Mercurial > repos > iuc > goseq
comparison goseq.r @ 8:8b3e3657034e draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/goseq commit 8e19f8bcaea6f607a1eaa14bb88f2d625ed63df0"
author | iuc |
---|---|
date | Fri, 06 Sep 2019 07:50:46 -0400 |
parents | 67c29afac85f |
children | ef2ad746b589 |
comparison
equal
deleted
inserted
replaced
7:67c29afac85f | 8:8b3e3657034e |
---|---|
8 library("optparse") | 8 library("optparse") |
9 library("dplyr") | 9 library("dplyr") |
10 library("ggplot2") | 10 library("ggplot2") |
11 }) | 11 }) |
12 | 12 |
13 sessionInfo() | |
14 | |
13 option_list <- list( | 15 option_list <- list( |
14 make_option(c("-d", "--dge_file"), type="character", help="Path to file with differential gene expression result"), | 16 make_option(c("-d", "--dge_file"), type="character", help="Path to file with differential gene expression result"), |
15 make_option(c("-w","--wallenius_tab"), type="character", help="Path to output file with P-values estimated using wallenius distribution."), | 17 make_option(c("-lf", "--length_file"), type="character", default=NULL, help="Path to tabular file mapping gene id to length"), |
16 make_option(c("-s","--sampling_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using sampling distribution."), | 18 make_option(c("-g", "--genome"), type="character", default=NULL, help="Genome [used for looking up correct gene length]"), |
17 make_option(c("-n","--nobias_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias."), | 19 make_option(c("-i", "--gene_id"), type="character", default=NULL, help="Gene ID format of genes in DGE file"), |
18 make_option(c("-l","--length_bias_plot"), type="character", default=FALSE, help="Path to length-bias plot."), | 20 make_option(c("-fc", "--fetch_cats"), type="character", default=NULL, help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), |
19 make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=FALSE, help="Path to plot comparing sampling with wallenius p-values."), | 21 make_option(c("-cat_file", "--category_file"), type="character", default=NULL, help="Path to tabular file with gene_id <-> category mapping"), |
20 make_option(c("-r", "--repcnt"), type="integer", default=100, help="Number of repeats for sampling"), | 22 make_option(c("-w","--wallenius_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using wallenius distribution"), |
21 make_option(c("-lf", "--length_file"), type="character", default="FALSE", help = "Path to tabular file mapping gene id to length"), | 23 make_option(c("-n","--nobias_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias"), |
22 make_option(c("-cat_file", "--category_file"), default="FALSE", type="character", help = "Path to tabular file with gene_id <-> category mapping."), | 24 make_option(c("-r", "--repcnt"), type="integer", default=0, help="Number of repeats for sampling"), |
23 make_option(c("-g", "--genome"), default=NULL, type="character", help = "Genome [used for looking up correct gene length]"), | 25 make_option(c("-s","--sampling_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using sampling distribution"), |
24 make_option(c("-i", "--gene_id"), default=NULL, type="character", help = "Gene ID format of genes in DGE file"), | 26 make_option(c("-p", "--p_adj_method"), type="character", default="BH", help="Multiple hypothesis testing correction method to use"), |
25 make_option(c("-p", "--p_adj_method"), default="BH", type="character", help="Multiple hypothesis testing correction method to use"), | 27 make_option(c("-cat", "--use_genes_without_cat"), type="logical", default=FALSE, help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), |
