Mercurial > repos > iuc > genomic_super_signature
comparison gss.Rmd @ 0:d0cbe6cc1f04 draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/genomic_super_signature commit 1aadd5dce3b254e7714c2fdd39413029fd4b9b7a"
author | iuc |
---|---|
date | Wed, 12 Jan 2022 19:07:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d0cbe6cc1f04 |
---|---|
1 --- | |
2 title: "Analysis by GenomicSuperSignature" | |
3 date: "`r Sys.Date()`" | |
4 output: | |
5 BiocStyle::html_document: | |
6 toc: true | |
7 toc_float: false | |
8 toc_depth: 3 | |
9 params: | |
10 val_all: val_all | |
11 dat: dat | |
12 RAVmodel: RAVmodel | |
13 inputName: inputName | |
14 numOut: numOut | |
15 --- | |
16 | |
17 ```{r setup, include=FALSE} | |
18 knitr::opts_chunk$set(echo = FALSE) | |
19 ``` | |
20 | |
21 # RAVs best represents your dataset | |
22 The *validation* provides a quantitative representation of the relevance | |
23 between your dataset and RAVs. Below shows the top 6 validated RAVs and | |
24 the complete result is saved as `{input_name}_validate.csv`. | |
25 | |
26 ```{r} | |
27 head(params$val_all) | |
28 ``` | |
29 | |
30 ## Heatmap Table | |
31 `heatmapTable` takes validation results as its input and displays them into | |
32 a two panel table: the top panel shows the average silhouette width (avg.sw) | |
33 and the bottom panel displays the validation score. | |
34 | |
35 `heatmapTable` can display different subsets of the validation output. For | |
36 example, if you specify `scoreCutoff`, any validation result above that score | |
37 will be shown. If you specify the number (n) of top validation results through | |
38 `num.out`, the output will be a n-columned heatmap table. You can also use the | |
39 average silhouette width (`swCutoff`), the size of cluster (`clsizecutoff`), | |
40 one of the top 8 PCs from the dataset (`whichPC`). | |
41 | |
42 Here, we print out top `r params$numOut` validated RAVs with average silhouette | |
43 width above 0. | |
44 | |
45 ```{r out.height="45%", out.width="45%", message=FALSE, warning=FALSE} | |
46 heatmapTable(params$val_all, num.out = params$numOut, swCutoff = 0) | |
47 ``` | |
48 | |
49 ## Interactive Graph | |
50 Under the default condition, `plotValidate` plots validation results of all non | |
51 single-element RAVs in one graph, where x-axis represents average silhouette | |
52 width of the RAVs (a quality control measure of RAVs) and y-axis represents | |
53 validation score. We recommend users to focus on RAVs with higher validation | |
54 score and use average silhouette width as a secondary criteria. | |
55 | |
56 ```{r out.height="80%", out.width="80%"} | |
57 plotValidate(params$val_all, interactive = TRUE) | |
58 ``` | |
59 | |
60 Note that `interactive = TRUE` will result in a zoomable, interactive plot that | |
61 included tooltips, which is saved as `{input_name}_validate_plot.html` file. | |
62 | |
63 You can hover each data point for more information: | |
64 | |
65 - **sw** : the average silhouette width of the cluster | |
66 - **score** : the top validation score between 8 PCs of the dataset and RAVs | |
67 - **cl_size** : the size of RAVs, represented by the dot size | |
68 - **cl_num** : the RAV number. You need this index to find more information | |
69 about the RAV. | |
70 - **PC** : test dataset's PC number that validates the given RAV. Because we | |
71 used top 8 PCs of the test dataset for validation, there are 8 categories. | |
72 | |
73 If you double-click the PC legend on the right, you will enter an | |
74 individual display mode where you can add an additional group of data | |
75 point by single-click. | |
76 | |
77 | |
78 # Prior information associated to your dataset | |
79 ```{r echo=FALSE} | |
80 validated_ind <- validatedSignatures(params$val_all, num.out = params$numOut, | |
81 swCutoff = 0, indexOnly = TRUE) | |
82 | |
83 # In case, there are fewer validated_ind than the number of outputs user set | |
84 n <- min(params$numOut, length(validated_ind), na.rm = TRUE) | |
85 ``` | |
86 | |
87 ## MeSH terms in wordcloud | |
88 ```{r out.height="60%", out.width="60%", fig.width=8, fig.height=8} | |
89 for (i in seq_len(n)) { | |
90 set.seed(1) | |
91 print(paste0("MeSH terms related to RAV", validated_ind[i])) | |
92 drawWordcloud(params$RAVmodel, validated_ind[i]) | |
93 } | |
94 ``` | |
95 | |
96 ## GSEA | |
97 The complete result is saved as `{input_name}_genesets_RAV*.csv`. | |
98 ```{r} | |
99 res_all <- vector(mode = "list", length = n) | |
100 for (i in seq_len(n)) { | |
101 RAVnum <- validated_ind[i] | |
102 RAVname <- paste0("RAV", RAVnum) | |
103 res <- gsea(params$RAVmodel)[[RAVname]] | |
104 res_all[[i]] <- head(res) | |
105 names(res_all)[i] <- paste0("Enriched gene sets for RAV", validated_ind[i]) | |
106 } | |
107 res_all | |
108 ``` | |
109 | |
110 ## Publication | |
111 The complete result is saved as `{input_name}_literatures_RAV*.csv`. | |
112 ```{r} | |
113 res_all <- vector(mode = "list", length = n) | |
114 for (i in seq_len(n)) { | |
115 RAVnum <- validated_ind[i] | |
116 res <- findStudiesInCluster(params$RAVmodel, RAVnum, studyTitle = TRUE) | |
117 res_all[[i]] <- head(res) | |
118 names(res_all)[i] <- paste0("Studies related to RAV", validated_ind[i]) | |
119 } | |
120 res_all | |
121 ``` | |
122 |