84	-0.339869
-4	85	-0.154412
-4	86	-0.428105
-4	87	-0.451797
-4	88	-0.593954
-4	89	-0.304739
-4	90	-0.0808824
-4	91	0.780229
-4	92	-1.58824
-4	93	-0.939542
-4	94	-0.167484
-4	95	-1.28513
-4	96	0.24183
-4	97	1.4085
-4	98	0.0449346
-4	99	-1.67075
-4	100	-1.01552
-4	101	-0.982026
-4	102	0.564542
-4	103	-0.143791
-4	104	-1.91585
-4	105	-0.508987
-4	106	-0.503268
-4	107	1.15979
-4	108	-0.481405
-5	1	1.02228
-5	2	0.307291
-5	3	0.385092
-5	4	0.481462
-5	5	0.0499557
-5	6	0.894472
-5	7	0.361045
-5	8	0.643668
-5	9	0.83544
-5	10	1.02858
-5	11	0.746458
-5	12	0.594076
-5	13	0.173376
-5	14	0.832628
-5	15	0.181818
-5	16	-0.184959
-5	17	0.250617
-5	18	-0.151896
-5	19	0.7453
-5	20	0.715865
-5	21	0.834195
-5	22	0.997483
-5	23	0.405083
-5	24	0.239038
-5	25	-0.606887
-5	26	1.86104
-5	27	1.18926
-5	28	0.799368
-5	29	1.00036
-5	30	1.0198
-5	31	0.793968
-5	32	0.607485
-5	33	0.689852
-5	34	0.0529801
-5	35	0.472754
-5	36	0.427385
-5	37	0.891818
-5	38	0.9226
-5	39	1.39911
-5	40	1.03448
-5	41	1.60774
-5	42	0.394097
-5	43	-0.102224
-5	44	0.974335
-5	45	0.645576
-5	46	-0.165718
-5	47	0.806174
-5	48	-1.62366
-5	49	0.570503
-5	50	0.17606
-5	51	0.342067
-5	52	-0.401132
-5	53	-1.01511
-5	54	-0.130435
-5	55	0.311214
-5	56	-0.432316
-5	57	0.999336
-5	58	1.07034
-5	59	0.0942269
-5	60	-0.555076
-5	61	0.329131
-5	62	-0.419708
-5	63	1.26709
-5	64	1.29263
-5	65	1.44987
-5	66	0.362299
-5	67	0.941176
-5	68	0.700535
-5	69	-1.80348
-5	70	0.35361
-5	71	2.21524
-5	72	1.00668
-5	73	0.74131
-5	74	0.273396
-5	75	-0.386364
-5	76	0.643048
-5	77	0.698529
-5	78	-0.870321
-5	79	-1.13837
-5	80	1.04078
-5	81	0.286096
-5	82	0.117647
-5	83	0.352273
-5	84	0.336898
-5	85	0.300134
-5	86	0.930481
-5	87	1.08356
-5	88	-0.179813
-5	89	0.0487968
-5	90	-0.580882
-5	91	-0.0127005
-5	92	1.09358
-5	93	1.38369
-5	94	1.11029
-5	95	0.947193
-5	96	-0.237968
-5	97	-0.283422
-5	98	0.752005
-5	99	0.824198
-5	100	-0.449866
-5	101	0.846257
-5	102	-1.57687
-5	103	-0.270053
-5	104	-0.496658
-5	105	0.122326
-5	106	0.0775401
-5	107	-1.31615
-5	108	-0.881405
-6	1	-0.394747
-6	2	-0.105407
-6	3	-0.0680107
-6	4	0.0899661
-6	5	-0.0570825
-6	6	0.417444
-6	7	-0.123306
-6	8	-1.77451
-6	9	-0.932742
-6	10	0.237796
-6	11	0.811076
-6	12	1.13274
-6	13	-0.391279
-6	14	-2.32901
-6	15	-0.145484
-6	16	-0.186664
-6	17	-1.05378
-6	18	-0.804609
-6	19	-1.17564
-6	20	-1.57889
-6	21	-0.334837
-6	22	0.185765
-6	23	-0.390836
-6	24	-0.75753
-6	25	-1.33372
-6	26	-1.69908
-6	27	-0.141909
-6	28	-0.311541
-6	29	0.0207055
-6	30	-0.379593
-6	31	1.24006
-6	32	-0.571086
-6	33	-0.198619
-6	34	0.395085
-6	35	0.941008
-6	36	0.944052
-6	37	2.74182
-6	38	1.46747
-6	39	0.584924
-6	40	-1.25024
-6	41	-0.236707
-6	42	1.38457
-6	43	1.40687
-6	44	1.32146
-6	45	1.83868
-6	46	1.81359
-6	47	-0.60335
-6	48	-2.62366
-6	49	-0.352354
-6	50	1.15432
-6	51	-0.692715
-6	52	0.0722983
-6	53	0.13948
-6	54	1.44444
-6	55	-1.41606
-6	56	-1.49797
-6	57	-1.18248
-6	58	0.454177
-6	59	1.46796
-6	60	1.7429
-6	61	1.28873
-6	62	0.969181
-6	63	1.17113
-6	64	0.918897
-6	65	1.57108
-6	66	1.87745
-6	67	-0.72549
-6	68	0.771242
-6	69	0.903595
-6	70	0.580882
-6	71	-3.21405
-6	72	0.00163399
-6	73	0.00898693
-6	74	-1.16095
-6	75	0.305556
-6	76	0.0571895
-6	77	-0.468137
-6	78	1.3317
-6	79	0.982843
-6	80	1.73775
-6	81	0.336601
-6	82	0.173203
-6	83	0.291667
-6	84	-0.173203
-6	85	0.623366
-6	86	-1.4281
-6	87	0.32598
-6	88	1.07271
-6	89	1.63971
-6	90	0.585784
-6	91	2.39134
-6	92	0.189542
-6	93	-0.161765
-6	94	-0.889706
-6	95	-1.56291
-6	96	1.29739
-6	97	0.464052
-6	98	1.2116
-6	99	2.21814
-6	100	1.48448
-6	101	-1.48203
-6	102	-2.21324
-6	103	-0.143791
-6	104	1.69526
-6	105	-0.508987
-6	106	-0.281046
-6	107	-0.0232172
-6	108	2.1436
-7	1	-1.03404
-7	2	0.582765
-7	3	0.0942571
-7	4	0.529849
-7	5	-0.366173
-7	6	0.356838
-7	7	-0.0990641
-7	8	0.112634
-7	9	1.90925
-7	10	1.02797
-7	11	0.262465
-7	12	0.251954
-7	13	2.44526
-7	14	1.45464
-7	15	0.240766
-7	16	0.829586
-7	17	1.32247
-7	18	1.49414
-7	19	-0.187249
-7	20	-0.447273
-7	21	1.0742
-7	22	-1.46456
-7	23	0.849164
-7	24	0.95989
-7	25	1.90552
-7	26	-0.582143
-7	27	-1.14786
-7	28	0.344823
-7	29	1.77666
-7	30	0.514816
-7	31	0.421875
-7	32	-0.821086
-7	33	1.13033
-7	34	1.44772
-7	35	0.189546
-7	36	-0.169983
-7	37	1.26813
-7	38	0.717472
-7	39	-0.790076
-7	40	0.00962523
-7	41	1.61943
-7	42	-0.569813
-7	43	-0.0820219
-7	44	0.665906
-7	45	-1.14956
-7	46	-1.25307
-7	47	0.19665
-7	48	-0.356989
-7	49	-1.64283
-7	50	-1.27901
-7	51	0.490618
-7	52	0.127854
-7	53	0.195035
-7	54	0.916667
-7	55	-0.0827251
-7	56	-1.13686
-7	57	-0.599148
-7	58	-0.656934
-7	59	0.662409
-7	60	-0.312652
-7	61	0.260949
-7	62	0.413625
-7	63	1.69891
-7	64	1.72445
-7	65	0.571078
-7	66	-1.03922
-7	67	-0.142157
-7	68	-0.867647
-7	69	1.51471
-7	70	0.747549
-7	71	1.56373
-7	72	0.696078
-7	73	-0.546569
-7	74	-0.938725
-7	75	0.166667
-7	76	-0.637255
-7	77	1.53186
-7	78	0.803922
-7	79	1.48284
-7	80	-0.178922
-7	81	-1.52451
-7	82	0.20098
-7	83	0.125
-7	84	-0.867647
-7	85	0.178922
-7	86	-0.789216
-7	87	0.659314
-7	88	-0.816176
-7	89	-1.77696
-7	90	-0.497549
-7	91	0.335784
-7	92	-0.421569
-7	93	-1.16176
-7	94	-0.973039
-7	95	1.15931
-7	96	-0.980392
-7	97	0.102941
-7	98	0.683824
-7	99	-0.198529
-7	100	-1.07108
-7	101	-0.426471
-7	102	-0.629902
-7	103	-3.2549
-7	104	-1.52696
-7	105	0.296569
-7	106	-0.22549
-7	107	0.0323383
-7	108	0.404959
-8	1	-1.36801
-8	2	-0.00736804
-8	3	0.181544
-8	4	0.786936
-8	5	0.190077
-8	6	-0.570246
-8	7	1.1551
-8	8	0.481168
-8	9	-0.104144
-8	10	-0.980954
-8	11	-0.220174
-8	12	0.257741
-8	13	-1.5808
-8	14	-0.165703
-8	15	-0.271493
-8	16	-1.06375
-8	17	0.0358025
-8	18	0.827935
-8	19	0.821027
-8	20	-1.78245
-8	21	0.0904915
-8	22	0.203135
-8	23	0.724549
-8	24	0.23989
-8	25	0.308858
-8	26	-0.37381
-8	27	1.01881
-8	28	1.03455
-8	29	-0.647773
-8	30	-0.901333
-8	31	-0.665082
-8	32	1.588
-8	33	0.332709
-8	34	-0.208925
-8	35	-0.622484
-8	36	-0.772615
-8	37	-0.508182
-8	38	-0.582528
-8	39	1.40992
-8	40	-0.885112
-8	41	-1.17004
-8	42	0.684573
-8	43	-0.304244
-8	44	-0.317754
-8	45	0.938679
-8	46	1.40109
-8	47	1.47582
-8	48	1.13825
-8	49	-0.852354
-8	50	2.4725
-8	51	0.807285
-8	52	1.29452
-8	53	2.77837
-8	54	4.25
-8	55	0.458942
-8	56	0.613139
-8	57	0.0675182
-8	58	0.468066
-8	59	0.787409
-8	60	0.229015
-8	61	-0.364051
-8	62	0.205292
-8	63	0.948905
-8	64	1.47445
-8	65	0.529412
-8	66	1.16912
-8	67	-0.558824
-8	68	1.50735
-8	69	0.264706
-8	70	-3.29412
-8	71	-0.602941
-8	72	1.52941
-8	73	0.911765
-8	74	-0.272059
-8	75	1.875
-8	76	-1.72059
-8	77	-0.426471
-8	78	1.97059
-8	79	3.06618
-8	80	1.27941
-8	81	1.68382
-8	82	1.61765
-8	83	2.25
-8	84	1.88235
-8	85	2.59559
-8	86	1.79412
-8	87	0.992647
-8	88	1.68382
-8	89	1.13971
-8	90	0.0441176
-8	91	0.794118
-8	92	1.28676
-8	93	2.58824
-8	94	3.11029
-8	95	1.24265
-8	96	1.22794
-8	97	0.602941
-8	98	0.433824
-8	99	3.42647
-8	100	1.84559
-8	101	3.32353
-8	102	2.41176
-8	103	3.28676
-8	104	3.13971
-8	105	1.33824
-8	106	1.94118
-8	107	2.61567
-8	108	3.0186
-9	1	-0.439144
-9	2	-0.772074
-9	3	0.254047
-9	4	0.48607
-9	5	0.546022
-9	6	0.0722848
-9	7	-1.61776
-9	8	-0.688039
-9	9	-0.228381
-9	10	-0.0434537
-9	11	0.0485763
-9	12	0.699247
-9	13	0.562668
-9	14	-0.641509
-9	15	0.0385433
-9	16	0.851939
-9	17	0.573057
-9	18	-0.203506
-9	19	-0.0390141
-9	20	-0.24492
-9	21	-0.539138
-9	22	0.332942
-9	23	-0.297086
-9	24	0.26364
-9	25	0.301358
-9	26	0.342857
-9	27	0.527139
-9	28	0.0751259
-9	29	0.223292
-9	30	0.194619
-9	31	0.279018
-9	32	0.000342309
-9	33	1.15811
-9	34	0.738165
-9	35	0.432461
-9	36	0.319052
-9	37	-1.09152
-9	38	-0.152093
-9	39	0.253402
-9	40	0.366605
-9	41	0.734721
-9	42	0.803621
-9	43	-0.143133
-9	44	1.27048
-9	45	0.751179
-9	46	0.213592
-9	47	4.09189
-9	48	2.42396
-9	49	-0.209497
-9	50	-1.27425
-9	51	1.59959
-9	52	3.38543
-9	53	1.66473
-9	54	0.909091
-9	55	-0.416058
-9	56	0.340411
-9	57	0.908427
-9	58	0.88852
-9	59	1.45786
-9	60	0.854015
-9	61	-0.670869
-9	62	-0.0106171
-9	63	-1.50564
-9	64	0.928998
-9	65	-0.00467914
-9	66	1.08957
-9	67	0.304813
-9	68	1.3369
-9	69	0.65107
-9	70	0.85361
-9	71	0.442513
-9	72	0.143048
-9	73	1.1504
-9	74	2.3643
-9	75	-0.25
-9	76	1.64305
-9	77	-0.165107
-9	78	1.12968
-9	79	0.770722
-9	80	1.40441
-9	81	2.01337
-9	82	1.07219
-9	83	2.625
-9	84	1.92781
-9	85	-0.33623
-9	86	0.339572
-9	87	2.08356
-9	88	2.54746
-9	89	3.73061
-9	90	0.555481
-9	91	-0.921791
-9	92	0.139037
-9	93	1.20187
-9	94	1.74666
-9	95	1.62901
-9	96	1.4893
-9	97	0.989305
-9	98	1.61564
-9	99	0.551471
-9	100	0.595588
-9	101	3.61898
-9	102	2.05949
-9	103	0.502674
-9	104	0.139706
-9	105	2.16778
-9	106	3.03209
-9	107	1.50204
-9	108	1.1686
-10	1	-1.10635
-10	2	-0.392764
-10	3	-0.996955
-10	4	-0.348905
-10	5	0.144938
-10	6	0.838319
-10	7	0.0476026
-10	8	1.00367
-10	9	0.63544
-10	10	-2.21012
-10	11	-0.334757
-10	12	0.330657
-10	13	0.858721
-10	14	-0.183176
-10	15	0.239026
-10	16	1.07828
-10	17	1.55701
-10	18	1.36652
-10	19	1.13466
-10	20	0.158442
-10	21	-0.872471
-10	22	0.51449
-10	23	0.752022
-10	24	1.53894
-10	25	1.22695
-10	26	0.942857
-10	27	0.735911
-10	28	0.629512
-10	29	0.079916
-10	30	2.65015
-10	31	1.57977
-10	32	2.01225
-10	33	-0.0641166
-10	34	1.10854
-10	35	0.251466
-10	36	1.83621
-10	37	1.21241
-10	38	0.0704133
-10	39	-0.966547
-10	40	2.06226
-10	41	-0.97004
-10	42	-1.01543
-10	43	-0.0597997
-10	44	0.465051
-10	45	-0.330552
-10	46	-0.119741
-10	47	-1.08668
-10	48	1.80059
-10	49	2.38141
-10	50	2.25432
-10	51	-1.09272
-10	52	-1.81659
-10	53	1.69504
-10	54	1.44444
-10	55	-2.08273
-10	56	-1.16464
-10	57	-1.96026
-10	58	1.6764
-10	59	0.0235199
-10	60	-0.0348743
-10	61	-0.711273
-10	62	-0.0308191
-10	63	0.282238
-10	64	-5.0811
-10	65	-0.984477
-10	66	0.321895
-10	67	-0.169935
-10	68	-1.00654
-10	69	0.570261
-10	70	-0.0857843
-10	71	-0.102941
-10	72	1.55719
-10	73	1.78676
-10	74	1.72794
-10	75	-1.25
-10	76	1.05719
-10	77	0.754085
-10	78	1.66503
-10	79	-1.23938
-10	80	-0.484477
-10	81	0.558824
-10	82	-0.604575
-10	83	0.291667
-10	84	1.60458
-10	85	1.62337
-10	86	1.46078
-10	87	-1.89624
-10	88	-0.816176
-10	89	-1.13807
-10	90	0.363562
-10	91	1.05801
-10	92	0.189542
-10	93	-0.71732
-10	94	2.33252
-10	95	-3.34069
-10	96	-1.5915
-10	97	0.352941
-10	98	1.76716
-10	99	-1.22631
-10	100	-0.515523
-10	101	-1.59314
-10	102	1.67565
-10	103	3.30065
-10	104	1.91748
-10	105	-1.28676
-10	106	-2.16993
-10	107	1.53234
-10	108	1.7686
->>END_MODULE
->>Per sequence quality scores	pass
-#Quality	Count
-20	7
-21	24
-22	47
-23	78
-24	226
-25	513
-26	830
-27	1017
-28	947
-29	645
-30	352
-31	157
-32	55
-33	6
-34	1
->>END_MODULE
->>Per base sequence content	fail
-#Base	G	A	T	C
-1	21.2232	33.0071	25.9735	19.7961
-2	23.7658	31.4157	27.3154	17.5031
-3	21.8769	28.7058	29.4623	19.955
-4	21.5505	28.2953	28.8505	21.3037
-5	21.2191	30.2059	28.2713	20.3037
-6	22.1243	28.9463	26.3644	22.5651
-7	21.944	29.966	28.3956	19.6944
-8	21.3781	28.8252	27.8622	21.9345
-9	20.078	29.0882	28.655	22.1789
-10-11	21.2432	29.4689	27.6802	21.6076
-12-13	20.8277	29.037	29.1836	20.9517
-14-15	20.24	28.9753	29.4715	21.3132
-16-17	19.8387	29.3964	29.6217	21.1431
-18-19	20.8456	27.8715	29.9731	21.3099
-20-21	20.5382	28.9737	29.1114	21.3767
-22-23	20.8808	30.1295	29.3005	19.6891
-24-25	20.507	29.0773	29.0504	21.3653
-26-27	20.866	28.0549	30.3391	20.7399
-28-29	19.326	30.8425	28.7766	21.0549
-30-31	20.6388	29.1923	29.4994	20.6695
-32-33	19.4799	29.0099	29.3814	22.1289
-34-35	19.6674	29.7132	30.2053	20.4141
-36-37	20.4435	29.854	30.6111	19.0914
-38-39	20.9927	28.0417	30.0888	20.8768
-40-41	19.8602	28.6801	30.3248	21.1349
-42-43	20.0132	27.8732	30.8234	21.2902
-44-45	18.9414	30.1923	29.9549	20.9115
-46-47	20.1889	28.1266	31.4701	20.2144
-48-49	19.5616	29.6892	28.7736	21.9756
-50-51	20.5066	28.2576	30.7598	20.476
-52-53	17.6913	29.918	31.8648	20.526
-54-55	17.2149	32.3099	29.5322	20.943
-56-57	19.3086	30.8937	30.8937	18.904
-58-59	20.0147	29.7277	31.4202	18.8374
-60-61	17.4025	33.1862	29.507	19.9043
-62-63	18.543	29.7277	32.2664	19.4628
-64-65	16.8936	32.9407	30.1803	19.9853
-66-67	18.5199	28.9028	32.8056	19.7717
-68-69	17.268	30.3756	31.6642	20.6922
-70-71	17.673	27.7982	35.3461	19.1826
-72-73	16.2003	29.5287	33.8733	20.3976
-74-75	18.3726	28.0191	34.5361	19.0722
-76-77	16.6789	31.701	31.7378	19.8822
-78-79	18.7776	28.3873	32.6215	20.2135
-80-81	16.3844	30.9278	32.9161	19.7717
-82-83	17.0839	30.9278	32.5479	19.4404
-84-85	16.9367	31.5906	31.4433	20.0295
-86-87	17.489	27.9087	34.2047	20.3976
-88-89	16.7894	32.3638	31.0751	19.7717
-90-91	19.5876	29.7496	33.542	17.1208
-92-93	17.7467	30.0442	31.3328	20.8763
-94-95	18.9249	28.461	33.3947	19.2194
-96-97	16.4212	29.4183	32.4742	21.6863
-98-99	18.1581	29.3438	33.1469	19.3512
-100-101	17.7736	29.8491	33.283	19.0943
-102-103	18.3396	29.5094	30.9057	21.2453
-104-105	18.0377	28.6792	31.7736	21.5094
-106-107	17.2783	29.3578	33.5245	19.8394
-108	20.0535	26.3815	31.7291	21.836
->>END_MODULE
->>Per sequence GC content	warn
-#GC Content	Count
-0	15
-1	15.5
-2	16.5
-3	17
-4	18
-5	21.5
-6	26.5
-7	30
-8	33.5
-9	36
-10	41
-11	47
-12	47.5
-13	56
-14	65.5
-15	69
-16	72.5
-17	77.5
-18	85.5
-19	94.5
-20	105.5
-21	113
-22	120
-23	131.5
-24	150
-25	172.5
-26	198
-27	217.5
-28	244.5
-29	281.5
-30	314.5
-31	337
-32	365
-33	402.5
-34	436
-35	463
-36	481.5
-37	505
-38	525
-39	510.5
-40	490.5
-41	493
-42	487
-43	483.5
-44	488
-45	475.5
-46	468
-47	468.5
-48	477
-49	473
-50	437.5
-51	416
-52	405.5
-53	397
-54	386
-55	365
-56	346
-57	343
-58	334
-59	320
-60	319
-61	301.5
-62	276.5
-63	245.5
-64	207.5
-65	191
-66	182
-67	173
-68	167
-69	151.5
-70	131.5
-71	121
-72	117.5
-73	110.5
-74	104
-75	90.5
-76	75
-77	67.5
-78	62.5
-79	61.5
-80	59
-81	57
-82	55
-83	47
-84	39
-85	38
-86	36.5
-87	35.5
-88	28.5
-89	21
-90	19
-91	17
-92	15.5
-93	14.5
-94	14
-95	13.5
-96	14.5
-97	15.5
-98	15.5
-99	16
-100	15
->>END_MODULE
->>Per base N content	pass
-#Base	N-Count
-1	0
-2	0
-3	0
-4	0
-5	0
-6	0
-7	0
-8	0
-9	0
-10-11	0
-12-13	0
-14-15	0
-16-17	0
-18-19	0
-20-21	0
-22-23	0
-24-25	0
-26-27	0
-28-29	0
-30-31	0
-32-33	0
-34-35	0
-36-37	0
-38-39	0
-40-41	0
-42-43	0
-44-45	0
-46-47	0
-48-49	0
-50-51	0
-52-53	0
-54-55	0
-56-57	0
-58-59	0
-60-61	0
-62-63	0
-64-65	0
-66-67	0
-68-69	0
-70-71	0
-72-73	0
-74-75	0
-76-77	0
-78-79	0
-80-81	0
-82-83	0
-84-85	0
-86-87	0
-88-89	0
-90-91	0
-92-93	0
-94-95	0
-96-97	0
-98-99	0
-100-101	0
-102-103	0
-104-105	0
-106-107	0
-108	0
->>END_MODULE
->>Sequence Length Distribution	warn
-#Length	Count
-1	3.0
-2	11.0
-3	28.0
-4	56.0
-5	43.0
-6	52.0
-7	39.0
-8	56.0
-9	60.0
-10	57.0
-11	43.0
-12	46.0
-13	45.0
-14	66.0
-15	59.0
-16	49.0
-17	73.0
-18	54.0
-19	44.0
-20	52.0
-21	73.0
-22	72.0
-23	68.0
-24	56.0
-25	86.0
-26	92.0
-27	75.0
-28	69.0
-29	74.0
-30	96.0
-31	72.0
-32	81.0
-33	65.0
-34	87.0
-35	86.0
-36	87.0
-37	100.0
-38	82.0
-39	78.0
-40	76.0
-41	79.0
-42	88.0
-43	83.0
-44	75.0
-45	74.0
-46	72.0
-47	84.0
-48	74.0
-49	81.0
-50	91.0
-51	80.0
-52	98.0
-53	43.0
-54	8.0
-55	4.0
-56	1.0
-64	1.0
-97	1.0
-98	32.0
-106	34.0
-107	169.0
-108	1122.0
->>END_MODULE
->>Sequence Duplication Levels	pass
-#Total Deduplicated Percentage	98.736
-#Duplication Level	Percentage of deduplicated	Percentage of total
-1	99.4425	98.1855
-2	0.474912	0.937819
-3	0.0412967	0.122324
-4	0.0206484	0.0815494
-5	0	0
-6	0	0
-7	0	0
-8	0	0
-9	0	0
->10	0.0206484	0.672783
->50	0	0
->100	0	0
->500	0	0