26 make_option(c("-cat", "--use_genes_without_cat"), default=FALSE, type="logical", | 28 make_option(c("-tp", "--top_plot"), type="character", default=NULL, help="Path to output PDF with top10 over-rep GO terms"), |
27 help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), | 29 make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="Produce diagnostic plots?"), |
28 make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="produce diagnostic plots?"), | 30 make_option(c("-l","--length_bias_plot"), type="character", default=NULL, help="Path to length-bias plot"), |
29 make_option(c("-fc", "--fetch_cats"), default=NULL, type="character", help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), | 31 make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=NULL, help="Path to plot comparing sampling with wallenius p-values"), |
30 make_option(c("-rd", "--rdata"), default=NULL, type="character", help="Path to RData output file."), | 32 make_option(c("-rd", "--rdata"), type="character", default=NULL, help="Path to RData output file"), |
31 make_option(c("-tp", "--top_plot"), default=NULL, type="logical", help="Output PDF with top10 over-rep GO terms?") | 33 make_option(c("-g2g", "--categories_genes_out_fp"), type="character", default=NULL, help="Path to file with categories (GO/KEGG terms) and associated DE genes") |
32 ) | 34 ) |
33 | 35 |
34 parser <- OptionParser(usage = "%prog [options] file", option_list=option_list) | 36 parser <- OptionParser(usage = "%prog [options] file", option_list=option_list) |
35 args = parse_args(parser) | 37 args = parse_args(parser) |
36 | |
37 # Vars: | |
38 dge_file = args$dge_file | |
39 category_file = args$category_file | |
40 length_file = args$length_file | |
41 genome = args$genome | |
42 gene_id = args$gene_id | |
43 wallenius_tab = args$wallenius_tab | |
44 sampling_tab = args$sampling_tab | |
45 nobias_tab = args$nobias_tab | |
46 length_bias_plot = args$length_bias_plot | |
47 sample_vs_wallenius_plot = args$sample_vs_wallenius_plot | |
48 repcnt = args$repcnt | |
49 p_adj_method = args$p_adj_method | |
50 use_genes_without_cat = args$use_genes_without_cat | |
51 make_plots = args$make_plots | |
52 rdata = args$rdata | |
53 | 38 |
54 if (!is.null(args$fetch_cats)) { | 39 if (!is.null(args$fetch_cats)) { |
55 fetch_cats = unlist(strsplit(args$fetch_cats, ",")) | 40 fetch_cats = unlist(strsplit(args$fetch_cats, ",")) |
56 } else { | 41 } else { |
57 fetch_cats = "Custom" | 42 fetch_cats = "Custom" |
58 } | 43 } |
59 | 44 |
60 # format DE genes into named vector suitable for goseq | 45 # format DE genes into named vector suitable for goseq |
61 # check if header is present | 46 # check if header is present |
62 first_line = read.delim(dge_file, header = FALSE, nrow=1) | 47 first_line = read.delim(args$dge_file, header=FALSE, nrow=1) |
63 second_col = toupper(first_line[, ncol(first_line)]) | 48 second_col = toupper(first_line[, ncol(first_line)]) |
64 if (second_col == TRUE || second_col == FALSE) { | 49 if (second_col == TRUE || second_col == FALSE) { |
65 dge_table = read.delim(dge_file, header = FALSE, sep="\t") | 50 dge_table = read.delim(args$dge_file, header=FALSE, sep="\t") |
66 } else { | 51 } else { |
67 dge_table = read.delim(dge_file, header = TRUE, sep="\t") | 52 dge_table = read.delim(args$dge_file, header=TRUE, sep="\t") |
68 } | 53 } |
