Mercurial > repos > iuc > ggplot2_heatmap
view ggplot2_heatmap.xml @ 7:da4c086cff5b draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/ggplot2 commit 075aa3ab0ebc5eef83aac753a2cac7dffe2c6b0c
author | iuc |
---|---|
date | Fri, 02 Dec 2022 09:35:56 +0000 |
parents | d3a9e32672ec |
children | 10515715c940 |
line wrap: on
line source
<tool id="ggplot2_heatmap" name="Heatmap w ggplot" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.01"> <expand macro="bio_tools"/> <macros> <import>macros.xml</import> </macros> <requirements> <requirement type="package" version="1.1.1">r-cowplot</requirement> <requirement type="package" version="0.4.5">r-egg</requirement> <requirement type="package" version="0.1.22">r-ggdendro</requirement> <requirement type="package" version="1.0.7">r-dplyr</requirement> <requirement type="package" version="1.4.4">r-reshape2</requirement> <requirement type="package" version="2.0.0">r-svglite</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ cat '$script' && Rscript '$script' ]]></command> <configfiles> <configfile name="script"><![CDATA[ @R_INIT@ ## Import library library(ggplot2) library(cowplot) library(egg) library(dplyr) library(ggdendro) library(reshape2) input <- '$input1' header <- ${inputdata.header} rowname_index <- as.integer('$inputdata.row_names_index') transform <- '$adv.transform' ## read table with or with out header or row_names if(rowname_index > 0){ df <- read.table(input, header = header, row.names = rowname_index, sep = "\t") }else{ df <- read.table(input, header = header, sep = "\t") } hclust_fun = function(x) hclust(x, method="complete") dist_fun = function(x) dist(x, method="maximum") distfun=dist_fun hclustfun=hclust_fun plot_mat <- df ## transform dataset if(transform == "log2"){ plot_mat <- log2(plot_mat) cat("\n ", transform, " transformed") }else if(transform == "log2plus1"){ plot_mat <- log2(plot_mat+1) cat("\n ", transform, " transformed") }else if(transform == "log10"){ plot_mat <- log10(plot_mat) cat("\n ", transform, " transformed") }else if(transform == "log10plus1"){ plot_mat <- log10(plot_mat+1) cat("\n ", transform, " transformed") }else{ plot_mat <- plot_mat } #if $adv.colorscheme == "whrd" colorscale = scale_fill_gradient(low="white", high="red", guide="colorbar") #elif $adv.colorscheme == "whblu" colorscale = scale_fill_gradient(low="white", high="blue", guide="colorbar") #elif $adv.colorscheme == "blwhre" colorscale = scale_fill_gradient2(low="blue", mid="white", high="red", guide="colorbar") #end if plot_mat["rows"] <- row.names(plot_mat) plot_mat.melt <- melt(plot_mat, id.vars = "rows") names(plot_mat.melt)[2] <- "cols" #if $adv.cluster: plot_mat.dendo <- as.dendrogram(hclust(d = dist(x = subset(plot_mat, select = -rows)))) plot_mat.dendo.order <- order.dendrogram(plot_mat.dendo) gg_rows = ggdendrogram(data = plot_mat.dendo, rotate = FALSE) + theme(axis.text.y = element_text(size = 6), axis.text.x = element_blank()) plot_mat.melt[,"rows"] <- factor(x = plot_mat.melt[,"rows"], levels = unique(plot_mat.melt[,"rows"])[plot_mat.dendo.order], ordered = TRUE) plot_mat.dendo <- as.dendrogram(hclust(d = dist(x = t(subset(plot_mat, select = -rows))))) plot_mat.dendo.order <- order.dendrogram(plot_mat.dendo) gg_cols = ggdendrogram(data = plot_mat.dendo, rotate = TRUE) + theme(axis.text.x = element_text(size = 6), axis.text.y = element_blank()) plot_mat.melt[,"cols"] <- factor(x = plot_mat.melt[,"cols"], levels = unique(plot_mat.melt[,"cols"])[plot_mat.dendo.order], ordered = TRUE) ## plot the heatmap gg_hm = plot_mat.melt %>% ggplot(aes(x = rows, y = cols, fill = value)) + geom_tile() + theme(legend.position = "bottom", axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1)) + colorscale gg_empty = plot_mat.melt %>% ggplot(aes(x = cols, y = value)) + geom_blank() + theme(axis.text = element_blank(), axis.title = element_blank(), line = element_blank(), panel.background = element_blank()) plot_out <- ggarrange( gg_rows, gg_empty, gg_hm, gg_cols, nrow = 2, ncol = 2, widths = c(3, 1), heights = c(1, 3), newpage =F) #else ## plot the heatmap gg_hm = plot_mat.melt %>% ggplot(aes(x = rows, y = cols, fill = value)) + geom_tile() + ggtitle('$title') + theme(legend.position = "bottom", axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1)) + colorscale plot_out <- gg_hm #end if @SAVE_OUTPUT@ ]]></configfile> </configfiles> <inputs> <expand macro="read_complex_input"/> <expand macro="title"/> <!-- Advanced Options --> <section name="adv" title="Advanced Options" expanded="false"> <expand macro="transform" /> <param name="cluster" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Enable data clustering" /> <param name="colorscheme" type="select" label="Heatmap colorscheme" > <option value="whrd" selected="true">White to red</option> <option value="whblu">White to blue</option> <option value="blwhre">Blue to white to red</option> </param> </section> <!-- Output Options --> <section name="out" title="Output Options" expanded="true"> <expand macro="dimensions" /> </section> </inputs> <outputs> <expand macro="additional_output" /> </outputs> <tests> <test> <param name="input1" value="mtcars.txt" ftype="tabular"/> <conditional name="inputdata"> <param name="input_type" value="with_header_rownames"/> <param name="header" value="TRUE"/> <param name="row_names_index" value="1"/> <param name="sample_name_orientation" value="TRUE"/> </conditional> <param name="transform" value="log10plus1"/> <param name="cluster" value="true"/> <param name="colorscheme" value="blwhre"/> <param name="additional_output_format" value="pdf"/> <output name="output2" file="ggplot_heatmap_result1.pdf" compare="sim_size"/> </test> </tests> <help><![CDATA[ This tool will generate a clustered heatmap of your data. More customization options will be added, for now the heatmap uses a red coloring scheme and clustering is performed using the "maximum" similarity measure and the "complete" hierarchical clustering measure. Input data should have row labels in the first column and column labels. For example, the row labels (the first column) should represent gene IDs and the column labels should represent sample IDs. ]]></help> <citations> </citations> </tool>