->1k	0	0
->5k	0	0
->10k+	0	0
->>END_MODULE
->>Overrepresented sequences	warn
-#Sequence	Count	Percentage	Possible Source
-ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
->>END_MODULE
->>Adapter Content	warn
-#Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
-1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
->>END_MODULE
--- a/test-data/fastqc_data_customlimits_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data_customlimits_summary.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,11 +1,2 @@
 PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
 WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-PASS	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_data_hisat.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data_hisat.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,448 +1,601 @@
-##FastQC	0.12.1
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	hisat_output_1_bam
 File type	Conventional base calls
 Encoding	Sanger / Illumina 1.9
 Total Sequences	20
-Total Bases	1.4 kbp
 Sequences flagged as poor quality	0
 Sequence length	70
-%GC	43
+%GC	44
 >>END_MODULE
->>Per base sequence quality	pass
+>>Per base sequence quality	fail
 #Base	Mean	Median	Lower Quartile	Upper Quartile	10th Percentile	90th Percentile
-1	17.0	NaN	NaN	NaN	NaN	NaN
-2	17.0	NaN	NaN	NaN	NaN	NaN
-3	17.0	NaN	NaN	NaN	NaN	NaN
-4	17.0	NaN	NaN	NaN	NaN	NaN
-5	17.0	NaN	NaN	NaN	NaN	NaN
-6	17.0	NaN	NaN	NaN	NaN	NaN
-7	17.0	NaN	NaN	NaN	NaN	NaN
-8	17.0	NaN	NaN	NaN	NaN	NaN
-9	17.0	NaN	NaN	NaN	NaN	NaN
-10	17.0	NaN	NaN	NaN	NaN	NaN
-11	17.0	NaN	NaN	NaN	NaN	NaN
-12	17.0	NaN	NaN	NaN	NaN	NaN
-13	17.0	NaN	NaN	NaN	NaN	NaN
-14	17.0	NaN	NaN	NaN	NaN	NaN
-15	17.0	NaN	NaN	NaN	NaN	NaN
-16	17.0	NaN	NaN	NaN	NaN	NaN
-17	17.0	NaN	NaN	NaN	NaN	NaN
-18	17.0	NaN	NaN	NaN	NaN	NaN
-19	17.0	NaN	NaN	NaN	NaN	NaN
-20	17.0	NaN	NaN	NaN	NaN	NaN
-21	17.0	NaN	NaN	NaN	NaN	NaN
-22	17.0	NaN	NaN	NaN	NaN	NaN
-23	17.0	NaN	NaN	NaN	NaN	NaN
-24	17.0	NaN	NaN	NaN	NaN	NaN
-25	17.0	NaN	NaN	NaN	NaN	NaN
-26	17.0	NaN	NaN	NaN	NaN	NaN
-27	17.0	NaN	NaN	NaN	NaN	NaN
-28	17.0	NaN	NaN	NaN	NaN	NaN
-29	17.0	NaN	NaN	NaN	NaN	NaN
-30	17.0	NaN	NaN	NaN	NaN	NaN
-31	17.0	NaN	NaN	NaN	NaN	NaN
-32	17.0	NaN	NaN	NaN	NaN	NaN
-33	17.0	NaN	NaN	NaN	NaN	NaN
-34	17.0	NaN	NaN	NaN	NaN	NaN
-35	17.0	NaN	NaN	NaN	NaN	NaN
-36	17.0	NaN	NaN	NaN	NaN	NaN
-37	17.0	NaN	NaN	NaN	NaN	NaN
-38	17.0	NaN	NaN	NaN	NaN	NaN
-39	17.0	NaN	NaN	NaN	NaN	NaN
-40	17.0	NaN	NaN	NaN	NaN	NaN
-41	17.0	NaN	NaN	NaN	NaN	NaN
-42	17.0	NaN	NaN	NaN	NaN	NaN
-43	17.0	NaN	NaN	NaN	NaN	NaN
-44	17.0	NaN	NaN	NaN	NaN	NaN
-45	17.0	NaN	NaN	NaN	NaN	NaN
-46	17.0	NaN	NaN	NaN	NaN	NaN
-47	17.0	NaN	NaN	NaN	NaN	NaN
-48	17.0	NaN	NaN	NaN	NaN	NaN
-49	17.0	NaN	NaN	NaN	NaN	NaN
-50	17.0	NaN	NaN	NaN	NaN	NaN
-51	17.0	NaN	NaN	NaN	NaN	NaN
-52	17.0	NaN	NaN	NaN	NaN	NaN
-53	17.0	NaN	NaN	NaN	NaN	NaN
-54	17.0	NaN	NaN	NaN	NaN	NaN
-55	17.0	NaN	NaN	NaN	NaN	NaN
-56	17.0	NaN	NaN	NaN	NaN	NaN
-57	17.0	NaN	NaN	NaN	NaN	NaN
-58	17.0	NaN	NaN	NaN	NaN	NaN
-59	17.0	NaN	NaN	NaN	NaN	NaN
-60	17.0	NaN	NaN	NaN	NaN	NaN
-61	17.0	NaN	NaN	NaN	NaN	NaN
-62	17.0	NaN	NaN	NaN	NaN	NaN
-63	17.0	NaN	NaN	NaN	NaN	NaN
-64	17.0	NaN	NaN	NaN	NaN	NaN
-65	17.0	NaN	NaN	NaN	NaN	NaN
-66	17.0	NaN	NaN	NaN	NaN	NaN
-67	17.0	NaN	NaN	NaN	NaN	NaN
-68	17.0	NaN	NaN	NaN	NaN	NaN
-69	17.0	NaN	NaN	NaN	NaN	NaN
-70	17.0	NaN	NaN	NaN	NaN	NaN
+1	17	17	17	17	17	17
+2	17	17	17	17	17	17
+3	17	17	17	17	17	17
+4	17	17	17	17	17	17
+5	17	17	17	17	17	17
+6	17	17	17	17	17	17
+7	17	17	17	17	17	17
+8	17	17	17	17	17	17
+9	17	17	17	17	17	17
+10	17	17	17	17	17	17
+11	17	17	17	17	17	17
+12	17	17	17	17	17	17
+13	17	17	17	17	17	17
+14	17	17	17	17	17	17
+15	17	17	17	17	17	17
+16	17	17	17	17	17	17
+17	17	17	17	17	17	17
+18	17	17	17	17	17	17
+19	17	17	17	17	17	17
+20	17	17	17	17	17	17
+21	17	17	17	17	17	17
+22	17	17	17	17	17	17
+23	17	17	17	17	17	17
+24	17	17	17	17	17	17
+25	17	17	17	17	17	17
+26	17	17	17	17	17	17
+27	17	17	17	17	17	17
+28	17	17	17	17	17	17
+29	17	17	17	17	17	17
+30	17	17	17	17	17	17
+31	17	17	17	17	17	17
+32	17	17	17	17	17	17
+33	17	17	17	17	17	17
+34	17	17	17	17	17	17
+35	17	17	17	17	17	17
+36	17	17	17	17	17	17
+37	17	17	17	17	17	17
+38	17	17	17	17	17	17
+39	17	17	17	17	17	17
+40	17	17	17	17	17	17
+41	17	17	17	17	17	17
+42	17	17	17	17	17	17
+43	17	17	17	17	17	17
+44	17	17	17	17	17	17
+45	17	17	17	17	17	17
+46	17	17	17	17	17	17
+47	17	17	17	17	17	17
+48	17	17	17	17	17	17
+49	17	17	17	17	17	17
+50	17	17	17	17	17	17
+51	17	17	17	17	17	17
+52	17	17	17	17	17	17
+53	17	17	17	17	17	17
+54	17	17	17	17	17	17
+55	17	17	17	17	17	17
+56	17	17	17	17	17	17
+57	17	17	17	17	17	17
+58	17	17	17	17	17	17
+59	17	17	17	17	17	17
+60	17	17	17	17	17	17
+61	17	17	17	17	17	17
+62	17	17	17	17	17	17
+63	17	17	17	17	17	17
+64	17	17	17	17	17	17
+65	17	17	17	17	17	17
+66	17	17	17	17	17	17
+67	17	17	17	17	17	17
+68	17	17	17	17	17	17
+69	17	17	17	17	17	17
+70	17	17	17	17	17	17
+>>END_MODULE
+>>Per tile sequence quality	pass
+#Tile	Base	Mean
+470	1	0
+470	2	0
+470	3	0
+470	4	0
+470	5	0
+470	6	0
+470	7	0
+470	8	0
+470	9	0
+470	10	0
+470	11	0
+470	12	0
+470	13	0
+470	14	0
+470	15	0
+470	16	0
+470	17	0
+470	18	0
+470	19	0
+470	20	0
+470	21	0
+470	22	0
+470	23	0
+470	24	0
+470	25	0
+470	26	0
+470	27	0
+470	28	0
+470	29	0
+470	30	0
+470	31	0
+470	32	0
+470	33	0
+470	34	0
+470	35	0
+470	36	0
+470	37	0
+470	38	0
+470	39	0
+470	40	0
+470	41	0
+470	42	0
+470	43	0
+470	44	0
+470	45	0
+470	46	0
+470	47	0
+470	48	0
+470	49	0
+470	50	0
+470	51	0
+470	52	0
+470	53	0
+470	54	0
+470	55	0
+470	56	0
+470	57	0
+470	58	0
+470	59	0
+470	60	0
+470	61	0
+470	62	0
+470	63	0
+470	64	0
+470	65	0
+470	66	0
+470	67	0
+470	68	0
+470	69	0
+470	70	0
+473	1	0
+473	2	0
+473	3	0
+473	4	0
+473	5	0
+473	6	0
+473	7	0
+473	8	0
+473	9	0
+473	10	0
+473	11	0
+473	12	0
+473	13	0
+473	14	0
+473	15	0
+473	16	0
+473	17	0
+473	18	0
+473	19	0
+473	20	0
+473	21	0
+473	22	0
+473	23	0
+473	24	0
+473	25	0
+473	26	0
+473	27	0
+473	28	0
+473	29	0
+473	30	0
+473	31	0
+473	32	0
+473	33	0
+473	34	0
+473	35	0
+473	36	0
+473	37	0
+473	38	0
+473	39	0
+473	40	0
+473	41	0
+473	42	0
+473	43	0
+473	44	0
+473	45	0
+473	46	0
+473	47	0
+473	48	0
+473	49	0
+473	50	0
+473	51	0
+473	52	0
+473	53	0
+473	54	0
+473	55	0
+473	56	0
+473	57	0
+473	58	0
+473	59	0
+473	60	0
+473	61	0
+473	62	0
+473	63	0
+473	64	0
+473	65	0
+473	66	0
+473	67	0
+473	68	0
+473	69	0
+473	70	0
 >>END_MODULE
 >>Per sequence quality scores	fail
 #Quality	Count
-17	20.0
+17	20
 >>END_MODULE
 >>Per base sequence content	fail
 #Base	G	A	T	C
-1	20.0	5.0	35.0	40.0
-2	10.0	10.0	45.0	35.0
-3	35.0	20.0	20.0	25.0
-4	35.0	30.0	25.0	10.0
-5	20.0	20.0	30.0	30.0
-6	20.0	35.0	20.0	25.0
-7	15.0	40.0	35.0	10.0
-8	20.0	15.0	45.0	20.0
-9	20.0	25.0	35.0	20.0
-10	20.0	20.0	30.0	30.0
-11	15.0	20.0	45.0	20.0
-12	10.0	40.0	35.0	15.0
-13	25.0	35.0	20.0	20.0
-14	35.0	20.0	20.0	25.0
-15	30.0	35.0	15.0	20.0
-16	10.0	45.0	25.0	20.0
-17	25.0	25.0	40.0	10.0
-18	25.0	35.0	10.0	30.0
-19	5.0	30.0	25.0	40.0
-20	20.0	15.0	40.0	25.0
-21	25.0	25.0	25.0	25.0
-22	15.0	30.0	20.0	35.0
-23	20.0	5.0	45.0	30.0
-24	10.0	30.0	35.0	25.0
-25	30.0	40.0	15.0	15.0
-26	15.0	35.0	20.0	30.0
-27	15.0	35.0	30.0	20.0
-28	25.0	25.0	30.0	20.0
-29	15.0	30.0	20.0	35.0
-30	20.0	35.0	30.0	15.0
-31	20.0	35.0	25.0	20.0
-32	35.0	15.0	35.0	15.0
-33	30.0	35.0	15.0	20.0
-34	25.0	25.0	25.0	25.0
-35	25.0	20.0	35.0	20.0
-36	30.0	25.0	20.0	25.0
-37	15.0	45.0	25.0	15.0
-38	30.0	25.0	35.0	10.0
-39	20.0	45.0	15.0	20.0
-40	15.0	35.0	20.0	30.0
-41	35.0	25.0	20.0	20.0
-42	30.0	30.0	35.0	5.0
-43	25.0	15.0	40.0	20.0
-44	40.0	20.0	30.0	10.0
-45	15.0	35.0	25.0	25.0
-46	15.0	30.0	40.0	15.0
-47	35.0	15.0	30.0	20.0
-48	30.0	35.0	20.0	15.0
-49	10.0	55.00000000000001	30.0	5.0
-50	40.0	25.0	20.0	15.0
-51	25.0	35.0	10.0	30.0
-52	30.0	25.0	20.0	25.0
-53	30.0	10.0	30.0	30.0
-54	20.0	40.0	20.0	20.0
-55	10.0	35.0	10.0	45.0
-56	50.0	10.0	30.0	10.0
-57	15.0	45.0	30.0	10.0
-58	20.0	35.0	20.0	25.0
-59	30.0	35.0	30.0	5.0
-60	20.0	35.0	25.0	20.0
-61	25.0	15.0	35.0	25.0
-62	10.0	20.0	55.00000000000001	15.0
-63	25.0	20.0	35.0	20.0
-64	20.0	35.0	25.0	20.0
-65	30.0	35.0	25.0	10.0
-66	15.0	40.0	35.0	10.0
-67	20.0	35.0	20.0	25.0
-68	20.0	25.0	30.0	25.0
-69	15.0	35.0	25.0	25.0
-70	5.0	40.0	40.0	15.0
+1	20	5	35	40
+2	10	10	45	35
+3	35	20	20	25
+4	35	30	25	10
+5	20	20	30	30
+6	20	35	20	25
+7	15	40	35	10
+8	20	15	45	20
+9	20	25	35	20
+10	20	20	30	30
+11	15	20	45	20
+12	10	40	35	15
+13	25	35	20	20
+14	35	20	20	25
+15	30	35	15	20
+16	10	45	25	20
+17	25	25	40	10
+18	25	35	10	30
+19	5	30	25	40
+20	20	15	40	25
+21	25	25	25	25
+22	15	30	20	35
+23	20	5	45	30
+24	10	30	35	25
+25	30	40	15	15
+26	15	35	20	30
+27	15	35	30	20
+28	25	25	30	20
+29	15	30	20	35
+30	20	35	30	15
+31	20	35	25	20
+32	35	15	35	15
+33	30	35	15	20
+34	25	25	25	25
+35	25	20	35	20
+36	30	25	20	25
+37	15	45	25	15
+38	30	25	35	10
+39	20	45	15	20
+40	15	35	20	30
+41	35	25	20	20
+42	30	30	35	5
+43	25	15	40	20
+44	40	20	30	10
+45	15	35	25	25
+46	15	30	40	15
+47	35	15	30	20
+48	30	35	20	15
+49	10	55	30	5
+50	40	25	20	15
+51	25	35	10	30
+52	30	25	20	25
+53	30	10	30	30
+54	20	40	20	20
+55	10	35	10	45
+56	50	10	30	10
+57	15	45	30	10
+58	20	35	20	25
+59	30	35	30	5
+60	20	35	25	20
+61	25	15	35	25
+62	10	20	55	15
+63	25	20	35	20
+64	20	35	25	20
+65	30	35	25	10
+66	15	40	35	10
+67	20	35	20	25
+68	20	25	30	25
+69	15	35	25	25
+70	5	40	40	15
 >>END_MODULE
 >>Per sequence GC content	fail
 #GC Content	Count
-0	0.0
-1	0.0
-2	0.0
-3	0.0
-4	0.0
-5	0.0
-6	0.0
-7	0.0
-8	0.0
-9	0.0
-10	0.0
-11	0.0
-12	0.0
-13	0.0
-14	0.0
-15	0.0
-16	0.0
-17	0.0
-18	0.0
-19	0.0
-20	0.0
-21	0.0
-22	0.0
-23	0.0
-24	0.0
-25	0.0
-26	0.0
-27	0.0
-28	0.0
+0	0
+1	0
+2	0
+3	0
+4	0
+5	0
+6	0
+7	0
+8	0
+9	0
+10	0
+11	0
+12	0
+13	0
+14	0
+15	0
+16	0
+17	0
+18	0
+19	0
+20	0
+21	0
+22	0
+23	0
+24	0
+25	0
+26	0
+27	0
+28	0
 29	0.5
-30	1.0
+30	1
 31	0.5
 32	0.5
-33	1.0
+33	1
 34	0.5
-35	0.0
-36	0.0
-37	0.0
-38	1.0
+35	0
+36	0
+37	0
+38	1
 39	2.5
-40	3.0
-41	2.0
+40	3
+41	2
 42	1.5
-43	2.0
+43	2
 44	2.5
 45	2.5
-46	1.0
-47	0.0
+46	1
+47	0
 48	0.5
 49	0.5
-50	0.0
+50	0
 51	1.5
 52	1.5
-53	0.0
+53	0
 54	0.5
 55	0.5
-56	0.0
-57	0.0
-58	0.0
-59	0.0
-60	0.0
-61	0.0
-62	0.0
-63	0.0
-64	0.0
-65	0.0
-66	0.0
-67	0.0
-68	0.0
-69	0.0
-70	0.0
-71	0.0
-72	0.0
-73	0.0
-74	0.0
-75	0.0
-76	0.0
-77	0.0
-78	0.0
-79	0.0
-80	0.0
-81	0.0
-82	0.0
-83	0.0
-84	0.0
-85	0.0
-86	0.0
-87	0.0
-88	0.0
-89	0.0
-90	0.0
-91	0.0
-92	0.0
-93	0.0
-94	0.0
-95	0.0
-96	0.0
-97	0.0
-98	0.0
-99	0.0
-100	0.0
+56	0
+57	0
+58	0
+59	0
+60	0
+61	0
+62	0
+63	0
+64	0
+65	0
+66	0
+67	0
+68	0
+69	0
+70	0
+71	0
+72	0
+73	0
+74	0
+75	0
+76	0
+77	0
+78	0
+79	0
+80	0
+81	0
+82	0
+83	0
+84	0
+85	0
+86	0
+87	0
+88	0
+89	0
+90	0
+91	0
+92	0
+93	0
+94	0
+95	0
+96	0
+97	0
+98	0
+99	0
+100	0
 >>END_MODULE
 >>Per base N content	pass
 #Base	N-Count
-1	0.0
-2	0.0
-3	0.0
-4	0.0
-5	0.0
-6	0.0
-7	0.0
-8	0.0
-9	0.0
-10	0.0
-11	0.0
-12	0.0
-13	0.0
-14	0.0
-15	0.0
-16	0.0
-17	0.0
-18	0.0
-19	0.0
-20	0.0
-21	0.0
-22	0.0
-23	0.0
-24	0.0
-25	0.0
-26	0.0
-27	0.0
-28	0.0
-29	0.0
-30	0.0
-31	0.0
-32	0.0
-33	0.0
-34	0.0
-35	0.0
-36	0.0
-37	0.0
-38	0.0
-39	0.0
-40	0.0
-41	0.0
-42	0.0
-43	0.0
-44	0.0
-45	0.0
-46	0.0
-47	0.0
-48	0.0
-49	0.0
-50	0.0
-51	0.0
-52	0.0
-53	0.0
-54	0.0
-55	0.0
-56	0.0
-57	0.0
-58	0.0
-59	0.0
-60	0.0
-61	0.0
-62	0.0
-63	0.0
-64	0.0
-65	0.0
-66	0.0
-67	0.0
-68	0.0
-69	0.0
-70	0.0
+1	0
+2	0
+3	0
+4	0
+5	0
+6	0
+7	0
+8	0
+9	0
+10	0
+11	0
+12	0
+13	0
+14	0
+15	0
+16	0
+17	0
+18	0
+19	0
+20	0
+21	0
+22	0
+23	0
+24	0
+25	0
+26	0
+27	0
+28	0
+29	0
+30	0
+31	0
+32	0
+33	0
+34	0
+35	0
+36	0
+37	0
+38	0
+39	0
+40	0
+41	0
+42	0
+43	0
+44	0
+45	0
+46	0
+47	0
+48	0
+49	0
+50	0
+51	0
+52	0
+53	0
+54	0
+55	0
+56	0
+57	0
+58	0
+59	0
+60	0
+61	0
+62	0
+63	0
+64	0
+65	0
+66	0
+67	0
+68	0
+69	0
+70	0
 >>END_MODULE
 >>Sequence Length Distribution	pass
 #Length	Count
 70	20.0
 >>END_MODULE
 >>Sequence Duplication Levels	pass
-#Total Deduplicated Percentage	100.0
-#Duplication Level	Percentage of total
-1	100.0
-2	0.0
-3	0.0
-4	0.0
-5	0.0
-6	0.0
-7	0.0
-8	0.0
-9	0.0
->10	0.0
->50	0.0
->100	0.0
->500	0.0
->1k	0.0
->5k	0.0
->10k+	0.0
+#Total Deduplicated Percentage	100
+#Duplication Level	Percentage of deduplicated	Percentage of total
+1	100	100
+2	0	0
+3	0	0
+4	0	0
+5	0	0
+6	0	0
+7	0	0
+8	0	0
+9	0	0
+>10	0	0
+>50	0	0
+>100	0	0
+>500	0	0
+>1k	0	0
+>5k	0	0
+>10k+	0	0
 >>END_MODULE
 >>Overrepresented sequences	fail
 #Sequence	Count	Percentage	Possible Source
-CCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAG	1	5.0	No Hit
-TGGCGCTCTCCGTCTTTCTCCATTTCGTCGTGGCCTTGCTATTGACTCTA	1	5.0	No Hit
-ACCATAAACGCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTCAGTAG	1	5.0	No Hit
-TGTTTTCCGTAAATTCAGCGCCTTCCATGATGCGACAGGCCGTTTGAATG	1	5.0	No Hit
-CTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGT	1	5.0	No Hit
-TCTGCGTTTGCTGATGAACTAAGTCAACCTCAGCACTAACCTTGCGAGTC	1	5.0	No Hit
-CCATACAAAACAGGGTCGCCAGCAATATCGGTATAAGTCAAAGCACCTTT	1	5.0	No Hit
-TAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTCAAG	1	5.0	No Hit
-CAAATTAGCATAAGCAGCTTGCAGACCCATAATGTCAATAGATGTGGTAG	1	5.0	No Hit
-GCGTTAAGGTACTGAATCTCTTTAGTCGCAGTAGGCGGAAAACGAACAAG	1	5.0	No Hit
-CTGAATGGAATTAAGAAAACCACCAATACCAGCATTAACCTTCAAACTAT	1	5.0	No Hit
-GCGACCATTCAAAGGATAAACATCATAGGCAGTCGGGAGGGTAGTCGGAA	1	5.0	No Hit
-GTGAAATTTCTAGGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAG	1	5.0	No Hit
-CTCAAATCCGGCGTCAACCATACCAGCATAGGAAGCATCAGCACCAGCAC	1	5.0	No Hit
-TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACC	1	5.0	No Hit
-CTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATA	1	5.0	No Hit
-TTAGGTGTGTGTAAAACAGGTGCCGAAGAAGCTGGATTAACAGAATTGAG	1	5.0	No Hit
-GCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGA	1	5.0	No Hit
-TTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGTAATT	1	5.0	No Hit
-CTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAA	1	5.0	No Hit
+ACCATAAACGCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTCAGTAGCAATCCAAACTTTGTTACTC	1	5	No Hit
+GTGAAATTTCTAGGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTCA	1	5	No Hit
+CCATACAAAACAGGGTCGCCAGCAATATCGGTATAAGTCAAAGCACCTTTAGCGTTAAGGTACTGAATCT	1	5	No Hit
+CTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGCA	1	5	No Hit
+CAAATTAGCATAAGCAGCTTGCAGACCCATAATGTCAATAGATGTGGTAGAAGTCGTCATTTGGCTAGAA	1	5	No Hit
+CTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAAAT	1	5	No Hit
+TGGCGCTCTCCGTCTTTCTCCATTTCGTCGTGGCCTTGCTATTGACTCTACTGTAGACATTTTTACTTTT	1	5	No Hit
+TAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTCAAGCGCCGAGGATGCGTGACCGT	1	5	No Hit
+TGTTTTCCGTAAATTCAGCGCCTTCCATGATGCGACAGGCCGTTTGAATGTTGACGGGATGAACATAATA	1	5	No Hit
+TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACCAGTGTTTCCAGTCCGTTCAG	1	5	No Hit
+TCTGCGTTTGCTGATGAACTAAGTCAACCTCAGCACTAACCTTGCGAGTCATTTCATTGATTTGGTCATT	1	5	No Hit
+GCGTTAAGGTACTGAATCTCTTTAGTCGCAGTAGGCGGAAAACGAACAAGCGCAAGAGTAAACATAGTGC	1	5	No Hit
+CCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCT	1	5	No Hit
+TTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGTAATTACTACTGCTTGTTTACGAAT	1	5	No Hit
+TTAGGTGTGTGTAAAACAGGTGCCGAAGAAGCTGGATTAACAGAATTGAGAACCAGCTTATCAGAAAAAA	1	5	No Hit
+CTGAATGGAATTAAGAAAACCACCAATACCAGCATTAACCTTCAAACTATCAAAATATAACGTTGACGAT	1	5	No Hit
+GCGACCATTCAAAGGATAAACATCATAGGCAGTCGGGAGGGTAGTCGGAACCGACGAAGACTCAAAGCGA	1	5	No Hit
+GCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAAAGCCGCCTC	1	5	No Hit
+CTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAA	1	5	No Hit
+CTCAAATCCGGCGTCAACCATACCAGCATAGGAAGCATCAGCACCAGCACGCTCCCAAGCATTAATCTCA	1	5	No Hit
 >>END_MODULE
 >>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
-1	0.0	0.0	0.0	0.0	0.0	0.0
-2	0.0	0.0	0.0	0.0	0.0	0.0
-3	0.0	0.0	0.0	0.0	0.0	0.0
-4	0.0	0.0	0.0	0.0	0.0	0.0
-5	0.0	0.0	0.0	0.0	0.0	0.0
-6	0.0	0.0	0.0	0.0	0.0	0.0
-7	0.0	0.0	0.0	0.0	0.0	0.0
-8	0.0	0.0	0.0	0.0	0.0	0.0
-9	0.0	0.0	0.0	0.0	0.0	0.0
-10	0.0	0.0	0.0	0.0	0.0	0.0
-11	0.0	0.0	0.0	0.0	0.0	0.0
-12	0.0	0.0	0.0	0.0	0.0	0.0
-13	0.0	0.0	0.0	0.0	0.0	0.0
-14	0.0	0.0	0.0	0.0	0.0	0.0
-15	0.0	0.0	0.0	0.0	0.0	0.0
-16	0.0	0.0	0.0	0.0	0.0	0.0
-17	0.0	0.0	0.0	0.0	0.0	0.0
-18	0.0	0.0	0.0	0.0	0.0	0.0
-19	0.0	0.0	0.0	0.0	0.0	0.0
-20	0.0	0.0	0.0	0.0	0.0	0.0
-21	0.0	0.0	0.0	0.0	0.0	0.0
-22	0.0	0.0	0.0	0.0	0.0	0.0
-23	0.0	0.0	0.0	0.0	0.0	0.0
-24	0.0	0.0	0.0	0.0	0.0	0.0
-25	0.0	0.0	0.0	0.0	0.0	0.0
-26	0.0	0.0	0.0	0.0	0.0	0.0
-27	0.0	0.0	0.0	0.0	0.0	0.0
-28	0.0	0.0	0.0	0.0	0.0	0.0
-29	0.0	0.0	0.0	0.0	0.0	0.0
-30	0.0	0.0	0.0	0.0	0.0	0.0
-31	0.0	0.0	0.0	0.0	0.0	0.0
-32	0.0	0.0	0.0	0.0	0.0	0.0
-33	0.0	0.0	0.0	0.0	0.0	0.0
-34	0.0	0.0	0.0	0.0	0.0	0.0
-35	0.0	0.0	0.0	0.0	0.0	0.0
-36	0.0	0.0	0.0	0.0	0.0	0.0
-37	0.0	0.0	0.0	0.0	0.0	0.0
-38	0.0	0.0	0.0	0.0	0.0	0.0
-39	0.0	0.0	0.0	0.0	0.0	0.0
-40	0.0	0.0	0.0	0.0	0.0	0.0
-41	0.0	0.0	0.0	0.0	0.0	0.0
-42	0.0	0.0	0.0	0.0	0.0	0.0
-43	0.0	0.0	0.0	0.0	0.0	0.0
-44	0.0	0.0	0.0	0.0	0.0	0.0
-45	0.0	0.0	0.0	0.0	0.0	0.0
-46	0.0	0.0	0.0	0.0	0.0	0.0
-47	0.0	0.0	0.0	0.0	0.0	0.0
-48	0.0	0.0	0.0	0.0	0.0	0.0
-49	0.0	0.0	0.0	0.0	0.0	0.0
-50	0.0	0.0	0.0	0.0	0.0	0.0
-51	0.0	0.0	0.0	0.0	0.0	0.0
-52	0.0	0.0	0.0	0.0	0.0	0.0
-53	0.0	0.0	0.0	0.0	0.0	0.0
-54	0.0	0.0	0.0	0.0	0.0	0.0
-55	0.0	0.0	0.0	0.0	0.0	0.0
-56	0.0	0.0	0.0	0.0	0.0	0.0
-57	0.0	0.0	0.0	0.0	0.0	0.0
-58	0.0	0.0	0.0	0.0	0.0	0.0
-59	0.0	0.0	0.0	0.0	0.0	0.0
+1	0	0	0	0	0	0
+2	0	0	0	0	0	0
+3	0	0	0	0	0	0
+4	0	0	0	0	0	0
+5	0	0	0	0	0	0
+6	0	0	0	0	0	0
+7	0	0	0	0	0	0
+8	0	0	0	0	0	0
+9	0	0	0	0	0	0
+10	0	0	0	0	0	0
+11	0	0	0	0	0	0
+12	0	0	0	0	0	0
+13	0	0	0	0	0	0
+14	0	0	0	0	0	0
+15	0	0	0	0	0	0
+16	0	0	0	0	0	0
+17	0	0	0	0	0	0
+18	0	0	0	0	0	0
+19	0	0	0	0	0	0
+20	0	0	0	0	0	0
+21	0	0	0	0	0	0
+22	0	0	0	0	0	0
+23	0	0	0	0	0	0
+24	0	0	0	0	0	0
+25	0	0	0	0	0	0
+26	0	0	0	0	0	0
+27	0	0	0	0	0	0
+28	0	0	0	0	0	0
+29	0	0	0	0	0	0
+30	0	0	0	0	0	0
+31	0	0	0	0	0	0
+32	0	0	0	0	0	0
+33	0	0	0	0	0	0
+34	0	0	0	0	0	0
+35	0	0	0	0	0	0
+36	0	0	0	0	0	0
+37	0	0	0	0	0	0
+38	0	0	0	0	0	0
+39	0	0	0	0	0	0
+40	0	0	0	0	0	0
+41	0	0	0	0	0	0
+42	0	0	0	0	0	0
+43	0	0	0	0	0	0
+44	0	0	0	0	0	0
+45	0	0	0	0	0	0
+46	0	0	0	0	0	0
+47	0	0	0	0	0	0
+48	0	0	0	0	0	0
+49	0	0	0	0	0	0
+50	0	0	0	0	0	0
+51	0	0	0	0	0	0
+52	0	0	0	0	0	0
+53	0	0	0	0	0	0
+54	0	0	0	0	0	0
+55	0	0	0	0	0	0
+56	0	0	0	0	0	0
+57	0	0	0	0	0	0
+58	0	0	0	0	0	0
+59	0	0	0	0	0	0
+60	0	0	0	0	0	0
+61	0	0	0	0	0	0
+62	0	0	0	0	0	0
+63	0	0	0	0	0	0
+64	0	0	0	0	0	0
+65	0	0	0	0	0	0
+66	0	0	0	0	0	0
+67	0	0	0	0	0	0
+68	0	0	0	0	0	0
+69	0	0	0	0	0	0
+70	0	0	0	0	0	0
 >>END_MODULE
--- a/test-data/fastqc_data_nogroup.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_data_nogroup.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1744,114 +1744,114 @@
 #Sequence	Count	Percentage	Possible Source
 ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
 >>END_MODULE
->>Adapter Content	warn
+>>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
+2	0	0	0	0	0.0611621	0
+3	0	0	0	0	0.0611621	0
+4	0	0	0	0	0.0611621	0
+5	0	0	0	0	0.122324	0
+6	0	0	0	0	0.122324	0
+7	0	0	0	0	0.122324	0
+8	0	0	0	0	0.142712	0
+9	0	0	0	0	0.142712	0
+10	0	0	0	0	0.142712	0
+11	0	0	0	0	0.142712	0
+12	0	0	0	0	0.142712	0
+13	0	0	0	0	0.163099	0
+14	0	0	0	0	0.163099	0
+15	0	0	0	0	0.183486	0
+16	0	0	0	0	0.203874	0
+17	0	0	0	0	0.224261	0
+18	0	0	0	0	0.224261	0
+19	0	0	0	0	0.224261	0
+20	0.122324	0	0	0	0.244648	0
+21	0.122324	0	0	0	0.244648	0
+22	0.122324	0	0	0	0.244648	0
+23	0.122324	0	0	0	0.244648	0
+24	0.122324	0	0	0	0.244648	0
+25	0.122324	0	0	0	0.244648	0
+26	0.122324	0	0	0	0.244648	0
+27	0.142712	0	0	0	0.244648	0
+28	0.183486	0	0	0	0.244648	0
+29	0.224261	0	0	0	0.244648	0
+30	0.224261	0	0	0	0.244648	0
+31	0.224261	0	0	0	0.244648	0
+32	0.224261	0	0	0	0.244648	0
+33	0.224261	0	0	0	0.285423	0
+34	0.224261	0	0	0	0.285423	0
+35	0.265036	0	0	0	0.30581	0
+36	0.285423	0	0	0	0.30581	0
+37	0.326198	0	0	0	0.326198	0
+38	0.407747	0	0	0	0.326198	0
+39	0.468909	0	0	0	0.326198	0
+40	0.468909	0	0	0	0.326198	0
+41	0.468909	0	0	0	0.326198	0
+42	0.468909	0	0	0	0.326198	0
+43	0.468909	0	0	0	0.326198	0
+44	0.468909	0	0	0	0.326198	0
+45	0.468909	0	0	0	0.326198	0
+46	0.468909	0	0	0	0.326198	0
+47	0.468909	0	0	0	0.326198	0
+48	0.468909	0	0	0	0.326198	0
+49	0.468909	0	0	0	0.326198	0
+50	0.468909	0	0	0	0.326198	0
+51	0.468909	0	0	0	0.326198	0
+52	0.468909	0	0	0	0.326198	0
+53	0.468909	0	0	0	0.326198	0
+54	0.468909	0	0	0	0.326198	0
+55	0.468909	0	0	0	0.326198	0
+56	0.468909	0	0	0	0.326198	0
+57	0.468909	0	0	0	0.326198	0
+58	0.468909	0	0	0	0.326198	0
+59	0.468909	0	0	0	0.326198	0
+60	0.468909	0	0	0	0.326198	0
+61	0.468909	0	0	0	0.326198	0
+62	0.468909	0	0	0	0.326198	0
+63	0.468909	0	0	0	0.326198	0
+64	0.468909	0	0	0	0.326198	0
+65	0.468909	0	0	0	0.326198	0
+66	0.468909	0	0	0	0.326198	0
+67	0.468909	0	0	0	0.326198	0
+68	0.468909	0	0	0	0.326198	0
+69	0.468909	0	0	0	0.326198	0
+70	0.468909	0	0	0	0.326198	0
+71	0.468909	0	0	0	0.326198	0
+72	0.468909	0	0	0	0.326198	0
+73	0.468909	0	0	0	0.326198	0
+74	0.468909	0	0	0	0.326198	0
+75	0.468909	0	0	0	0.326198	0
+76	0.468909	0	0	0	0.326198	0
+77	0.468909	0	0	0	0.326198	0
+78	0.468909	0	0	0	0.326198	0
+79	0.468909	0	0	0	0.326198	0
+80	0.468909	0	0	0	0.326198	0
+81	0.468909	0	0	0	0.326198	0
+82	0.468909	0	0	0	0.326198	0
+83	0.468909	0	0	0	0.326198	0
+84	0.468909	0	0	0	0.326198	0
+85	0.468909	0	0	0	0.326198	0
+86	0.468909	0	0	0	0.326198	0
+87	0.468909	0	0	0	0.326198	0
+88	0.468909	0	0	0	0.326198	0
+89	0.468909	0	0	0	0.326198	0
+90	0.468909	0	0	0	0.326198	0
+91	0.468909	0	0	0	0.326198	0
+92	0.468909	0	0	0	0.326198	0
+93	0.468909	0	0	0	0.326198	0
+94	0.468909	0	0	0	0.326198	0
+95	0.468909	0	0	0	0.326198	0
+96	0.468909	0	0	0	0.326198	0
+97	0.468909	0	0	0	0.326198	0
+98	0.468909	0	0	0	0.326198	0
+99	0.468909	0	0	0	0.326198	0
+100	0.468909	0	0	0	0.326198	0
+101	0.468909	0	0	0	0.326198	0
+102	0.468909	0	0	0	0.326198	0
+103	0.468909	0	0	0	0.326198	0
+104	0.468909	0	0	0	0.326198	0
+105	0.468909	0	0	0	0.326198	0
+106	0.468909	0	0	0	0.326198	0
+107	0.468909	0	0	0	0.326198	0
+108	0.468909	0	0	0	0.326198	0
 >>END_MODULE
--- a/test-data/fastqc_data_nogroup_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
-PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
-WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-WARN	Adapter Content	1000trimmed_fastq
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/fastqc_data_summary.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -0,0 +1,11 @@
+PASS	Basic Statistics	1000trimmed_fastq
+PASS	Per base sequence quality	1000trimmed_fastq
+FAIL	Per tile sequence quality	1000trimmed_fastq
+PASS	Per sequence quality scores	1000trimmed_fastq
+FAIL	Per base sequence content	1000trimmed_fastq
+WARN	Per sequence GC content	1000trimmed_fastq
+PASS	Per base N content	1000trimmed_fastq
+WARN	Sequence Length Distribution	1000trimmed_fastq
+PASS	Sequence Duplication Levels	1000trimmed_fastq
+WARN	Overrepresented sequences	1000trimmed_fastq
+PASS	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_report.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:39:03 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_adapters.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:39:42 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="pass" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="pass" id="adaptercontent">    Adapter Content : pass  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "SOLID Small RNA Adapter"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_bisulfite.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:40:53 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="warn" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="warn" id="perbasesequencecontent">    Per base sequence content : warn  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [54.2304, 55.1816, 50.5827, 49.8458, 51.425, 51.0705, 51.91, 50.2033, 49.1661, 50.7122, 49.8647, 49.2153, 49.2351, 48.717, 49.5119, 51.0104, 49.5842, 48.921, 50.1685, 49.8311, 48.4897, 49.3806, 50.2975, 49.0344, 48.5403, 47.8864, 49.1336, 48.3155, 49.2508, 48.7641, 47.6093, 49.5249, 50.2023, 49.7425, 50.5887, 48.2708, 49.8344, 47.4227, 47.6436, 45.4713, 45.729, 46.3918, 48.38, 47.1649, 47.3122, 48.0118, 48.5272, 45.3976, 49.1532, 49.3373, 47.7909, 47.3859, 45.8395, 47.5019, 47.6226, 47.8491, 46.717, 46.6361, 46.4349], mode : 'lines', name : 'A+G', line :{ color : '#CCCCCC', dash : 'dash'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [45.7696, 44.8184, 49.4173, 50.1542, 48.575, 48.9295, 48.09, 49.7967, 50.8339, 49.2878, 50.1353, 50.7847, 50.7649, 51.283, 50.4881, 48.9896, 50.4158, 51.079, 49.8315, 50.1689, 51.5103, 50.6194, 49.7025, 50.9656, 51.4597, 52.1136, 50.8664, 51.6845, 50.7492, 51.2359, 52.3907, 50.4751, 49.7977, 50.2575, 49.4113, 51.7292, 50.1656, 52.5773, 52.3564, 54.5287, 54.271, 53.6082, 51.62, 52.8351, 52.6878, 51.9882, 51.4728, 54.6024, 50.8468, 50.6627, 52.2091, 52.6141, 54.1605, 52.4981, 52.3774, 52.1509, 53.283, 53.3639, 53.5651], mode : 'lines', name : 'C+T', line :{ color : '#999999', dash : 'dash'}}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_bisulfite.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_report_bisulfite.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1597,114 +1597,114 @@
 #Sequence	Count	Percentage	Possible Source
 ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
 >>END_MODULE
->>Adapter Content	warn
+>>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
+2	0	0	0	0	0.0611621	0
+3	0	0	0	0	0.0611621	0
+4	0	0	0	0	0.0611621	0
+5	0	0	0	0	0.122324	0
+6	0	0	0	0	0.122324	0
+7	0	0	0	0	0.122324	0
+8	0	0	0	0	0.142712	0
+9	0	0	0	0	0.142712	0
+10	0	0	0	0	0.142712	0
+11	0	0	0	0	0.142712	0
+12	0	0	0	0	0.142712	0
+13	0	0	0	0	0.163099	0
+14	0	0	0	0	0.163099	0
+15	0	0	0	0	0.183486	0
+16	0	0	0	0	0.203874	0
+17	0	0	0	0	0.224261	0
+18	0	0	0	0	0.224261	0
+19	0	0	0	0	0.224261	0
+20	0.122324	0	0	0	0.244648	0
+21	0.122324	0	0	0	0.244648	0
+22	0.122324	0	0	0	0.244648	0
+23	0.122324	0	0	0	0.244648	0
+24	0.122324	0	0	0	0.244648	0
+25	0.122324	0	0	0	0.244648	0
+26	0.122324	0	0	0	0.244648	0
+27	0.142712	0	0	0	0.244648	0
+28	0.183486	0	0	0	0.244648	0
+29	0.224261	0	0	0	0.244648	0
+30	0.224261	0	0	0	0.244648	0
+31	0.224261	0	0	0	0.244648	0
+32	0.224261	0	0	0	0.244648	0
+33	0.224261	0	0	0	0.285423	0
+34	0.224261	0	0	0	0.285423	0
+35	0.265036	0	0	0	0.30581	0
+36	0.285423	0	0	0	0.30581	0
+37	0.326198	0	0	0	0.326198	0
+38	0.407747	0	0	0	0.326198	0
+39	0.468909	0	0	0	0.326198	0
+40	0.468909	0	0	0	0.326198	0
+41	0.468909	0	0	0	0.326198	0
+42	0.468909	0	0	0	0.326198	0
+43	0.468909	0	0	0	0.326198	0
+44	0.468909	0	0	0	0.326198	0
+45	0.468909	0	0	0	0.326198	0
+46	0.468909	0	0	0	0.326198	0
+47	0.468909	0	0	0	0.326198	0
+48	0.468909	0	0	0	0.326198	0
+49	0.468909	0	0	0	0.326198	0
+50	0.468909	0	0	0	0.326198	0
+51	0.468909	0	0	0	0.326198	0
+52	0.468909	0	0	0	0.326198	0
+53	0.468909	0	0	0	0.326198	0
+54	0.468909	0	0	0	0.326198	0
+55	0.468909	0	0	0	0.326198	0
+56	0.468909	0	0	0	0.326198	0
+57	0.468909	0	0	0	0.326198	0
+58	0.468909	0	0	0	0.326198	0
+59	0.468909	0	0	0	0.326198	0
+60	0.468909	0	0	0	0.326198	0
+61	0.468909	0	0	0	0.326198	0
+62	0.468909	0	0	0	0.326198	0
+63	0.468909	0	0	0	0.326198	0
+64	0.468909	0	0	0	0.326198	0
+65	0.468909	0	0	0	0.326198	0
+66	0.468909	0	0	0	0.326198	0
+67	0.468909	0	0	0	0.326198	0
+68	0.468909	0	0	0	0.326198	0
+69	0.468909	0	0	0	0.326198	0
+70	0.468909	0	0	0	0.326198	0
+71	0.468909	0	0	0	0.326198	0
+72	0.468909	0	0	0	0.326198	0
+73	0.468909	0	0	0	0.326198	0
+74	0.468909	0	0	0	0.326198	0
+75	0.468909	0	0	0	0.326198	0
+76	0.468909	0	0	0	0.326198	0
+77	0.468909	0	0	0	0.326198	0
+78	0.468909	0	0	0	0.326198	0
+79	0.468909	0	0	0	0.326198	0
+80	0.468909	0	0	0	0.326198	0
+81	0.468909	0	0	0	0.326198	0
+82	0.468909	0	0	0	0.326198	0
+83	0.468909	0	0	0	0.326198	0
+84	0.468909	0	0	0	0.326198	0
+85	0.468909	0	0	0	0.326198	0
+86	0.468909	0	0	0	0.326198	0
+87	0.468909	0	0	0	0.326198	0
+88	0.468909	0	0	0	0.326198	0
+89	0.468909	0	0	0	0.326198	0
+90	0.468909	0	0	0	0.326198	0
+91	0.468909	0	0	0	0.326198	0
+92	0.468909	0	0	0	0.326198	0
+93	0.468909	0	0	0	0.326198	0
+94	0.468909	0	0	0	0.326198	0
+95	0.468909	0	0	0	0.326198	0
+96	0.468909	0	0	0	0.326198	0
+97	0.468909	0	0	0	0.326198	0
+98	0.468909	0	0	0	0.326198	0
+99	0.468909	0	0	0	0.326198	0
+100	0.468909	0	0	0	0.326198	0
+101	0.468909	0	0	0	0.326198	0
+102	0.468909	0	0	0	0.326198	0
+103	0.468909	0	0	0	0.326198	0
+104	0.468909	0	0	0	0.326198	0
+105	0.468909	0	0	0	0.326198	0
+106	0.468909	0	0	0	0.326198	0
+107	0.468909	0	0	0	0.326198	0
+108	0.468909	0	0	0	0.326198	0
 >>END_MODULE
--- a/test-data/fastqc_report_bisulfite_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_report_bisulfite_summary.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -8,4 +8,4 @@
 WARN	Sequence Length Distribution	1000trimmed_fastq
 PASS	Sequence Duplication Levels	1000trimmed_fastq
 WARN	Overrepresented sequences	1000trimmed_fastq
-WARN	Adapter Content	1000trimmed_fastq
+PASS	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_report_contaminants.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:39:23 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_customlimits.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:40:01 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_hisat.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,187 +0,0 @@
-<!DOCTYPE html><html><head><title>hisat_output_1_bam FastQC Report</title><style type="text/css">
- @media screen {
-  div.summary {
-    width: 18em;
-    position:fixed;
-    top: 3em;
-    margin:1em 0 0 1em;
-  }
-  
-  div.main {
-    display:block;
-    position:absolute;
-    overflow:auto;
-    height:auto;
-    width:auto;
-    top:4.5em;
-    bottom:2.3em;
-    left:18em;
-    right:0;
-    border-left: 1px solid #CCC;
-    padding:0 0 0 1em;
-    background-color: white;
-    z-index:1;
-  }
-  
-  div.header {
-    background-color: #EEE;
-    border:0;
-    margin:0;
-    padding: 0.5em;
-    font-size: 200%;
-    font-weight: bold;
-    position:fixed;
-    width:100%;
-    top:0;
-    left:0;
-    z-index:2;
-  }
-
-  div.footer {
-    background-color: #EEE;
-    border:0;
-    margin:0;
-	padding:0.5em;
-    height: 1.3em;
-	overflow:hidden;
-    font-size: 100%;
-    font-weight: bold;
-    position:fixed;
-    bottom:0;
-    width:100%;
-    z-index:2;
-  }
-  
-  img.indented {
-    margin-left: 3em;
-  }
- }
- 
- @media print {
-	img {
-		max-width:100% !important;
-		page-break-inside: avoid;
-	}
-	h2, h3 {
-		page-break-after: avoid;
-	}
-	div.header {
-      background-color: #FFF;
-    }
-	
- }
- 
- body {    