69 genes = as.numeric(as.logical(dge_table[,ncol(dge_table)])) # Last column contains TRUE/FALSE | 54 genes = as.numeric(as.logical(dge_table[, ncol(dge_table)])) # Last column contains TRUE/FALSE |
70 names(genes) = dge_table[,1] # Assuming first column contains gene names | 55 names(genes) = dge_table[,1] # Assuming first column contains gene names |
71 | 56 |
72 # gene lengths, assuming last column | 57 # gene lengths, assuming last column |
73 if (length_file != "FALSE" ) { | 58 first_line = read.delim(args$length_file, header=FALSE, nrow=1) |
74 first_line = read.delim(length_file, header = FALSE, nrow=1) | 59 if (is.numeric(first_line[, ncol(first_line)])) { |
75 if (is.numeric(first_line[, ncol(first_line)])) { | 60 length_table = read.delim(args$length_file, header=FALSE, sep="\t", check.names=FALSE) |
76 length_table = read.delim(length_file, header=FALSE, sep="\t", check.names=FALSE) | 61 } else { |
77 } else { | 62 length_table = read.delim(args$length_file, header=TRUE, sep="\t", check.names=FALSE) |
78 length_table = read.delim(length_file, header=TRUE, sep="\t", check.names=FALSE) | 63 } |
79 } | 64 row.names(length_table) = length_table[,1] |
80 row.names(length_table) = length_table[,1] | 65 # get vector of gene length in same order as the genes |
81 gene_lengths = length_table[names(genes),][,ncol(length_table)] | 66 gene_lengths = length_table[names(genes),][, ncol(length_table)] |
82 } else { | |
83 gene_lengths = getlength(names(genes), genome, gene_id) | |
84 } | |
85 | 67 |
86 # Estimate PWF | 68 # Estimate PWF |
87 | 69 if (args$make_plots) { |
88 if (make_plots != 'false') { | 70 pdf(args$length_bias_plot) |
89 pdf(length_bias_plot) | |
90 } | 71 } |
91 pwf=nullp(genes, genome = genome, id = gene_id, bias.data = gene_lengths, plot.fit=make_plots) | 72 pwf=nullp(genes, genome=args$genome, id=args$gene_id, bias.data=gene_lengths, plot.fit=args$make_plots) |
92 if (make_plots != 'false') { | 73 if (args$make_plots) { |
93 dev.off() | 74 dev.off() |
94 } | 75 } |
95 | 76 |
96 # Fetch GO annotations if category_file hasn't been supplied: | 77 # Fetch GO annotations if category_file hasn't been supplied: |
97 if (category_file == "FALSE") { | 78 if (is.null(args$category_file)) { |
98 go_map=getgo(genes = names(genes), genome=genome, id=gene_id, fetch.cats=fetch_cats) | 79 go_map=getgo(genes=names(genes), genome=args$genome, id=args$gene_id, fetch.cats=fetch_cats) |
80 } else { | |
81 # check for header: first entry in first column must be present in genes, else it's a header | |
82 first_line = read.delim(args$category_file, header=FALSE, nrow=1) | |
83 if (first_line[,1] %in% names(genes)) { | |
84 go_map = read.delim(args$category_file, header=FALSE) | |
99 } else { | 85 } else { |
100 # check for header: first entry in first column must be present in genes, else it's a header | 86 go_map = read.delim(args$category_file, header=TRUE) |
101 first_line = read.delim(category_file, header = FALSE, nrow=1) | 87 } |
102 if (first_line[,1] %in% names(genes)) { | |
103 go_map = read.delim(category_file, header = FALSE) | |
104 } else { | |
105 go_map = read.delim(category_file, header= TRUE) | |
106 } | |
107 } | 88 } |
108 | 89 |
109 results <- list() | 90 results <- list() |
110 | 91 |
111 # wallenius approximation of p-values | 92 runGoseq <- function(pwf, genome, gene_id, goseq_method, use_genes_without_cat, repcnt, gene2cat, p_adj_method, out_fp){ |
112 if (wallenius_tab != FALSE) { | 93 out=goseq(pwf, genome=genome, id=gene_id, method=goseq_method, use_genes_without_cat=use_genes_without_cat, gene2cat=go_map) |