-  font-family: sans-serif;   
-  color: #000;   
-  background-color: #FFF;
-  border: 0;
-  margin: 0;
-  padding: 0;
-  }
-  
-  div.header {
-  border:0;
-  margin:0;
-  padding: 0.5em;
-  font-size: 200%;
-  font-weight: bold;
-  width:100%;
-  }    
-  
-  #header_title {
-  display:inline-block;
-  float:left;
-  clear:left;
-  }
-  #header_filename {
-  display:inline-block;
-  float:right;
-  clear:right;
-  font-size: 50%;
-  margin-right:2em;
-  text-align: right;
-  }
-
-  div.header h3 {
-  font-size: 50%;
-  margin-bottom: 0;
-  }
-  
-  div.summary ul {
-  padding-left:0;
-  list-style-type:none;
-  }
-  
-  div.summary ul li img {
-  margin-bottom:-0.5em;
-  margin-top:0.5em;
-  }
-	  
-  div.main {
-  background-color: white;
-  }
-      
-  div.module {
-  padding-bottom:1.5em;
-  padding-top:1.5em;
-  }
-	  
-  div.footer {
-  background-color: #EEE;
-  border:0;
-  margin:0;
-  padding: 0.5em;
-  font-size: 100%;
-  font-weight: bold;
-  width:100%;
-  }
-
-
-  a {
-  color: #000080;
-  }
-
-  a:hover {
-  color: #800000;
-  }
-      
-  h2 {
-  color: #800000;
-  padding-bottom: 0;
-  margin-bottom: 0;
-  clear:left;
-  }
-
-  table { 
-  margin-left: 3em;
-  text-align: center;
-  }
-  
-  th { 
-  text-align: center;
-  background-color: #000080;
-  color: #FFF;
-  padding: 0.4em;
-  }      
-  
-  td { 
-  font-family: monospace; 
-  text-align: left;
-  background-color: #EEE;
-  color: #000;
-  padding: 0.4em;
-  }
-
-  img {
-  padding-top: 0;
-  margin-top: 0;
-  border-top: 0;
-  }
-
-  
-  p {
-  padding-top: 0;
-  margin-top: 0;
-  }
-</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Thu 8 Jun 2023<br/>hisat_output_1_bam</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[FAIL]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[FAIL]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[PASS]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[PASS]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>hisat_output_1_bam</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>20</td></tr><tr><td>Total Bases</td><td>1.4 kbp</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>70</td></tr><tr><td>%GC</td><td>43</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[FAIL]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[FAIL]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[OK]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[OK]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>CCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TGGCGCTCTCCGTCTTTCTCCATTTCGTCGTGGCCTTGCTATTGACTCTA</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>ACCATAAACGCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTCAGTAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TGTTTTCCGTAAATTCAGCGCCTTCCATGATGCGACAGGCCGTTTGAATG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGT</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TCTGCGTTTGCTGATGAACTAAGTCAACCTCAGCACTAACCTTGCGAGTC</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CCATACAAAACAGGGTCGCCAGCAATATCGGTATAAGTCAAAGCACCTTT</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTCAAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CAAATTAGCATAAGCAGCTTGCAGACCCATAATGTCAATAGATGTGGTAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>GCGTTAAGGTACTGAATCTCTTTAGTCGCAGTAGGCGGAAAACGAACAAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CTGAATGGAATTAAGAAAACCACCAATACCAGCATTAACCTTCAAACTAT</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>GCGACCATTCAAAGGATAAACATCATAGGCAGTCGGGAGGGTAGTCGGAA</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>GTGAAATTTCTAGGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CTCAAATCCGGCGTCAACCATACCAGCATAGGAAGCATCAGCACCAGCAC</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACC</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATA</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TTAGGTGTGTGTAAAACAGGTGCCGAAGAAGCTGGATTAACAGAATTGAG</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>GCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGA</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>TTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGTAATT</td><td>1</td><td>5.0</td><td>No Hit</td></tr><tr><td>CTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAA</td><td>1</td><td>5.0</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a>  (version 0.12.1)</div></body></html>
\ No newline at end of file
--- a/test-data/fastqc_report_kmer.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Mon May 27 16:59:30 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="pass" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="pass" id="adaptercontent">    Adapter Content : pass  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.2</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "SOLID Small RNA Adapter"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_min_length.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Mon May 27 17:01:42 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="pass" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="pass" id="adaptercontent">    Adapter Content : pass  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.2</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5 prime Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "SOLID Small RNA Adapter"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_nogroup.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:40:19 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 10bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 33], type : 'box', name : ' 11bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 12bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 34], type : 'box', name : ' 14bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 17bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 18bp', marker : {color : 'green'}}, {y : [23, 26, 30, 32, 33], type : 'box', name : ' 19bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 20bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 23bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 24bp', marker : {color : 'green'}}, {y : [21, 26, 29, 32, 33], type : 'box', name : ' 25bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 26bp', marker : {color : 'green'}}, {y : [21, 26, 29, 32, 33], type : 'box', name : ' 27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 30bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31, 33], type : 'box', name : ' 31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 33bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 34bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 35bp', marker : {color : 'green'}}, {y : [20, 24, 28, 31, 33], type : 'box', name : ' 36bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 39bp', marker : {color : 'green'}}, {y : [20, 24, 28, 31, 33], type : 'box', name : ' 40bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 41bp', marker : {color : 'green'}}, {y : [21, 24, 27, 31, 33], type : 'box', name : ' 42bp', marker : {color : 'green'}}, {y : [20, 24, 27, 31, 33], type : 'box', name : ' 43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 45bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 32], type : 'box', name : ' 46bp', marker : {color : 'green'}}, {y : [20, 24, 27, 31, 32], type : 'box', name : ' 47bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 48bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 51bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 52bp', marker : {color : 'green'}}, {y : [19, 22, 26, 29, 31], type : 'box', name : ' 53bp', marker : {color : 'green'}}, {y : [17, 22, 27, 30, 32], type : 'box', name : ' 54bp', marker : {color : 'green'}}, {y : [24, 29, 32, 33, 34], type : 'box', name : ' 55bp', marker : {color : 'green'}}, {y : [25, 28, 31, 33, 34], type : 'box', name : ' 56bp', marker : {color : 'green'}}, {y : [26, 29, 32, 33, 34], type : 'box', name : ' 57bp', marker : {color : 'green'}}, {y : [26, 29, 32, 33, 34], type : 'box', name : ' 58bp', marker : {color : 'green'}}, {y : [26, 28, 31, 33, 34], type : 'box', name : ' 59bp', marker : {color : 'green'}}, {y : [26, 29, 32, 33, 34], type : 'box', name : ' 60bp', marker : {color : 'green'}}, {y : [26, 29, 31, 33, 34], type : 'box', name : ' 61bp', marker : {color : 'green'}}, {y : [26, 29, 31, 33, 34], type : 'box', name : ' 62bp', marker : {color : 'green'}}, {y : [25, 29, 32, 33, 34], type : 'box', name : ' 63bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 64bp', marker : {color : 'green'}}, {y : [26, 29, 32, 33, 34], type : 'box', name : ' 65bp', marker : {color : 'green'}}, {y : [26, 29, 32, 33, 34], type : 'box', name : ' 66bp', marker : {color : 'green'}}, {y : [25, 29, 32, 33, 34], type : 'box', name : ' 67bp', marker : {color : 'green'}}, {y : [25, 28, 31, 33, 34], type : 'box', name : ' 68bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 71bp', marker : {color : 'green'}}, {y : [25, 29, 32, 33, 34], type : 'box', name : ' 72bp', marker : {color : 'green'}}, {y : [26, 29, 31, 33, 34], type : 'box', name : ' 73bp', marker : {color : 'green'}}, {y : [26, 29, 31, 33, 34], type : 'box', name : ' 74bp', marker : {color : 'green'}}, {y : [25, 28, 31, 33, 34], type : 'box', name : ' 75bp', marker : {color : 'green'}}, {y : [25, 28, 31, 33, 34], type : 'box', name : ' 76bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 77bp', marker : {color : 'green'}}, {y : [25, 28, 31, 33, 34], type : 'box', name : ' 78bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 79bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 80bp', marker : {color : 'green'}}, {y : [24, 27, 31, 33, 34], type : 'box', name : ' 81bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 82bp', marker : {color : 'green'}}, {y : [25, 28, 31, 32, 34], type : 'box', name : ' 83bp', marker : {color : 'green'}}, {y : [24, 27, 31, 32, 34], type : 'box', name : ' 84bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32, 34], type : 'box', name : ' 85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 33, 34], type : 'box', name : ' 86bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32, 34], type : 'box', name : ' 87bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 88bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 89bp', marker : {color : 'green'}}, {y : [23, 26, 30, 32, 33], type : 'box', name : ' 90bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 93bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 94bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 95bp', marker : {color : 'green'}}, {y : [22, 25, 29, 31, 33], type : 'box', name : ' 96bp', marker : {color : 'green'}}, {y : [22, 26, 29, 31, 33], type : 'box', name : ' 97bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 98bp', marker : {color : 'green'}}, {y : [22, 25, 28, 31, 33], type : 'box', name : ' 99bp', marker : {color : 'green'}}, {y : [22, 25, 28, 31, 33], type : 'box', name : ' 100bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 101bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 102bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 103bp', marker : {color : 'green'}}, {y : [20, 24, 27, 31, 32], type : 'box', name : ' 104bp', marker : {color : 'green'}}, {y : [20, 24, 28, 31, 33], type : 'box', name : ' 105bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 106bp', marker : {color : 'green'}}, {y : [20, 23, 26, 29, 31], type : 'box', name : ' 107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}}  ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 30.6342, 28.2889, 28.3374, 29.7438, 29.2716, 28.6744, 29.2148, 29.5802, 27.6766, 28.0689, 28.8983, 29.0501, 31.2628, 28.9749, 28.1416, 30.027, 28.0299, 28.0806, 30.6353, 31.0539, 29.7821, 28.5848, 28.5714, 29.4599, 30, 29.4178, 29.4995, 30.2198, 27.7947, 28.2967, 27.6113, 29.7828, 27.3002, 28.4688, 29.5709, 30.8362, 27.7694, 28.4971, 27.95, 31.5014, 28.2067, 28.3114, 30.0727, 29.7527, 28.7172, 35.9238, 31.1765, 30.6107, 30.2428, 29.2127, 31.273, 35.0993, 29.5806, 29.8749, 32.2296, 33.6524, 28.2032, 29.6024, 29.3814, 31.3697, 28.3505, 27.2459, 28.4242, 30.6333, 26.8778, 29.1605, 31.8851, 31.5169, 26.8778, 29.8969, 29.0869, 32.7688, 30.9278, 30.9278, 31.9588, 31.2224, 28.056, 27.7614, 31.4433, 33.2842, 30.4124, 29.0869, 29.0869, 31.0015, 28.4242, 28.4978, 27.8351, 31.0015, 30.14, 28.5283, 28.9811, 30.717, 28.2264, 30.7925, 29.1321, 28.2264, 30.3396, 28.3501, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.0445, 22.1778, 20.9334, 20.9703, 20.9345, 21.6977, 21.1507, 21.1355, 21.8014, 20.8118, 21.5618, 21.1892, 19.9949, 19.3776, 22.4973, 20.2162, 21.0293, 20.4429, 22.4253, 19.6566, 21.0351, 20.293, 22.6722, 21.5712, 21.1706, 19.6349, 20.1278, 18.022, 20.6084, 21.1538, 22.1862, 20.0501, 21.1231, 21.4639, 21.5951, 20.203, 21.0025, 19.3968, 23.5998, 20.2833, 21.3183, 19.5857, 21.2161, 19.788, 21.6472, 20.2346, 19.4118, 18.3959, 17.2185, 20.4562, 21.7807, 18.028, 20.0147, 18.911, 21.3392, 18.6303, 19.6613, 19.8822, 20.9131, 20.4713, 19.1458, 19.2194, 21.944, 18.8513, 19.2931, 18.8513, 22.3122, 17.4521, 21.3549, 19.0722, 21.7231, 17.8203, 20.0295, 18.8513, 21.2813, 18.7776, 20.5449, 20.2504, 21.7968, 17.7467, 18.2622, 15.9794, 21.8704, 19.8822, 19.3667, 19.0722, 22.5331, 20.8395, 18.7915, 19.9245, 20, 18.1887, 22.1132, 20.3774, 21.8113, 21.2075, 19.5472, 20.1394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6059, 27.7556, 29.3695, 28.9957, 30.0275, 28.907, 29.875, 29.3655, 30.9541, 28.9791, 29.8931, 28.3195, 28.3111, 30.3086, 28.6209, 29.4865, 30.6032, 30.0681, 27.8213, 29.7513, 29.0557, 29.9564, 30.1658, 28.5761, 29.2642, 31.1746, 30.1384, 31.0989, 30.8365, 29.3171, 30.1215, 30.5347, 31.9222, 29.6812, 30.084, 29.8212, 31.3784, 31.5653, 28.5481, 29.0085, 30.7007, 30.8223, 30.4032, 33.4276, 31.414, 27.6393, 29.4118, 32.3767, 33.7013, 29.1391, 27.5938, 31.4202, 33.1862, 31.3466, 29.0655, 31.296, 35.1988, 30.4124, 32.6215, 30.7069, 36.6716, 34.0206, 34.3152, 33.4315, 37.1134, 31.9588, 29.0869, 34.3888, 34.1679, 31.0751, 32.0324, 33.7997, 32.9897, 32.106, 29.8233, 33.0633, 36.4507, 31.9588, 30.1178, 32.0324, 33.0633, 34.0206, 31.3697, 31.296, 35.2725, 31.5169, 32.7688, 32.1797, 33.972, 32.3019, 33.1321, 33.434, 29.9623, 31.8491, 31.0189, 32.5283, 32.3774, 34.7018, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 20.7154, 21.7778, 21.3597, 20.2902, 19.7664, 20.7209, 19.7595, 19.9189, 19.5679, 22.1402, 19.6469, 21.4412, 20.4312, 21.3389, 20.7401, 20.2703, 20.3376, 21.4083, 19.1181, 19.5382, 20.1271, 21.1658, 18.5906, 20.3928, 19.5652, 19.7726, 20.2343, 20.6593, 20.7605, 21.2323, 20.081, 19.6324, 19.6544, 20.3862, 18.75, 19.1397, 19.8496, 20.5408, 19.9021, 19.2068, 19.7743, 21.2806, 18.308, 17.0318, 18.2216, 16.2023, 20, 18.6166, 18.8374, 21.1921, 19.3525, 15.4525, 17.2185, 19.8675, 17.3657, 16.4212, 16.9367, 20.1031, 17.0839, 17.4521, 15.8321, 19.514, 15.3166, 17.0839, 16.7158, 20.0295, 16.7158, 16.6421, 17.5994, 19.9558, 17.1576, 15.6112, 16.053, 18.1149, 16.9367, 16.9367, 14.9485, 20.0295, 16.6421, 16.9367, 18.2622, 20.9131, 17.673, 17.8203, 16.9367, 20.9131, 16.863, 15.9794, 17.0965, 19.2453, 17.8868, 17.6604, 19.6981, 16.9811, 18.0377, 18.0377, 17.7358, 16.8087, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_reverse_complement.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:41:08 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="warn" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="warn" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="warn" id="overrepresentedsequences">    Overrepresented sequences : warn</h2>  <table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT</td><td>33</td><td>0.672783</td><td>No Hit</td></tr></tbody></table></div><div class="module">  <h2 class="warn" id="adaptercontent">    Adapter Content : warn  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [23, 27, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 34], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 34], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [21.5, 26, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 28, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24, 28, 31, 33], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 31, 33], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 23.5, 27, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20, 23, 27, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29.5, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [20.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [26, 28.5, 31.5, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31.5, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 29, 32, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25, 29, 31, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31, 33, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [24.5, 28, 31, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24, 27, 30.5, 32, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [24, 27, 30, 32.5, 34], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22.5, 27, 30, 32, 33.5], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [23, 26, 29.5, 32, 33], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [23, 26, 29, 32, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 32, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 24.5, 28, 31, 33], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20, 24, 27.5, 31, 32.5], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30, 32], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 28, 31, 33], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34], y : [7,24,47,78,226,513,830,1017,947,645,352,157,55,6,1], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [33.0071, 31.4157, 28.7058, 28.2953, 30.2059, 28.9463, 29.966, 28.8252, 29.0882, 29.4689, 29.037, 28.9753, 29.3964, 27.8715, 28.9737, 30.1295, 29.0773, 28.0549, 30.8425, 29.1923, 29.0099, 29.7132, 29.854, 28.0417, 28.6801, 27.8732, 30.1923, 28.1266, 29.6892, 28.2576, 29.918, 32.3099, 30.8937, 29.7277, 33.1862, 29.7277, 32.9407, 28.9028, 30.3756, 27.7982, 29.5287, 28.0191, 31.701, 28.3873, 30.9278, 30.9278, 31.5906, 27.9087, 32.3638, 29.7496, 30.0442, 28.461, 29.4183, 29.3438, 29.8491, 29.5094, 28.6792, 29.3578, 26.3815], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7961, 17.5031, 19.955, 21.3037, 20.3037, 22.5651, 19.6944, 21.9345, 22.1789, 21.6076, 20.9517, 21.3132, 21.1431, 21.3099, 21.3767, 19.6891, 21.3653, 20.7399, 21.0549, 20.6695, 22.1289, 20.4141, 19.0914, 20.8768, 21.1349, 21.2902, 20.9115, 20.2144, 21.9756, 20.476, 20.526, 20.943, 18.904, 18.8374, 19.9043, 19.4628, 19.9853, 19.7717, 20.6922, 19.1826, 20.3976, 19.0722, 19.8822, 20.2135, 19.7717, 19.4404, 20.0295, 20.3976, 19.7717, 17.1208, 20.8763, 19.2194, 21.6863, 19.3512, 19.0943, 21.2453, 21.5094, 19.8394, 21.836], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [25.9735, 27.3154, 29.4623, 28.8505, 28.2713, 26.3644, 28.3956, 27.8622, 28.655, 27.6802, 29.1836, 29.4715, 29.6217, 29.9731, 29.1114, 29.3005, 29.0504, 30.3391, 28.7766, 29.4994, 29.3814, 30.2053, 30.6111, 30.0888, 30.3248, 30.8234, 29.9549, 31.4701, 28.7736, 30.7598, 31.8648, 29.5322, 30.8937, 31.4202, 29.507, 32.2664, 30.1803, 32.8056, 31.6642, 35.3461, 33.8733, 34.5361, 31.7378, 32.6215, 32.9161, 32.5479, 31.4433, 34.2047, 31.0751, 33.542, 31.3328, 33.3947, 32.4742, 33.1469, 33.283, 30.9057, 31.7736, 33.5245, 31.7291], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [21.2232, 23.7658, 21.8769, 21.5505, 21.2191, 22.1243, 21.944, 21.3781, 20.078, 21.2432, 20.8277, 20.24, 19.8387, 20.8456, 20.5382, 20.8808, 20.507, 20.866, 19.326, 20.6388, 19.4799, 19.6674, 20.4435, 20.9927, 19.8602, 20.0132, 18.9414, 20.1889, 19.5616, 20.5066, 17.6913, 17.2149, 19.3086, 20.0147, 17.4025, 18.543, 16.8936, 18.5199, 17.268, 17.673, 16.2003, 18.3726, 16.6789, 18.7776, 16.3844, 17.0839, 16.9367, 17.489, 16.7894, 19.5876, 17.7467, 18.9249, 16.4212, 18.1581, 17.7736, 18.3396, 18.0377, 17.2783, 20.0535], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [15, 15.5, 16.5, 17, 18, 21.5, 26.5, 30, 33.5, 36, 41, 47, 47.5, 56, 65.5, 69, 72.5, 77.5, 85.5, 94.5, 105.5, 113, 120, 131.5, 150, 172.5, 198, 217.5, 244.5, 281.5, 314.5, 337, 365, 402.5, 436, 463, 481.5, 505, 525, 510.5, 490.5, 493, 487, 483.5, 488, 475.5, 468, 468.5, 477, 473, 437.5, 416, 405.5, 397, 386, 365, 346, 343, 334, 320, 319, 301.5, 276.5, 245.5, 207.5, 191, 182, 173, 167, 151.5, 131.5, 121, 117.5, 110.5, 104, 90.5, 75, 67.5, 62.5, 61.5, 59, 57, 55, 47, 39, 38, 36.5, 35.5, 28.5, 21, 19, 17, 15.5, 14.5, 14, 13.5, 14.5, 15.5, 15.5, 16, 15, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [28.0542, 32.1238, 36.6593, 41.6938, 47.2594, 53.3867, 60.1047, 67.4392, 75.4129, 84.0443, 93.347, 103.329, 113.991, 125.329, 137.329, 149.968, 163.218, 177.037, 191.378, 206.18, 221.376, 236.889, 252.632, 268.511, 284.423, 300.259, 315.905, 331.242, 346.151, 360.507, 374.189, 387.078, 399.057, 410.016, 419.851, 428.469, 435.786, 441.729, 446.24, 449.272, 450.796, 450.796, 449.272, 446.24, 441.729, 435.786, 428.469, 419.851, 410.016, 399.057, 387.078, 374.189, 360.507, 346.151, 331.242, 315.905, 300.259, 284.423, 268.511, 252.632, 236.889, 221.376, 206.18, 191.378, 177.037, 163.218, 149.968, 137.329, 125.329, 113.991, 103.329, 93.347, 84.0443, 75.4129, 67.4392, 60.1047, 53.3867, 47.2594, 41.6938, 36.6593, 32.1238, 28.0542, 24.4174, 21.1802, 18.31, 15.7753, 13.5455, 11.5916, 9.88599, 8.40284, 7.11805, 6.00933, 5.05614, 4.23977, 3.54319, 2.95105, 2.44956, 2.02641, 1.6707, 1.37277, 1.12415, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","2 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","55 bp","56 bp","64 bp","97 bp","98 bp","106 bp","107 bp","108 bp"], y : [3,11,28,56,43,52,39,56,60,57,43,46,45,66,59,49,73,54,44,52,73,72,68,56,86,92,75,69,74,96,72,81,65,87,86,87,100,82,78,76,79,88,83,75,74,72,84,74,81,91,80,98,43,8,4,1,1,1,32,34,169,1122], text : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,64,97,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [98.1855, 0.937819, 0.122324, 0.0815494, 0, 0, 0, 0, 0, 0.672783, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.4425, 0.474912, 0.0412967, 0.0206484, 0, 0, 0, 0, 0, 0.0206484, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.142712,0.183486,0.224261,0.224261,0.224261,0.224261,0.224261,0.224261,0.265036,0.285423,0.326198,0.407747,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.468909,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.489297,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.509684,0.570846,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008,0.632008], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0.0203874,0.0815494,0.142712,0.183486,0.285423,0.38736,0.489297,0.591233,0.672783,0.754332,0.835882,0.917431,1.01937,1.1213,1.24363,1.34557,1.46789,1.59021,1.67176,1.75331,1.83486,1.89602,1.95719,2.01835,2.07951,2.14067,2.20183,2.263,2.32416,2.38532,2.44648,2.50765,2.60958,2.71152,2.81346,2.89501,2.99694,3.09888,3.20082,3.30275,3.40469,3.48624,3.56779,3.60856,3.62895,3.64934,3.66972,3.69011,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.7105,3.73089,3.75127,3.77166,3.81244,3.85321,3.89399,3.93476,3.97554,4.01631,4.05708,4.09786,4.13863,4.17941,4.22018,4.26096,4.32212,4.38328,4.42406,4.46483,4.50561,4.54638,4.58716,4.62793,4.66871,4.70948,4.75025,4.79103,4.8318,4.91335,4.9949,5.05607,5.09684,5.158,5.21916,5.28033,5.34149,5.40265,5.46381,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497,5.52497], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_reverse_complement.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_report_reverse_complement.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1597,114 +1597,114 @@
 #Sequence	Count	Percentage	Possible Source
 ATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	33	0.672783	No Hit
 >>END_MODULE
->>Adapter Content	warn
+>>Adapter Content	pass
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0.0203874	0
-2	0	0	0	0	0.0815494	0
-3	0	0	0	0	0.142712	0
-4	0	0	0	0	0.183486	0
-5	0	0	0	0	0.285423	0
-6	0	0	0	0	0.38736	0
-7	0	0	0	0	0.489297	0
-8	0	0	0	0	0.591233	0
-9	0	0	0	0	0.672783	0
-10	0	0	0	0	0.754332	0
-11	0	0	0	0	0.835882	0
-12	0	0	0	0	0.917431	0
-13	0	0	0	0	1.01937	0
-14	0	0	0	0	1.1213	0
-15	0	0	0	0	1.24363	0
-16	0	0	0	0	1.34557	0
-17	0	0	0	0	1.46789	0
-18	0	0	0	0	1.59021	0
-19	0	0	0	0	1.67176	0
-20	0.122324	0	0	0	1.75331	0
-21	0.122324	0	0	0	1.83486	0
-22	0.122324	0	0	0	1.89602	0
-23	0.122324	0	0	0	1.95719	0
-24	0.122324	0	0	0	2.01835	0
-25	0.122324	0	0	0	2.07951	0
-26	0.122324	0	0	0	2.14067	0
-27	0.142712	0	0	0	2.20183	0
-28	0.183486	0	0	0	2.263	0
-29	0.224261	0	0	0	2.32416	0
-30	0.224261	0	0	0	2.38532	0
-31	0.224261	0	0	0	2.44648	0
-32	0.224261	0	0	0	2.50765	0
-33	0.224261	0	0	0	2.60958	0
-34	0.224261	0	0	0	2.71152	0
-35	0.265036	0	0	0	2.81346	0
-36	0.285423	0	0	0	2.89501	0
-37	0.326198	0	0	0	2.99694	0
-38	0.407747	0	0	0	3.09888	0
-39	0.468909	0	0	0	3.20082	0
-40	0.468909	0	0	0	3.30275	0
-41	0.468909	0	0	0	3.40469	0
-42	0.468909	0	0	0	3.48624	0
-43	0.468909	0	0	0	3.56779	0
-44	0.468909	0	0	0	3.60856	0
-45	0.468909	0	0	0	3.62895	0
-46	0.468909	0	0	0	3.64934	0
-47	0.468909	0	0	0	3.66972	0
-48	0.468909	0	0	0	3.69011	0
-49	0.468909	0	0	0	3.7105	0
-50	0.468909	0	0	0	3.7105	0
-51	0.468909	0	0	0	3.7105	0
-52	0.468909	0	0	0	3.7105	0
-53	0.468909	0	0	0	3.7105	0
-54	0.468909	0	0	0	3.7105	0
-55	0.468909	0	0	0	3.7105	0
-56	0.468909	0	0	0	3.7105	0
-57	0.468909	0	0	0	3.7105	0
-58	0.468909	0	0	0	3.7105	0
-59	0.468909	0	0	0	3.73089	0
-60	0.468909	0	0	0	3.75127	0
-61	0.468909	0	0	0	3.77166	0
-62	0.468909	0	0	0	3.81244	0
-63	0.468909	0	0	0	3.85321	0
-64	0.468909	0	0	0	3.89399	0
-65	0.468909	0	0	0	3.93476	0
-66	0.468909	0	0	0	3.97554	0
-67	0.468909	0	0	0	4.01631	0
-68	0.468909	0	0	0	4.05708	0
-69	0.468909	0	0	0	4.09786	0
-70	0.468909	0	0	0	4.13863	0
-71	0.468909	0	0	0	4.17941	0
-72	0.468909	0	0	0	4.22018	0
-73	0.468909	0	0	0	4.26096	0
-74	0.489297	0	0	0	4.32212	0
-75	0.489297	0	0	0	4.38328	0
-76	0.489297	0	0	0	4.42406	0
-77	0.489297	0	0	0	4.46483	0
-78	0.489297	0	0	0	4.50561	0
-79	0.489297	0	0	0	4.54638	0
-80	0.489297	0	0	0	4.58716	0
-81	0.489297	0	0	0	4.62793	0
-82	0.489297	0	0	0	4.66871	0
-83	0.509684	0	0	0	4.70948	0
-84	0.509684	0	0	0	4.75025	0
-85	0.509684	0	0	0	4.79103	0
-86	0.509684	0	0	0	4.8318	0
-87	0.509684	0	0	0	4.91335	0
-88	0.509684	0	0	0	4.9949	0
-89	0.509684	0	0	0	5.05607	0
-90	0.509684	0	0	0	5.09684	0
-91	0.509684	0	0	0	5.158	0
-92	0.570846	0	0	0	5.21916	0
-93	0.632008	0	0	0	5.28033	0
-94	0.632008	0	0	0	5.34149	0
-95	0.632008	0	0	0	5.40265	0
-96	0.632008	0	0	0	5.46381	0
-97	0.632008	0	0	0	5.52497	0
-98	0.632008	0	0	0	5.52497	0
-99	0.632008	0	0	0	5.52497	0
-100	0.632008	0	0	0	5.52497	0
-101	0.632008	0	0	0	5.52497	0
-102	0.632008	0	0	0	5.52497	0
-103	0.632008	0	0	0	5.52497	0
-104	0.632008	0	0	0	5.52497	0
-105	0.632008	0	0	0	5.52497	0
-106	0.632008	0	0	0	5.52497	0
-107	0.632008	0	0	0	5.52497	0
-108	0.632008	0	0	0	5.52497	0
+2	0	0	0	0	0.0611621	0
+3	0	0	0	0	0.0611621	0
+4	0	0	0	0	0.0611621	0
+5	0	0	0	0	0.122324	0
+6	0	0	0	0	0.122324	0
+7	0	0	0	0	0.122324	0
+8	0	0	0	0	0.142712	0
+9	0	0	0	0	0.142712	0
+10	0	0	0	0	0.142712	0
+11	0	0	0	0	0.142712	0
+12	0	0	0	0	0.142712	0
+13	0	0	0	0	0.163099	0
+14	0	0	0	0	0.163099	0
+15	0	0	0	0	0.183486	0
+16	0	0	0	0	0.203874	0
+17	0	0	0	0	0.224261	0
+18	0	0	0	0	0.224261	0
+19	0	0	0	0	0.224261	0
+20	0.122324	0	0	0	0.244648	0
+21	0.122324	0	0	0	0.244648	0
+22	0.122324	0	0	0	0.244648	0
+23	0.122324	0	0	0	0.244648	0
+24	0.122324	0	0	0	0.244648	0
+25	0.122324	0	0	0	0.244648	0
+26	0.122324	0	0	0	0.244648	0
+27	0.142712	0	0	0	0.244648	0
+28	0.183486	0	0	0	0.244648	0
+29	0.224261	0	0	0	0.244648	0
+30	0.224261	0	0	0	0.244648	0
+31	0.224261	0	0	0	0.244648	0
+32	0.224261	0	0	0	0.244648	0
+33	0.224261	0	0	0	0.285423	0
+34	0.224261	0	0	0	0.285423	0
+35	0.265036	0	0	0	0.30581	0
+36	0.285423	0	0	0	0.30581	0
+37	0.326198	0	0	0	0.326198	0
+38	0.407747	0	0	0	0.326198	0
+39	0.468909	0	0	0	0.326198	0
+40	0.468909	0	0	0	0.326198	0
+41	0.468909	0	0	0	0.326198	0
+42	0.468909	0	0	0	0.326198	0
+43	0.468909	0	0	0	0.326198	0
+44	0.468909	0	0	0	0.326198	0
+45	0.468909	0	0	0	0.326198	0
+46	0.468909	0	0	0	0.326198	0
+47	0.468909	0	0	0	0.326198	0
+48	0.468909	0	0	0	0.326198	0
+49	0.468909	0	0	0	0.326198	0
+50	0.468909	0	0	0	0.326198	0
+51	0.468909	0	0	0	0.326198	0
+52	0.468909	0	0	0	0.326198	0
+53	0.468909	0	0	0	0.326198	0
+54	0.468909	0	0	0	0.326198	0
+55	0.468909	0	0	0	0.326198	0
+56	0.468909	0	0	0	0.326198	0
+57	0.468909	0	0	0	0.326198	0
+58	0.468909	0	0	0	0.326198	0
+59	0.468909	0	0	0	0.326198	0
+60	0.468909	0	0	0	0.326198	0
+61	0.468909	0	0	0	0.326198	0
+62	0.468909	0	0	0	0.326198	0
+63	0.468909	0	0	0	0.326198	0
+64	0.468909	0	0	0	0.326198	0
+65	0.468909	0	0	0	0.326198	0
+66	0.468909	0	0	0	0.326198	0
+67	0.468909	0	0	0	0.326198	0
+68	0.468909	0	0	0	0.326198	0
+69	0.468909	0	0	0	0.326198	0
+70	0.468909	0	0	0	0.326198	0
+71	0.468909	0	0	0	0.326198	0
+72	0.468909	0	0	0	0.326198	0
+73	0.468909	0	0	0	0.326198	0
+74	0.468909	0	0	0	0.326198	0
+75	0.468909	0	0	0	0.326198	0
+76	0.468909	0	0	0	0.326198	0
+77	0.468909	0	0	0	0.326198	0
+78	0.468909	0	0	0	0.326198	0
+79	0.468909	0	0	0	0.326198	0
+80	0.468909	0	0	0	0.326198	0
+81	0.468909	0	0	0	0.326198	0
+82	0.468909	0	0	0	0.326198	0
+83	0.468909	0	0	0	0.326198	0
+84	0.468909	0	0	0	0.326198	0
+85	0.468909	0	0	0	0.326198	0
+86	0.468909	0	0	0	0.326198	0
+87	0.468909	0	0	0	0.326198	0
+88	0.468909	0	0	0	0.326198	0
+89	0.468909	0	0	0	0.326198	0
+90	0.468909	0	0	0	0.326198	0
+91	0.468909	0	0	0	0.326198	0
+92	0.468909	0	0	0	0.326198	0
+93	0.468909	0	0	0	0.326198	0
+94	0.468909	0	0	0	0.326198	0
+95	0.468909	0	0	0	0.326198	0
+96	0.468909	0	0	0	0.326198	0
+97	0.468909	0	0	0	0.326198	0
+98	0.468909	0	0	0	0.326198	0
+99	0.468909	0	0	0	0.326198	0
+100	0.468909	0	0	0	0.326198	0
+101	0.468909	0	0	0	0.326198	0
+102	0.468909	0	0	0	0.326198	0
+103	0.468909	0	0	0	0.326198	0
+104	0.468909	0	0	0	0.326198	0
+105	0.468909	0	0	0	0.326198	0
+106	0.468909	0	0	0	0.326198	0
+107	0.468909	0	0	0	0.326198	0
+108	0.468909	0	0	0	0.326198	0
 >>END_MODULE
--- a/test-data/fastqc_report_reverse_complement_summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
-PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
-WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-WARN	Adapter Content	1000trimmed_fastq
--- a/test-data/fastqc_report_subsample.html	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-<html><head>    <meta charset="utf-8">    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">	<title>     1000trimmed_fastq - report	</title><link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous"><link href="https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous"><style type="text/css"> @media screen {  div.summary {    width: 18em;    position:fixed;    top: 4em;    margin:1em 0 0 1em;  }    div.main {    display:block;    position:absolute;    overflow:auto;    height:auto;    width:auto;    top:4.5em;    bottom:2.3em;    left:18em;    right:0;    border-left: 1px solid #CCC;    padding:0 0 0 1em;    background-color: white;    z-index:1;  }    div.header {    background-color: #EEE;    border:0;    margin:0;    padding: 0.2em;    font-size: 200%;    position:fixed;    width:100%;    top:0;    left:0;    z-index:2;  }  div.footer {    background-color: #EEE;    border:0;    margin:0;	padding:0.5em;    height: 2.5em;	overflow:hidden;    font-size: 100%;    position:fixed;    bottom:0;    width:100%;    z-index:2;  }    img.indented {    margin-left: 3em;  } }  @media print {	img {		max-width:100% !important;		page-break-inside: avoid;	}	h2, h3 {		page-break-after: avoid;	}	div.header {      background-color: #FFF;    }	 }  body {      color: #000;     background-color: #FFF;  border: 0;  margin: 0;  padding: 0;  }    div.header {  border:0;  margin:0;  padding: 0.5em;  font-size: 200%;  width:100%;  }        #header_title {  display:inline-block;  float:left;  clear:left;  }  #header_filename {  display:inline-block;  float:right;  clear:right;  font-size: 50%;  margin-right:2em;  text-align: right;  }  div.header h3 {  font-size: 50%;  margin-bottom: 0;  }    div.summary ul {  padding-left:0;  list-style-type:none;  }    div.summary ul li img {  margin-bottom:-0.5em;  margin-top:0.5em;  }	    div.main {  background-color: white;  }        div.module {  padding-bottom:3em;  padding-top:3em;  border-bottom: 1px solid #990000  }	    div.footer {  background-color: #EEE;  border:0;  margin:0;  padding: 0.5em;  font-size: 100%;  width:100%;  }  h2 {  color: #2a5e8c;  padding-bottom: 0;  margin-bottom: 0;  clear:left;  }table {  margin-left: 3em;  text-align: center;  }  th {  text-align: center;  background-color: #000080;  color: #FFF;  padding: 0.4em;}  td {  font-family: monospace;  text-align: left;  background-color: #EEE;  color: #000;  padding: 0.4em;}img {  padding-top: 0;  margin-top: 0;  border-top: 0;}  p {  padding-top: 0;  margin-top: 0;}.pass {  color : #009900;}.warn {  color : #999900;}.fail {  color : #990000;}</style><script src="https://cdn.plot.ly/plotly-latest.min.js"></script></head><body><div class="header">	<div id="header_title">Report</div>  <div id="header_filename">Sun Sep  1 15:40:37 2024
-<br/> 1000trimmed_fastq	</div></div><div class="summary"><h2>Summary</h2><ul>    <li><a class="pass" href="#basicstatistics">    Basic Statistics  </a></li>    	<li><a class="pass" href="#perbasesequencequality">    Per base sequence quality</a></li>    	<li><a class="fail" href="#pertilesequencequality">Per tile sequence quality</a></li>    	<li><a class="pass" href="#persequencequalityscores">Per sequence quality scores</a></li>    	<li><a class="fail" href="#perbasesequencecontent">Per base sequence content</a></li>    	<li><a class="warn" href="#persequencegccontent">Per sequence GC content</a></li>    	<li><a class="pass" href="#perbasencontent">Per base N content</a></li>    	<li><a class="warn" href="#sequencelengthdistribution">Sequence Length Distribution</a></li>    	<li><a class="pass" href="#sequenceduplicationlevels">Sequence Duplication Levels</a></li>    	<li><a class="pass" href="#overrepresentedsequences">Overrepresented sequences</a></li>    	<li><a class="pass" href="#adaptercontent">Adapter Content</a></li>    <!--	<li><a class="{{passkmercontent}}" href="#kmercontent">{{kmercontentname}}</a></li>  --></ul></div><div class="main"><div class="module">  <h2 class="pass" id="basicstatistics">    Basic Statistics: pass  </h2>  <table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>1000trimmed_fastq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4905</td></tr><tr><td>Sequences Flagged As Poor Quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1 - 108</td></tr><tr><td>%GC:</td><td>41</td></tr></tbody></table></div><div class="module">	<h2 class="pass" id="perbasesequencequality">    Per base sequence quality: pass</h2> 	<div id="seqbasequalityboxplot"></div></div><div class="module">	<h2 class="fail" id="pertilesequencequality">    Per tile sequence quality : fail  </h2> 	<div id="tilequalityheatmap"></div></div><div class="module">	<h2 class="pass" id="persequencequalityscores">    Per sequence quality scores : pass  </h2> 	<div id="seqqualitylineplot"></div></div><div class="module">	<h2 class="fail" id="perbasesequencecontent">    Per base sequence content : fail  </h2> 	<div id="basesequencecontentlineplot"></div></div><div class="module">	<h2 class="warn" id="persequencegccontent">    Per sequence GC content: warn  </h2> 	<div id="sequencegccontentlineplot"></div></div><div class="module">	<h2 class="pass" id="perbasencontent">    Per base N content : pass  </h2> 	<div id="basencontentlineplot"></div></div><div class="module">	<h2 class="warn" id="sequencelengthdistribution">    Sequence Length Distribution : warn  </h2> 	<div id="sequencelengthdistributionlineplot"></div></div><div class="module">	<h2 class="pass" id="sequenceduplicationlevels">    Sequence Duplication Levels : pass  </h2> 	<div id="seqduplevelslineplot"></div></div><div class="module">	<h2 class="pass" id="overrepresentedsequences">    Overrepresented sequences : pass</h2>  No overrepresented sequences</div><div class="module">  <h2 class="pass" id="adaptercontent">    Adapter Content : pass  </h2> 	<div id="adapterlineplot"></div></div><!--<div class="module">  <h2 class="{{passkmercontent}}" id="kmercontent">    {{kmercontentname}} : {{passkmercontent}}  </h2> 	<div id="kmerlineplot"></div></div>--></div><div class="footer">Falco 1.2.3</div></body><script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"crossorigin="anonymous"></script><script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"crossorigin="anonymous"></script><script>  if (document.getElementById('seqbasequalityboxplot') !== null) {  Plotly.newPlot('seqbasequalityboxplot', [   {y : [24, 28, 31, 33, 34], type : 'box', name : ' 1bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 33], type : 'box', name : ' 2bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 34], type : 'box', name : ' 3bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 4bp', marker : {color : 'green'}}, {y : [22, 27, 30, 32, 33], type : 'box', name : ' 5bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 33], type : 'box', name : ' 6bp', marker : {color : 'green'}}, {y : [23, 27, 30, 32, 33], type : 'box', name : ' 7bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 34], type : 'box', name : ' 8bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33], type : 'box', name : ' 9bp', marker : {color : 'green'}}, {y : [22.5, 26, 30, 32, 33], type : 'box', name : ' 10-11bp', marker : {color : 'green'}}, {y : [22.5, 26.5, 30, 32, 33.5], type : 'box', name : ' 12-13bp', marker : {color : 'green'}}, {y : [22, 26, 30, 32, 33.5], type : 'box', name : ' 14-15bp', marker : {color : 'green'}}, {y : [21.5, 26, 30, 32, 33.5], type : 'box', name : ' 16-17bp', marker : {color : 'green'}}, {y : [22, 26.5, 30, 32, 33.5], type : 'box', name : ' 18-19bp', marker : {color : 'green'}}, {y : [21.5, 25.5, 29, 32, 33], type : 'box', name : ' 20-21bp', marker : {color : 'green'}}, {y : [22, 26, 29.5, 32, 33], type : 'box', name : ' 22-23bp', marker : {color : 'green'}}, {y : [21, 25, 29, 32, 33], type : 'box', name : ' 24-25bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 32, 33], type : 'box', name : ' 26-27bp', marker : {color : 'green'}}, {y : [21.5, 25.5, 28.5, 31.5, 33], type : 'box', name : ' 28-29bp', marker : {color : 'green'}}, {y : [21.5, 24.5, 29, 31.5, 33], type : 'box', name : ' 30-31bp', marker : {color : 'green'}}, {y : [21, 25, 29, 31, 33], type : 'box', name : ' 32-33bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 33], type : 'box', name : ' 34-35bp', marker : {color : 'green'}}, {y : [20.5, 24.5, 28, 31, 33], type : 'box', name : ' 36-37bp', marker : {color : 'green'}}, {y : [21, 24, 28, 31, 32], type : 'box', name : ' 38-39bp', marker : {color : 'green'}}, {y : [20.5, 24.5, 28, 31, 32.5], type : 'box', name : ' 40-41bp', marker : {color : 'green'}}, {y : [21, 24, 27.5, 30.5, 32.5], type : 'box', name : ' 42-43bp', marker : {color : 'green'}}, {y : [20.5, 24, 27, 30, 32], type : 'box', name : ' 44-45bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 27, 30.5, 32], type : 'box', name : ' 46-47bp', marker : {color : 'green'}}, {y : [20, 22.5, 26.5, 30, 32], type : 'box', name : ' 48-49bp', marker : {color : 'green'}}, {y : [20.5, 23, 26.5, 30, 32], type : 'box', name : ' 50-51bp', marker : {color : 'green'}}, {y : [18.5, 22, 26, 29, 31.5], type : 'box', name : ' 52-53bp', marker : {color : 'green'}}, {y : [21.5, 25.5, 29.5, 31.5, 33], type : 'box', name : ' 54-55bp', marker : {color : 'green'}}, {y : [25, 28.5, 31.5, 33, 34], type : 'box', name : ' 56-57bp', marker : {color : 'green'}}, {y : [24, 27.5, 31, 33, 34], type : 'box', name : ' 58-59bp', marker : {color : 'green'}}, {y : [26, 29, 31, 33, 34], type : 'box', name : ' 60-61bp', marker : {color : 'green'}}, {y : [25.5, 29, 31.5, 33, 34], type : 'box', name : ' 62-63bp', marker : {color : 'green'}}, {y : [23.5, 28, 30.5, 33, 34], type : 'box', name : ' 64-65bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 66-67bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 68-69bp', marker : {color : 'green'}}, {y : [25.5, 28.5, 31.5, 33, 34], type : 'box', name : ' 70-71bp', marker : {color : 'green'}}, {y : [25, 28, 31.5, 33, 34], type : 'box', name : ' 72-73bp', marker : {color : 'green'}}, {y : [23.5, 27.5, 30.5, 32.5, 34], type : 'box', name : ' 74-75bp', marker : {color : 'green'}}, {y : [24.5, 27.5, 30, 32, 34], type : 'box', name : ' 76-77bp', marker : {color : 'green'}}, {y : [24, 28, 31, 33, 34], type : 'box', name : ' 78-79bp', marker : {color : 'green'}}, {y : [23.5, 27.5, 30.5, 33, 34], type : 'box', name : ' 80-81bp', marker : {color : 'green'}}, {y : [23.5, 27, 30, 32.5, 34], type : 'box', name : ' 82-83bp', marker : {color : 'green'}}, {y : [24.5, 27, 30.5, 32.5, 34], type : 'box', name : ' 84-85bp', marker : {color : 'green'}}, {y : [23.5, 28, 30, 32.5, 33], type : 'box', name : ' 86-87bp', marker : {color : 'green'}}, {y : [22, 26.5, 29.5, 32, 33], type : 'box', name : ' 88-89bp', marker : {color : 'green'}}, {y : [22, 26, 29, 32, 33.5], type : 'box', name : ' 90-91bp', marker : {color : 'green'}}, {y : [22.5, 26, 29, 31.5, 33], type : 'box', name : ' 92-93bp', marker : {color : 'green'}}, {y : [22, 25.5, 29, 31.5, 33], type : 'box', name : ' 94-95bp', marker : {color : 'green'}}, {y : [21.5, 25, 28.5, 31, 33], type : 'box', name : ' 96-97bp', marker : {color : 'green'}}, {y : [21.5, 25, 28, 31, 33], type : 'box', name : ' 98-99bp', marker : {color : 'green'}}, {y : [20.5, 24, 27.5, 31, 32.5], type : 'box', name : ' 100-101bp', marker : {color : 'green'}}, {y : [21, 23.5, 27.5, 30.5, 32.5], type : 'box', name : ' 102-103bp', marker : {color : 'green'}}, {y : [20.5, 23.5, 26.5, 30, 32], type : 'box', name : ' 104-105bp', marker : {color : 'green'}}, {y : [19.5, 22.5, 26.5, 29, 31.5], type : 'box', name : ' 106-107bp', marker : {color : 'green'}}, {y : [22, 24, 27, 30, 32], type : 'box', name : ' 108bp', marker : {color : 'green'}},   ], {    margin: { t: 0 }, showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'Phread quality'},  });}if (document.getElementById('tilequalityheatmap') !== null) {  Plotly.newPlot('tilequalityheatmap', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y: [0,1,2,3,4,5,6,7,8,9,10], z: [[-29.4857,-28.7721,-28.5832,-28.7282,-28.9662,-28.9765,-29.0324,-28.9563,-28.4479,-28.2935,-28.6264,-28.711,-28.5163,-28.3915,-28.2392,-28.5304,-28.3975,-28.5859,-28.6272,-28.1273,-28.2058,-28.1046,-28.3908,-28.0801,-28.0111,-27.9571,-28.1062,-27.7915,-27.6043,-27.7709,-27.5781,-27.8211,-27.6197,-27.447,-27.3368,-27.2226,-27.2582,-27.2825,-26.7901,-26.9377,-27.17,-27.1488,-26.1931,-26.6119,-26.5613,-26.7864,-26.3367,-26.2903,-25.7095,-26.3457,-26.0927,-25.7055,-24.9716,-26,-30.4161,-30.3869,-30.1825,-29.6569,-30.0876,-30.146,-30.4891,-30.9197,-30.0511,-29.5255,-30.0956,-30.4559,-30.0588,-30.1176,-29.9853,-30.4191,-30.1029,-30.2206,-30.2132,-29.2721,-29.25,-29.7206,-29.8015,-29.7794,-29.6838,-29.5956,-29.4412,-29.3824,-29.375,-29.6176,-29.1544,-29.2059,-29.0074,-28.8162,-28.3603,-28.0809,-28.8309,-28.5882,-28.1618,-27.8897,-28.0074,-28.1471,-27.6471,-27.5662,-27.4485,-27.4044,-26.9265,-27.2132,-26.5882,-26.8603,-26.2868,-26.0588,-25.1343,-27.2314], [0.904969,0.618551,0.463713,-0.165716,-0.0790766,0.136407,0.0643768,-0.311171,0.352106,0.23988,-0.059757,-0.982196,0.0260938,0.367111,1.12283,0.00406913,0.374399,0.128427,0.154569,0.911943,0.264783,-0.124558,-0.615325,-0.794396,-0.0315502,-0.957143,-0.780108,-0.204584,-0.343425,0.540213,-0.200347,0.0425501,0.213661,0.124409,0.419328,0.0700681,-0.437669,-1.33516,-0.654941,0.170365,-1.22718,-0.266407,0.473534,-0.248236,0.00117925,-0.108988,-0.30335,-0.0980149,-0.361671,-0.302201,-0.807001,0.294521,-1.12163,0,1.21552,0.98156,-0.656166,-0.0253554,-0.982328,-1.40914,-0.752209,-1.13023,-0.20899,-1.26239,-0.428922,-1.06699,0.885621,0.0490196,1.01471,1.41422,0.674837,0.334967,-0.602124,-0.0498366,-0.0833333,-0.887255,0.198529,-0.668301,0.705065,-0.262255,-1.10784,0.506536,-0.819444,0.493464,-0.154412,0.627451,-0.00735294,1.18382,0.750817,0.585784,-0.664216,-1.2549,0.504902,0.110294,-0.618464,0.186275,-0.202614,0.489379,-0.504085,0.0955882,0.740196,-0.268791,-0.699346,0.250817,-0.953431,-0.392157,-1.41211,-0.878464], [0.530738,-0.526172,-0.829064,-1.23641,-0.542445,-0.252358,-1.1574,-0.0836046,-0.11456,-0.351146,-0.806424,-0.791009,-1.31628,0.0459906,-1.0309,-0.721903,-1.63666,0.0569986,-0.432127,-0.127273,-0.280805,-0.929558,-0.740836,-0.874982,-0.511142,0.0984127,-0.106195,-0.379776,-1.39217,-2.25575,-1.89062,-1.38359,-2.84548,-2.41476,-2.23677,-2.40119,-2.52741,-2.0133,-2.16508,-1.06274,0.258531,-1.81543,-1.03524,-1.71714,-1.09073,-0.0989078,-3.64918,-1.07604,-2.32488,-0.845679,-2.19272,-1.50548,-1.57163,-3.9,1.80616,-0.053528,0.595296,-4.3236,-2.30981,1.18735,-0.933496,-1.36415,-0.60665,-0.636659,-3.87337,-1.01144,-1.72549,-0.00653595,-2.31863,-1.08578,-3.32516,-2.3317,-0.65768,0.61683,0.638889,-0.831699,-1.35703,-1.55719,-0.572712,-1.15114,1.3366,1.1732,-1.59722,-2.06209,-4.82108,-2.98366,-3.78513,-2.0384,-3.24918,-2.