113 GO.wall=goseq(pwf, genome = genome, id = gene_id, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) | 94 out$p.adjust.over_represented = p.adjust(out$over_represented_pvalue, method=p_adj_method) |
114 GO.wall$p.adjust.over_represented = p.adjust(GO.wall$over_represented_pvalue, method=p_adj_method) | 95 out$p.adjust.under_represented = p.adjust(out$under_represented_pvalue, method=p_adj_method) |
115 GO.wall$p.adjust.under_represented = p.adjust(GO.wall$under_represented_pvalue, method=p_adj_method) | 96 write.table(out, out_fp, sep="\t", row.names=FALSE, quote=FALSE) |
116 write.table(GO.wall, args$wallenius_tab, sep="\t", row.names = FALSE, quote = FALSE) | 97 return(out) |
117 results[['Wallenius']] <- GO.wall | |
118 } | 98 } |
119 | 99 |
100 # wallenius approximation of p-values | |
101 if (!is.null(args$wallenius_tab)) results[['Wallenius']] <- runGoseq( | |
102 pwf, | |
103 genome=args$genome, | |
104 gene_id=args$gene_id, | |
105 goseq_method="Wallenius", | |
106 use_genes_without_cat=args$use_genes_without_cat, | |
107 repcnt=args$repcnt, | |
108 gene2cat=go_map, | |
109 p_adj_method=args$p_adj_method, | |
110 out_fp=args$wallenius_tab) | |
111 | |
112 | |
120 # hypergeometric (no length bias correction) | 113 # hypergeometric (no length bias correction) |
121 if (nobias_tab != FALSE) { | 114 if (!is.null(args$nobias_tab)) results[['Hypergeometric']] <- runGoseq( |
122 GO.nobias=goseq(pwf, genome = genome, id = gene_id, method="Hypergeometric", use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) | 115 pwf, |
123 GO.nobias$p.adjust.over_represented = p.adjust(GO.nobias$over_represented_pvalue, method=p_adj_method) | 116 genome=args$genome, |
124 GO.nobias$p.adjust.under_represented = p.adjust(GO.nobias$under_represented_pvalue, method=p_adj_method) | 117 gene_id=args$gene_id, |
125 write.table(GO.nobias, args$nobias_tab, sep="\t", row.names = FALSE, quote = FALSE) | 118 goseq_method="Hypergeometric", |
126 results[['Hypergeometric']] <- GO.nobias | 119 use_genes_without_cat=args$use_genes_without_cat, |
120 repcnt=args$repcnt, | |
121 gene2cat=go_map, | |
122 p_adj_method=args$p_adj_method, | |
123 out_fp=args$nobias_tab) | |
124 | |
125 # Sampling distribution | |
126 if (args$repcnt > 0){ | |
127 results[['Sampling']] <- runGoseq( | |
128 pwf, | |
129 genome=args$genome, | |
130 gene_id=args$gene_id, | |
131 goseq_method="Sampling", | |
132 use_genes_without_cat=args$use_genes_without_cat, | |
133 repcnt=args$repcnt, | |
134 gene2cat=go_map, | |
135 p_adj_method=args$p_adj_method, | |
136 out_fp=args$sampling_tab) | |
137 | |
138 # Compare sampling with wallenius | |
139 if (args$make_plots & !is.null(args$wallenius_tab)) { | |
140 pdf(args$sample_vs_wallenius_plot) | |
141 plot(log10(results[['Wallenius']][,2]), | |
142 log10(results[['Sampling']][match(results[['Sampling']][,1], results[['Wallenius']][,1]), 2]), | |
143 xlab="log10(Wallenius p-values)", | |
144 ylab="log10(Sampling p-values)", | |
145 xlim=c(-3,0)) | |
146 abline(0,1,col=3,lty=2) | |
147 dev.off() | |
148 } | |
127 } | 149 } |
128 | 150 |
129 # Sampling distribution | 151 # Plot the top 10 |
130 if (repcnt > 0) { | |
131 | |
132 # capture the sampling progress so it doesn't fill stdout | |
133 zz <- file("/dev/null", open = "wt") | |
134 sink(zz) | |
135 GO.samp=goseq(pwf, genome = genome, id = gene_id, method="Sampling", repcnt=repcnt, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map) | |
136 sink() | |
137 | |
138 GO.samp$p.adjust.over_represented = p.adjust(GO.samp$over_represented_pvalue, method=p_adj_method) | |