52533,-3.49755,-1.47712,-2.16176,-2.66748,0.103758,-2.36928,-2.0915,-2.7884,-1.22631,0.0400327,-3.92647,-1.8799,-2.03268,-1.86029,-2.95343,0.0522876,-1.91211,-2.94569], [-0.172223,-0.339238,0.670569,0.347542,0.503524,-0.914957,0.798372,0.231168,-0.6737,0.14203,-0.223198,-0.415927,0.29728,-0.0294405,-0.221377,-0.601842,-1.23682,-1.22222,-0.778193,0.684048,-0.436574,0.0915208,0.569164,1.00322,-0.181355,-0.659271,-0.795084,-0.745029,0.465473,-0.212758,0.00327035,-0.00713277,-0.224323,-0.400508,0.00469366,0.602385,0.00497608,1.74525,0.238495,-0.967155,0.314808,0.302853,-0.160875,-2.07854,-0.927987,0.146926,-0.372398,1.01737,1.21358,1.21954,1.31638,-0.387298,-0.521631,-1.8,-0.216058,1.11314,1.16752,0.493066,0.312409,0.254015,1.01095,0.730292,-0.701095,0.374453,-0.245588,0.194118,0.891176,-0.767647,0.464706,-0.0691176,-1.60294,-2.62059,-1.51324,-0.772059,-0.65,-0.420588,-0.351471,-0.329412,-1.53382,-1.44559,-1.74118,-1.38235,-0.475,-1.51765,0.145588,-0.305882,-0.307353,-1.11618,-0.660294,0.869118,-0.0808824,1.51176,-0.761765,-2.23971,0.742647,0.352941,-1.04706,-2.86618,-0.398529,0.445588,-0.626471,0.836765,0.911765,0.839706,1.41324,-0.508824,0.0235664,-0.668905], [-0.00946526,0.421474,-0.599291,-0.36756,-0.310436,-0.373047,0.381396,0.236651,-0.851402,-0.293454,-0.11699,0.0248399,-0.138921,-0.0141509,-0.258465,0.80292,1.13308,0.169243,0.148261,0.0564007,-0.0833558,-0.125391,-0.474169,-0.746777,0.233302,0.865079,0.00491642,-0.413763,-0.715406,-0.498171,-0.53267,-0.588528,0.0946136,0.35298,0.191008,-0.389282,-0.22961,-0.539671,0.121688,0.304681,-1.10943,0.00275482,0.0649315,0.745271,-0.116876,-1.00863,-0.256683,0.418011,0.457169,-2.05996,-0.759382,-0.455479,0.659948,-0.166667,-0.471614,-0.109084,-0.738037,-1.04582,-0.698702,0.0206813,-0.155718,0.746959,-1.60665,-0.636659,-0.0400327,-0.678105,-1.55882,-0.839869,-0.429739,-1.03023,0.674837,0.501634,0.0645425,-0.716503,0.638889,0.612745,-0.857026,-0.723856,-0.0171569,-0.762255,0.614379,-0.993464,-1.26389,-0.339869,-0.154412,-0.428105,-0.451797,-0.593954,-0.304739,-0.0808824,0.780229,-1.58824,-0.939542,-0.167484,-1.28513,0.24183,1.4085,0.0449346,-1.67075,-1.01552,-0.982026,0.564542,-0.143791,-1.91585,-0.508987,-0.503268,1.15979,-0.481405], [1.02228,0.307291,0.385092,0.481462,0.0499557,0.894472,0.361045,0.643668,0.83544,1.02858,0.746458,0.594076,0.173376,0.832628,0.181818,-0.184959,0.250617,-0.151896,0.7453,0.715865,0.834195,0.997483,0.405083,0.239038,-0.606887,1.86104,1.18926,0.799368,1.00036,1.0198,0.793968,0.607485,0.689852,0.0529801,0.472754,0.427385,0.891818,0.9226,1.39911,1.03448,1.60774,0.394097,-0.102224,0.974335,0.645576,-0.165718,0.806174,-1.62366,0.570503,0.17606,0.342067,-0.401132,-1.01511,-0.130435,0.311214,-0.432316,0.999336,1.07034,0.0942269,-0.555076,0.329131,-0.419708,1.26709,1.29263,1.44987,0.362299,0.941176,0.700535,-1.80348,0.35361,2.21524,1.00668,0.74131,0.273396,-0.386364,0.643048,0.698529,-0.870321,-1.13837,1.04078,0.286096,0.117647,0.352273,0.336898,0.300134,0.930481,1.08356,-0.179813,0.0487968,-0.580882,-0.0127005,1.09358,1.38369,1.11029,0.947193,-0.237968,-0.283422,0.752005,0.824198,-0.449866,0.846257,-1.57687,-0.270053,-0.496658,0.122326,0.0775401,-1.31615,-0.881405], [-0.394747,-0.105407,-0.0680107,0.0899661,-0.0570825,0.417444,-0.123306,-1.77451,-0.932742,0.237796,0.811076,1.13274,-0.391279,-2.32901,-0.145484,-0.186664,-1.05378,-0.804609,-1.17564,-1.57889,-0.334837,0.185765,-0.390836,-0.75753,-1.33372,-1.69908,-0.141909,-0.311541,0.0207055,-0.379593,1.24006,-0.571086,-0.198619,0.395085,0.941008,0.944052,2.74182,1.46747,0.584924,-1.25024,-0.236707,1.38457,1.40687,1.32146,1.83868,1.81359,-0.60335,-2.62366,-0.352354,1.15432,-0.692715,0.0722983,0.13948,1.44444,-1.41606,-1.49797,-1.18248,0.454177,1.46796,1.7429,1.28873,0.969181,1.17113,0.918897,1.57108,1.87745,-0.72549,0.771242,0.903595,0.580882,-3.21405,0.00163399,0.00898693,-1.16095,0.305556,0.0571895,-0.468137,1.3317,0.982843,1.73775,0.336601,0.173203,0.291667,-0.173203,0.623366,-1.4281,0.32598,1.07271,1.63971,0.585784,2.39134,0.189542,-0.161765,-0.889706,-1.56291,1.29739,0.464052,1.2116,2.21814,1.48448,-1.48203,-2.21324,-0.143791,1.69526,-0.508987,-0.281046,-0.0232172,2.1436], [-1.03404,0.582765,0.0942571,0.529849,-0.366173,0.356838,-0.0990641,0.112634,1.90925,1.02797,0.262465,0.251954,2.44526,1.45464,0.240766,0.829586,1.32247,1.49414,-0.187249,-0.447273,1.0742,-1.46456,0.849164,0.95989,1.90552,-0.582143,-1.14786,0.344823,1.77666,0.514816,0.421875,-0.821086,1.13033,1.44772,0.189546,-0.169983,1.26813,0.717472,-0.790076,0.00962523,1.61943,-0.569813,-0.0820219,0.665906,-1.14956,-1.25307,0.19665,-0.356989,-1.64283,-1.27901,0.490618,0.127854,0.195035,0.916667,-0.0827251,-1.13686,-0.599148,-0.656934,0.662409,-0.312652,0.260949,0.413625,1.69891,1.72445,0.571078,-1.03922,-0.142157,-0.867647,1.51471,0.747549,1.56373,0.696078,-0.546569,-0.938725,0.166667,-0.637255,1.53186,0.803922,1.48284,-0.178922,-1.52451,0.20098,0.125,-0.867647,0.178922,-0.789216,0.659314,-0.816176,-1.77696,-0.497549,0.335784,-0.421569,-1.16176,-0.973039,1.15931,-0.980392,0.102941,0.683824,-0.198529,-1.07108,-0.426471,-0.629902,-3.2549,-1.52696,0.296569,-0.22549,0.0323383,0.404959], [-1.36801,-0.00736804,0.181544,0.786936,0.190077,-0.570246,1.1551,0.481168,-0.104144,-0.980954,-0.220174,0.257741,-1.5808,-0.165703,-0.271493,-1.06375,0.0358025,0.827935,0.821027,-1.78245,0.0904915,0.203135,0.724549,0.23989,0.308858,-0.37381,1.01881,1.03455,-0.647773,-0.901333,-0.665082,1.588,0.332709,-0.208925,-0.622484,-0.772615,-0.508182,-0.582528,1.40992,-0.885112,-1.17004,0.684573,-0.304244,-0.317754,0.938679,1.40109,1.47582,1.13825,-0.852354,2.4725,0.807285,1.29452,2.77837,4.25,0.458942,0.613139,0.0675182,0.468066,0.787409,0.229015,-0.364051,0.205292,0.948905,1.47445,0.529412,1.16912,-0.558824,1.50735,0.264706,-3.29412,-0.602941,1.52941,0.911765,-0.272059,1.875,-1.72059,-0.426471,1.97059,3.06618,1.27941,1.68382,1.61765,2.25,1.88235,2.59559,1.79412,0.992647,1.68382,1.13971,0.0441176,0.794118,1.28676,2.58824,3.11029,1.24265,1.22794,0.602941,0.433824,3.42647,1.84559,3.32353,2.41176,3.28676,3.13971,1.33824,1.94118,2.61567,3.0186], [-0.439144,-0.772074,0.254047,0.48607,0.546022,0.0722848,-1.61776,-0.688039,-0.228381,-0.0434537,0.0485763,0.699247,0.562668,-0.641509,0.0385433,0.851939,0.573057,-0.203506,-0.0390141,-0.24492,-0.539138,0.332942,-0.297086,0.26364,0.301358,0.342857,0.527139,0.0751259,0.223292,0.194619,0.279018,0.000342309,1.15811,0.738165,0.432461,0.319052,-1.09152,-0.152093,0.253402,0.366605,0.734721,0.803621,-0.143133,1.27048,0.751179,0.213592,4.09189,2.42396,-0.209497,-1.27425,1.59959,3.38543,1.66473,0.909091,-0.416058,0.340411,0.908427,0.88852,1.45786,0.854015,-0.670869,-0.0106171,-1.50564,0.928998,-0.00467914,1.08957,0.304813,1.3369,0.65107,0.85361,0.442513,0.143048,1.1504,2.3643,-0.25,1.64305,-0.165107,1.12968,0.770722,1.40441,2.01337,1.07219,2.625,1.92781,-0.33623,0.339572,2.08356,2.54746,3.73061,0.555481,-0.921791,0.139037,1.20187,1.74666,1.62901,1.4893,0.989305,1.61564,0.551471,0.595588,3.61898,2.05949,0.502674,0.139706,2.16778,3.03209,1.50204,1.1686], [-1.10635,-0.392764,-0.996955,-0.348905,0.144938,0.838319,0.0476026,1.00367,0.63544,-2.21012,-0.334757,0.330657,0.858721,-0.183176,0.239026,1.07828,1.55701,1.36652,1.13466,0.158442,-0.872471,0.51449,0.752022,1.53894,1.22695,0.942857,0.735911,0.629512,0.079916,2.65015,1.57977,2.01225,-0.0641166,1.10854,0.251466,1.83621,1.21241,0.0704133,-0.966547,2.06226,-0.97004,-1.01543,-0.0597997,0.465051,-0.330552,-0.119741,-1.08668,1.80059,2.38141,2.25432,-1.09272,-1.81659,1.69504,1.44444,-2.08273,-1.16464,-1.96026,1.6764,0.0235199,-0.0348743,-0.711273,-0.0308191,0.282238,-5.0811,-0.984477,0.321895,-0.169935,-1.00654,0.570261,-0.0857843,-0.102941,1.55719,1.78676,1.72794,-1.25,1.05719,0.754085,1.66503,-1.23938,-0.484477,0.558824,-0.604575,0.291667,1.60458,1.62337,1.46078,-1.89624,-0.816176,-1.13807,0.363562,1.05801,0.189542,-0.71732,2.33252,-3.34069,-1.5915,0.352941,1.76716,-1.22631,-0.515523,-1.59314,1.67565,3.30065,1.91748,-1.28676,-2.16993,1.53234,1.7686]], type : 'heatmap',colorscale: [[0.0, 'rgb(210,65,83)'],[0.85, 'rgb(178,236,254)'],[1.0, 'rgb(34,57,212)']],showscale : true}  ], {    margin: { t: 0 },     showlegend: false,    xaxis : {title : 'Base position'},    yaxis : {title : 'tile', type: 'category'}   });}if (document.getElementById('seqqualitylineplot') !== null) {  Plotly.newPlot('seqqualitylineplot', [   {x : [20,21,22,23,24,25,26,27,28,29,30,31,32], y : [1,1,3,10,37,48,79,100,92,68,33,16,3], type: 'line', line : {color : 'red'}, name : 'Sequence quality distribution'}  ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Phread quality'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basesequencecontentlineplot') !== null) {  Plotly.newPlot('basesequencecontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [32.9939, 29.7959, 31.0204, 29.6907, 32.3529, 33.121, 27.897, 28.1996, 27.3128, 29.5045, 29.1284, 26.0613, 27.6156, 26.8015, 27.1429, 32.5333, 29.2985, 29.9281, 27.451, 30.3544, 28.0449, 30.5509, 30.8511, 27.1881, 29.2157, 27.027, 29.5195, 30.1703, 31.8059, 29.4671, 27.9863, 32.2695, 31.7857, 33.2143, 37.8571, 27.1429, 35.8423, 27.3381, 25.8993, 25.1799, 28.4173, 27.3381, 32.7338, 30.5755, 30.5755, 26.259, 30.5755, 29.1367, 35.6115, 30.9353, 30.9353, 30.2158, 26.259, 28.3636, 31.9853, 29.0441, 29.0441, 28.5185, 27.2727], mode : 'lines', name : 'A', line :{ color : 'green'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [18.3299, 18.1633, 20, 20.6186, 19.958, 21.6561, 21.03, 21.9089, 23.5683, 20.8333, 21.789, 20.7547, 21.4112, 21.3654, 21.2987, 18.9333, 22.2834, 22.1583, 20.8145, 18.1818, 21.9551, 19.6995, 18.0851, 20.4842, 22.549, 23.0769, 20.595, 15.8151, 20.2156, 18.4953, 22.1843, 18.0851, 17.1429, 17.1429, 18.9286, 20, 18.9964, 19.0647, 17.9856, 20.8633, 17.2662, 21.9424, 18.705, 23.741, 19.4245, 20.8633, 19.4245, 19.4245, 20.8633, 16.5468, 16.1871, 19.0647, 24.1007, 18.9091, 12.8676, 21.6912, 19.8529, 21.1111, 19.0083], mode : 'lines', name : 'C', line :{ color : 'blue'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [28.9206, 26.5306, 27.1429, 27.4227, 25.4202, 24.6285, 26.6094, 27.3319, 29.2952, 28.3784, 27.0642, 31.7217, 30.5353, 29.8357, 29.2208, 27.7333, 29.1609, 28.6331, 29.2609, 30.5085, 31.7308, 31.5526, 33.3333, 31.6574, 28.8235, 29.106, 30.2059, 35.2798, 26.9542, 29.7806, 31.7406, 31.9149, 28.5714, 29.6429, 25.3571, 31.7857, 30.8244, 32.7338, 39.5683, 36.6906, 35.9712, 30.5755, 32.0144, 31.295, 30.9353, 33.0935, 32.7338, 35.9712, 29.4964, 36.6906, 32.3741, 32.0144, 32.0144, 34.5455, 37.8676, 29.0441, 31.6176, 32.5926, 29.7521], mode : 'lines', name : 'T', line :{ color : 'red'}}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", 108], y : [19.7556, 25.5102, 21.8367, 22.268, 22.2689, 20.5945, 24.4635, 22.5597, 19.8238, 21.2838, 22.0183, 21.4623, 20.438, 21.9975, 22.3377, 20.8, 19.2572, 19.2806, 22.4736, 20.9553, 18.2692, 18.197, 17.7305, 20.6704, 19.4118, 20.79, 19.6796, 18.7348, 21.0243, 22.2571, 18.0887, 17.7305, 22.5, 20, 17.8571, 21.0714, 14.3369, 20.8633, 16.5468, 17.2662, 18.3453, 20.1439, 16.5468, 14.3885, 19.0647, 19.7842, 17.2662, 15.4676, 14.0288, 15.8273, 20.5036, 18.705, 17.6259, 18.1818, 17.2794, 20.2206, 19.4853, 17.7778, 23.9669], mode : 'lines', name : 'G', line :{ color : 'black'}},   ], {    margin: { t: 0 },    showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequence content'}  } );}if (document.getElementById('sequencegccontentlineplot') !== null) {  Plotly.newPlot('sequencegccontentlineplot', [   {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [2, 2, 2, 2.5, 3, 3, 3.5, 4.5, 5.5, 5.5, 5, 5, 5, 7, 9.5, 10.5, 11, 12.5, 13, 12, 15, 18.5, 20, 19, 17, 16.5, 19, 22.5, 23, 25, 32, 36, 36.5, 40.5, 49, 54, 52, 55, 55, 48.5, 45, 45, 43.5, 41.5, 40.5, 40.5, 43, 46, 52, 56.5, 53, 46.5, 43, 41, 41.5, 42, 39.5, 39, 40.5, 38.5, 37, 34, 29, 24.5, 21.5, 20.5, 17.5, 15.5, 15.5, 16, 14.5, 12, 11, 10, 9.5, 10, 9.5, 8.5, 8, 7.5, 7, 6.5, 6, 5, 4, 4.5, 4.5, 4, 3.5, 3, 3, 3, 3, 3, 3.5, 4.5, 5, 4, 3, 3, 3, ], type: 'line', line : {color : 'red'},name : 'GC distribution'}, {x : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, ], y : [1.06278, 1.23822, 1.43807, 1.66492, 1.9215, 2.21064, 2.5353, 2.89849, 3.30329, 3.75278, 4.25002, 4.79801, 5.39962, 6.05755, 6.77428, 7.55199, 8.3925, 9.29722, 10.2671, 11.3025, 12.4031, 13.5681, 14.7959, 16.084, 17.4293, 18.8277, 20.2744, 21.7635, 23.2885, 24.842, 26.4158, 28.001, 29.5879, 31.1665, 32.7259, 34.2554, 35.7436, 37.1791, 38.5506, 39.847, 41.0575, 42.1717, 43.1799, 44.0731, 44.8433, 45.4835, 45.9878, 46.3514, 46.5709, 46.6443, 46.5709, 46.3514, 45.9878, 45.4835, 44.8433, 44.0731, 43.1799, 42.1717, 41.0575, 39.847, 38.5506, 37.1791, 35.7436, 34.2554, 32.7259, 31.1665, 29.5879, 28.001, 26.4158, 24.842, 23.2885, 21.7635, 20.2744, 18.8277, 17.4293, 16.084, 14.7959, 13.5681, 12.4031, 11.3025, 10.2671, 9.29722, 8.3925, 7.55199, 6.77428, 6.05755, 5.39962, 4.79801, 4.25002, 3.75278, 3.30329, 2.89849, 2.5353, 2.21064, 1.9215, 1.66492, 1.43807, 1.23822, 1.06278, 0.90934, 0.775603, ], type: 'line', line : {color : 'blue'},name : 'Theoretical distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : '% GC'},    yaxis : {title : 'Density'}  } );}if (document.getElementById('basencontentlineplot') !== null) {  Plotly.newPlot('basencontentlineplot', [   {x : ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10-11", "12-13", "14-15", "16-17", "18-19", "20-21", "22-23", "24-25", "26-27", "28-29", "30-31", "32-33", "34-35", "36-37", "38-39", "40-41", "42-43", "44-45", "46-47", "48-49", "50-51", "52-53", "54-55", "56-57", "58-59", "60-61", "62-63", "64-65", "66-67", "68-69", "70-71", "72-73", "74-75", "76-77", "78-79", "80-81", "82-83", "84-85", "86-87", "88-89", "90-91", "92-93", "94-95", "96-97", "98-99", "100-101", "102-103", "104-105", "106-107", "108"], y : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'Fraction of N reads per base'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% N'}  } );}if (document.getElementById('sequencelengthdistributionlineplot') !== null) {  Plotly.newPlot('sequencelengthdistributionlineplot', [   {x : ["1 bp","3 bp","4 bp","5 bp","6 bp","7 bp","8 bp","9 bp","10 bp","11 bp","12 bp","13 bp","14 bp","15 bp","16 bp","17 bp","18 bp","19 bp","20 bp","21 bp","22 bp","23 bp","24 bp","25 bp","26 bp","27 bp","28 bp","29 bp","30 bp","31 bp","32 bp","33 bp","34 bp","35 bp","36 bp","37 bp","38 bp","39 bp","40 bp","41 bp","42 bp","43 bp","44 bp","45 bp","46 bp","47 bp","48 bp","49 bp","50 bp","51 bp","52 bp","53 bp","54 bp","64 bp","98 bp","106 bp","107 bp","108 bp"], y : [1,5,9,5,5,5,7,8,4,3,6,6,6,7,6,9,7,4,6,6,2,9,3,9,11,8,5,3,3,7,8,3,11,8,8,6,7,5,10,5,9,14,7,6,7,13,7,17,11,5,5,2,2,1,3,2,13,121], text : [1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,64,98,106,107,108], type: 'bar', marker : {color : 'rgba(55,128,191,1.0)',line : {width : 2}}, name : 'Sequence length distribution'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Sequence length'},    yaxis : {title : 'Number of sequences'}  } );}if (document.getElementById('seqduplevelslineplot') !== null) {  Plotly.newPlot('seqduplevelslineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.389, 0, 0.610998, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'blue'}, name : 'total sequences'}, {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], y : [99.7955, 0, 0.204499, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], type: 'line', line : {color : 'red'}, name : 'deduplicated sequences'}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Duplication rate',             tickvals : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],             ticktext : ['1','2','3','4','5','6','7','8','9','10+','50+','100+','500+','1k+','5k+','10k+']},    yaxis : {title : '% of sequences'}  } );}if (document.getElementById('adapterlineplot') !== null) {  Plotly.newPlot('adapterlineplot', [   {x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0203874,0.0407747,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0611621,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.101937,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324,0.122324], type : 'line', name : "Illumina Universal Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 3' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Illumina Small RNA 5' Adapter"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "Nextera Transposase Sequence"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0.0203874,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0407747,0.0611621,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494,0.0815494], type : 'line', name : "PolyA"},{x : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], y : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], type : 'line', name : "PolyG"}  ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : '% sequences with adapter before position'}  } );}if (document.getElementById('kmerlineplot') !== null) {  Plotly.newPlot('kmerlineplot', [     ], {    margin: { t: 0 },     showlegend: true,    xaxis : {title : 'Base position'},    yaxis : {title : 'log2(obs/ exp max)'}  } );}</script></html>
\ No newline at end of file
--- a/test-data/fastqc_report_subsample.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/fastqc_report_subsample.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,4 +1,4 @@
-##Falco	1.2.3
+##Falco	1.2.4
 >>Basic Statistics	pass
 #Measure	Value
 Filename	1000trimmed_fastq
@@ -1593,110 +1593,110 @@
 #Position	Illumina Universal Adapter	Illumina Small RNA 3' Adapter	Illumina Small RNA 5' Adapter	Nextera Transposase Sequence	PolyA	PolyG
 1	0	0	0	0	0	0
 2	0	0	0	0	0.0203874	0
-3	0	0	0	0	0.0407747	0
-4	0	0	0	0	0.0407747	0
-5	0	0	0	0	0.0407747	0
-6	0	0	0	0	0.0407747	0
-7	0	0	0	0	0.0407747	0
-8	0	0	0	0	0.0407747	0
-9	0	0	0	0	0.0407747	0
-10	0	0	0	0	0.0407747	0
-11	0	0	0	0	0.0407747	0
-12	0	0	0	0	0.0407747	0
-13	0	0	0	0	0.0407747	0
-14	0	0	0	0	0.0407747	0
-15	0	0	0	0	0.0407747	0
-16	0	0	0	0	0.0407747	0
-17	0	0	0	0	0.0611621	0
-18	0	0	0	0	0.0815494	0
-19	0	0	0	0	0.0815494	0
-20	0.0203874	0	0	0	0.0815494	0
-21	0.0203874	0	0	0	0.0815494	0
-22	0.0203874	0	0	0	0.0815494	0
-23	0.0203874	0	0	0	0.0815494	0
-24	0.0203874	0	0	0	0.0815494	0
-25	0.0203874	0	0	0	0.0815494	0
-26	0.0203874	0	0	0	0.0815494	0
-27	0.0203874	0	0	0	0.0815494	0
-28	0.0203874	0	0	0	0.0815494	0
-29	0.0203874	0	0	0	0.0815494	0
-30	0.0203874	0	0	0	0.0815494	0
-31	0.0203874	0	0	0	0.0815494	0
-32	0.0203874	0	0	0	0.0815494	0
-33	0.0203874	0	0	0	0.0815494	0
-34	0.0203874	0	0	0	0.0815494	0
-35	0.0203874	0	0	0	0.0815494	0
-36	0.0203874	0	0	0	0.0815494	0
-37	0.0203874	0	0	0	0.0815494	0
-38	0.0407747	0	0	0	0.0815494	0
-39	0.0611621	0	0	0	0.0815494	0
-40	0.0611621	0	0	0	0.0815494	0
-41	0.0611621	0	0	0	0.0815494	0
-42	0.0611621	0	0	0	0.0815494	0
-43	0.0611621	0	0	0	0.0815494	0
-44	0.0611621	0	0	0	0.0815494	0
-45	0.0611621	0	0	0	0.0815494	0
-46	0.0611621	0	0	0	0.0815494	0
-47	0.0611621	0	0	0	0.0815494	0
-48	0.0611621	0	0	0	0.0815494	0
-49	0.0611621	0	0	0	0.0815494	0
-50	0.0611621	0	0	0	0.0815494	0
-51	0.0611621	0	0	0	0.0815494	0
-52	0.0611621	0	0	0	0.0815494	0
-53	0.0611621	0	0	0	0.0815494	0
-54	0.0611621	0	0	0	0.0815494	0
-55	0.0611621	0	0	0	0.0815494	0
-56	0.0611621	0	0	0	0.0815494	0
-57	0.0611621	0	0	0	0.0815494	0
-58	0.0611621	0	0	0	0.0815494	0
-59	0.0611621	0	0	0	0.0815494	0
-60	0.0611621	0	0	0	0.0815494	0
-61	0.0611621	0	0	0	0.0815494	0
-62	0.0611621	0	0	0	0.0815494	0
-63	0.0611621	0	0	0	0.0815494	0
-64	0.0611621	0	0	0	0.0815494	0
-65	0.0611621	0	0	0	0.0815494	0
-66	0.0611621	0	0	0	0.0815494	0
-67	0.0611621	0	0	0	0.0815494	0
-68	0.0611621	0	0	0	0.0815494	0
-69	0.0611621	0	0	0	0.0815494	0
-70	0.0611621	0	0	0	0.0815494	0
-71	0.0611621	0	0	0	0.0815494	0
-72	0.0611621	0	0	0	0.0815494	0
-73	0.0611621	0	0	0	0.0815494	0
-74	0.0815494	0	0	0	0.0815494	0
-75	0.0815494	0	0	0	0.0815494	0
-76	0.0815494	0	0	0	0.0815494	0
-77	0.0815494	0	0	0	0.0815494	0
-78	0.0815494	0	0	0	0.0815494	0
-79	0.0815494	0	0	0	0.0815494	0
-80	0.0815494	0	0	0	0.0815494	0
-81	0.0815494	0	0	0	0.0815494	0
-82	0.0815494	0	0	0	0.0815494	0
-83	0.0815494	0	0	0	0.0815494	0
-84	0.0815494	0	0	0	0.0815494	0
-85	0.0815494	0	0	0	0.0815494	0
-86	0.0815494	0	0	0	0.0815494	0
-87	0.0815494	0	0	0	0.0815494	0
-88	0.0815494	0	0	0	0.0815494	0
-89	0.0815494	0	0	0	0.0815494	0
-90	0.0815494	0	0	0	0.0815494	0
-91	0.0815494	0	0	0	0.0815494	0
-92	0.101937	0	0	0	0.0815494	0
-93	0.122324	0	0	0	0.0815494	0
-94	0.122324	0	0	0	0.0815494	0
-95	0.122324	0	0	0	0.0815494	0
-96	0.122324	0	0	0	0.0815494	0
-97	0.122324	0	0	0	0.0815494	0
-98	0.122324	0	0	0	0.0815494	0
-99	0.122324	0	0	0	0.0815494	0
-100	0.122324	0	0	0	0.0815494	0
-101	0.122324	0	0	0	0.0815494	0
-102	0.122324	0	0	0	0.0815494	0
-103	0.122324	0	0	0	0.0815494	0
-104	0.122324	0	0	0	0.0815494	0
-105	0.122324	0	0	0	0.0815494	0
-106	0.122324	0	0	0	0.0815494	0
-107	0.122324	0	0	0	0.0815494	0
-108	0.122324	0	0	0	0.0815494	0
+3	0	0	0	0	0.0203874	0
+4	0	0	0	0	0.0203874	0
+5	0	0	0	0	0.0203874	0
+6	0	0	0	0	0.0203874	0
+7	0	0	0	0	0.0203874	0
+8	0	0	0	0	0.0203874	0
+9	0	0	0	0	0.0203874	0
+10	0	0	0	0	0.0203874	0
+11	0	0	0	0	0.0203874	0
+12	0	0	0	0	0.0203874	0
+13	0	0	0	0	0.0203874	0
+14	0	0	0	0	0.0203874	0
+15	0	0	0	0	0.0203874	0
+16	0	0	0	0	0.0203874	0
+17	0	0	0	0	0.0407747	0
+18	0	0	0	0	0.0407747	0
+19	0	0	0	0	0.0407747	0
+20	0.0203874	0	0	0	0.0407747	0
+21	0.0203874	0	0	0	0.0407747	0
+22	0.0203874	0	0	0	0.0407747	0
+23	0.0203874	0	0	0	0.0407747	0
+24	0.0203874	0	0	0	0.0407747	0
+25	0.0203874	0	0	0	0.0407747	0
+26	0.0203874	0	0	0	0.0407747	0
+27	0.0203874	0	0	0	0.0407747	0
+28	0.0203874	0	0	0	0.0407747	0
+29	0.0203874	0	0	0	0.0407747	0
+30	0.0203874	0	0	0	0.0407747	0
+31	0.0203874	0	0	0	0.0407747	0
+32	0.0203874	0	0	0	0.0407747	0
+33	0.0203874	0	0	0	0.0407747	0
+34	0.0203874	0	0	0	0.0407747	0
+35	0.0203874	0	0	0	0.0407747	0
+36	0.0203874	0	0	0	0.0407747	0
+37	0.0203874	0	0	0	0.0407747	0
+38	0.0407747	0	0	0	0.0407747	0
+39	0.0611621	0	0	0	0.0407747	0
+40	0.0611621	0	0	0	0.0407747	0
+41	0.0611621	0	0	0	0.0407747	0
+42	0.0611621	0	0	0	0.0407747	0
+43	0.0611621	0	0	0	0.0407747	0
+44	0.0611621	0	0	0	0.0407747	0
+45	0.0611621	0	0	0	0.0407747	0
+46	0.0611621	0	0	0	0.0407747	0
+47	0.0611621	0	0	0	0.0407747	0
+48	0.0611621	0	0	0	0.0407747	0
+49	0.0611621	0	0	0	0.0407747	0
+50	0.0611621	0	0	0	0.0407747	0
+51	0.0611621	0	0	0	0.0407747	0
+52	0.0611621	0	0	0	0.0407747	0
+53	0.0611621	0	0	0	0.0407747	0
+54	0.0611621	0	0	0	0.0407747	0
+55	0.0611621	0	0	0	0.0407747	0
+56	0.0611621	0	0	0	0.0407747	0
+57	0.0611621	0	0	0	0.0407747	0
+58	0.0611621	0	0	0	0.0407747	0
+59	0.0611621	0	0	0	0.0407747	0
+60	0.0611621	0	0	0	0.0407747	0
+61	0.0611621	0	0	0	0.0407747	0
+62	0.0611621	0	0	0	0.0407747	0
+63	0.0611621	0	0	0	0.0407747	0
+64	0.0611621	0	0	0	0.0407747	0
+65	0.0611621	0	0	0	0.0407747	0
+66	0.0611621	0	0	0	0.0407747	0
+67	0.0611621	0	0	0	0.0407747	0
+68	0.0611621	0	0	0	0.0407747	0
+69	0.0611621	0	0	0	0.0407747	0
+70	0.0611621	0	0	0	0.0407747	0
+71	0.0611621	0	0	0	0.0407747	0
+72	0.0611621	0	0	0	0.0407747	0
+73	0.0611621	0	0	0	0.0407747	0
+74	0.0611621	0	0	0	0.0407747	0
+75	0.0611621	0	0	0	0.0407747	0
+76	0.0611621	0	0	0	0.0407747	0
+77	0.0611621	0	0	0	0.0407747	0
+78	0.0611621	0	0	0	0.0407747	0
+79	0.0611621	0	0	0	0.0407747	0
+80	0.0611621	0	0	0	0.0407747	0
+81	0.0611621	0	0	0	0.0407747	0
+82	0.0611621	0	0	0	0.0407747	0
+83	0.0611621	0	0	0	0.0407747	0
+84	0.0611621	0	0	0	0.0407747	0
+85	0.0611621	0	0	0	0.0407747	0
+86	0.0611621	0	0	0	0.0407747	0
+87	0.0611621	0	0	0	0.0407747	0
+88	0.0611621	0	0	0	0.0407747	0
+89	0.0611621	0	0	0	0.0407747	0
+90	0.0611621	0	0	0	0.0407747	0
+91	0.0611621	0	0	0	0.0407747	0
+92	0.0611621	0	0	0	0.0407747	0
+93	0.0611621	0	0	0	0.0407747	0
+94	0.0611621	0	0	0	0.0407747	0
+95	0.0611621	0	0	0	0.0407747	0
+96	0.0611621	0	0	0	0.0407747	0
+97	0.0611621	0	0	0	0.0407747	0
+98	0.0611621	0	0	0	0.0407747	0
+99	0.0611621	0	0	0	0.0407747	0
+100	0.0611621	0	0	0	0.0407747	0
+101	0.0611621	0	0	0	0.0407747	0
+102	0.0611621	0	0	0	0.0407747	0
+103	0.0611621	0	0	0	0.0407747	0
+104	0.0611621	0	0	0	0.0407747	0
+105	0.0611621	0	0	0	0.0407747	0
+106	0.0611621	0	0	0	0.0407747	0
+107	0.0611621	0	0	0	0.0407747	0
+108	0.0611621	0	0	0	0.0407747	0
 >>END_MODULE
--- a/test-data/limits.txt	Tue Sep 10 19:02:42 2024 +0000
+++ b/test-data/limits.txt	Fri Sep 27 17:41:40 2024 +0000
@@ -1,81 +1,81 @@
-# For each of the modules you can choose to not run that
-# module at all by setting the value below to 1 for the
-# modules you want to remove.
-duplication 		ignore 		0
-kmer 				ignore 		1
-n_content 			ignore 		0
-overrepresented 	ignore 		0
-quality_base 		ignore 		0
-sequence 			ignore 		0
-gc_sequence			ignore 		0
-quality_sequence	ignore		0
-tile				ignore		0
-sequence_length		ignore		0
-adapter				ignore		0
-
-# For the duplication module the value is the percentage
-# remaining after deduplication.  Measured levels below
-# these limits trigger the warning / error.
-duplication	warn	70
-duplication error	50
-
-# For the kmer module the filter is on the -log10 binomial
-# pvalue for the most significant Kmer, so 5 would be 
-# 10^-5 = p<0.00001
-kmer	warn	2
-kmer	error	5
-
-# For the N module the filter is on the percentage of Ns
-# at any position in the library
-n_content	warn	5
-n_content	error	20
-
-# For the overrepresented seqs the warn value sets the
-# threshold for the overrepresented sequences to be reported
-# at all as the proportion of the library which must be seen
-# as a single sequence
-overrepresented	warn	0.1
-overrepresented	error	1
-
-# The per base quality filter uses two values, one for the value
-# of the lower quartile, and the other for the value of the
-# median quality.  Failing either of these will trigger the alert
-quality_base_lower	warn	10
-quality_base_lower	error	5
-quality_base_median	warn	25
-quality_base_median	error	20
-
-# The per base sequence content module tests the maximum deviation
-# between A and T or C and G
-sequence	warn	10
-sequence	error	20
-
-# The per sequence GC content tests the maximum deviation between
-# the theoretical distribution and the real distribution
-gc_sequence	warn	15
-gc_sequence	error	30
-
-# The per sequence quality module tests the phred score which is
-# most frequently observed
-quality_sequence	warn	27
-quality_sequence	error	20
-
-# The per tile module tests the maximum phred score loss between 
-# and individual tile and the average for that base across all tiles
-tile	warn	5
-tile	error	10
-
-# The sequence length module tests are binary, so the values here
-# simply turn them on or off.  The actual tests warn if you have
-# sequences of different length, and error if you have sequences
-# of zero length.
-
-sequence_length	warn	1
-sequence_length	error	1
-
-# The adapter module's warnings and errors are based on the 
-# percentage of reads in the library which have been observed
-# to contain an adapter associated Kmer at any point
-
-adapter	warn 5
-adapter	error	10
+# For each of the modules you can choose to not run that
+# module at all by setting the value below to 1 for the
+# modules you want to remove.
+duplication 		ignore 		1
+kmer 				ignore 		1
+n_content 			ignore 		1
+overrepresented 	ignore 		1
+quality_base 		ignore 		1
+sequence 			ignore 		1
+gc_sequence			ignore 		1
+quality_sequence	ignore		1
+tile				ignore		1
+sequence_length		ignore		0
+adapter				ignore		1
+
+# For the duplication module the value is the percentage
+# remaining after deduplication.  Measured levels below
+# these limits trigger the warning / error.
+duplication	warn	70
+duplication error	50
+
+# For the kmer module the filter is on the -log10 binomial
+# pvalue for the most significant Kmer, so 5 would be 
+# 10^-5 = p<0.00001
+kmer	warn	2
+kmer	error	5
+
+# For the N module the filter is on the percentage of Ns
+# at any position in the library
+n_content	warn	5
+n_content	error	20
+
+# For the overrepresented seqs the warn value sets the
+# threshold for the overrepresented sequences to be reported
+# at all as the proportion of the library which must be seen
+# as a single sequence
+overrepresented	warn	0.1
+overrepresented	error	1
+
+# The per base quality filter uses two values, one for the value
+# of the lower quartile, and the other for the value of the
+# median quality.  Failing either of these will trigger the alert
+quality_base_lower	warn	10
+quality_base_lower	error	5
+quality_base_median	warn	25
+quality_base_median	error	20
+
+# The per base sequence content module tests the maximum deviation
+# between A and T or C and G
+sequence	warn	10
+sequence	error	20
+
+# The per sequence GC content tests the maximum deviation between
+# the theoretical distribution and the real distribution
+gc_sequence	warn	15
+gc_sequence	error	30
+
+# The per sequence quality module tests the phred score which is
+# most frequently observed
+quality_sequence	warn	27
+quality_sequence	error	20
+
+# The per tile module tests the maximum phred score loss between 
+# and individual tile and the average for that base across all tiles
+tile	warn	5
+tile	error	10
+
+# The sequence length module tests are binary, so the values here
+# simply turn them on or off.  The actual tests warn if you have
+# sequences of different length, and error if you have sequences
+# of zero length.
+
+sequence_length	warn	1
+sequence_length	error	1
+
+# The adapter module's warnings and errors are based on the 
+# percentage of reads in the library which have been observed
+# to contain an adapter associated Kmer at any point
+
+adapter	warn 5
+adapter	error	10
--- a/test-data/summary.txt	Tue Sep 10 19:02:42 2024 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
-PASS	Basic Statistics	1000trimmed_fastq
-PASS	Per base sequence quality	1000trimmed_fastq
-FAIL	Per tile sequence quality	1000trimmed_fastq
-PASS	Per sequence quality scores	1000trimmed_fastq
-FAIL	Per base sequence content	1000trimmed_fastq
-WARN	Per sequence GC content	1000trimmed_fastq
-PASS	Per base N content	1000trimmed_fastq
-WARN	Sequence Length Distribution	1000trimmed_fastq
-PASS	Sequence Duplication Levels	1000trimmed_fastq
-WARN	Overrepresented sequences	1000trimmed_fastq
-PASS	Adapter Content	1000trimmed_fastq