139 GO.samp$p.adjust.under_represented = p.adjust(GO.samp$under_represented_pvalue, method=p_adj_method) | |
140 write.table(GO.samp, sampling_tab, sep="\t", row.names = FALSE, quote = FALSE) | |
141 # Compare sampling with wallenius | |
142 if (make_plots == TRUE) { | |
143 pdf(sample_vs_wallenius_plot) | |
144 plot(log10(GO.wall[,2]), log10(GO.samp[match(GO.samp[,1],GO.wall[,1]),2]), | |
145 xlab="log10(Wallenius p-values)",ylab="log10(Sampling p-values)", | |
146 xlim=c(-3,0)) | |
147 abline(0,1,col=3,lty=2) | |
148 dev.off() | |
149 } | |
150 results[['Sampling']] <- GO.samp | |
151 } | |
152 | |
153 if (!is.null(args$top_plot)) { | 152 if (!is.null(args$top_plot)) { |
154 cats_title <- gsub("GO:","", args$fetch_cats) | 153 cats_title <- gsub("GO:","", args$fetch_cats) |
155 # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html | 154 # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html |
156 pdf("top10.pdf") | 155 pdf(args$top_plot) |
157 for (m in names(results)) { | 156 for (m in names(results)) { |
158 p <- results[[m]] %>% | 157 p <- results[[m]] %>% |
159 top_n(10, wt=-over_represented_pvalue) %>% | 158 top_n(10, wt=-over_represented_pvalue) %>% |
160 mutate(hitsPerc=numDEInCat*100/numInCat) %>% | 159 mutate(hitsPerc=numDEInCat*100/numInCat) %>% |
161 ggplot(aes(x=hitsPerc, | 160 ggplot(aes(x=hitsPerc, |
163 colour=p.adjust.over_represented, | 162 colour=p.adjust.over_represented, |
164 size=numDEInCat)) + | 163 size=numDEInCat)) + |
165 geom_point() + | 164 geom_point() + |
166 expand_limits(x=0) + | 165 expand_limits(x=0) + |
167 labs(x="% DE in category", y="Category", colour="Adj P value", size="Count", title=paste("Top over-represented categories in", cats_title), subtitle=paste(m, " method")) + | 166 labs(x="% DE in category", y="Category", colour="Adj P value", size="Count", title=paste("Top over-represented categories in", cats_title), subtitle=paste(m, " method")) + |
168 theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) | 167 theme(plot.title=element_text(hjust = 0.5), plot.subtitle=element_text(hjust = 0.5)) |
169 print(p) | 168 print(p) |
170 } | 169 } |
171 dev.off() | 170 dev.off() |
172 } | 171 } |
173 | 172 |
173 # Extract the genes to the categories (GO/KEGG terms) | |
174 if (!is.null(args$categories_genes_out_fp)) { | |
175 cat2gene = split(rep(names(go_map), sapply(go_map, length)), unlist(go_map, use.names = FALSE)) | |
176 # extract categories (GO/KEGG terms) for all results | |
177 categories = c() | |
178 for (m in names(results)) { | |
179 categories = c(categories, results[[m]]$category) | |
180 } | |
181 categories = unique(categories) | |
182 # extract the DE genes for each catge term | |
183 categories_genes = data.frame(Categories=categories, DEgenes=rep('', length(categories))) | |
184 categories_genes$DEgenes = as.character(categories_genes$DEgenes) | |
185 rownames(categories_genes) = categories | |
186 for (cat in categories){ | |
187 tmp = pwf[cat2gene[[cat]],] | |
188 tmp = rownames(tmp[tmp$DEgenes > 0, ]) | |
189 categories_genes[cat, 'DEgenes'] = paste(tmp, collapse=',') | |
190 } | |
191 # output | |
192 write.table(categories_genes, args$categories_genes_out_fp, sep = "\t", row.names=FALSE, quote=FALSE) | |
193 } | |
194 | |
174 # Output RData file | 195 # Output RData file |
175 if (!is.null(args$rdata)) { | 196 if (!is.null(args$rdata)) { |
176 save.image(file = "goseq_analysis.RData") | 197 save.image(file=args$rdata) |
177 } | 198 } |
178 | |
179 | |
180 sessionInfo() |