diff goseq.r @ 8:8b3e3657034e draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/goseq commit 8e19f8bcaea6f607a1eaa14bb88f2d625ed63df0"
author iuc
date Fri, 06 Sep 2019 07:50:46 -0400
parents 67c29afac85f
children ef2ad746b589
line wrap: on
line diff
--- a/goseq.r	Sun Mar 17 10:27:17 2019 -0400
+++ b/goseq.r	Fri Sep 06 07:50:46 2019 -0400
@@ -10,47 +10,32 @@
     library("ggplot2")
 })
 
+sessionInfo()
+
 option_list <- list(
     make_option(c("-d", "--dge_file"), type="character", help="Path to file with differential gene expression result"),
-    make_option(c("-w","--wallenius_tab"), type="character", help="Path to output file with P-values estimated using wallenius distribution."),
-    make_option(c("-s","--sampling_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using sampling distribution."),
-    make_option(c("-n","--nobias_tab"), type="character", default=FALSE, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias."),
-    make_option(c("-l","--length_bias_plot"), type="character", default=FALSE, help="Path to length-bias plot."),
-    make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=FALSE, help="Path to plot comparing sampling with wallenius p-values."),
-    make_option(c("-r", "--repcnt"), type="integer", default=100, help="Number of repeats for sampling"),
-    make_option(c("-lf", "--length_file"), type="character", default="FALSE", help = "Path to tabular file mapping gene id to length"),
-    make_option(c("-cat_file", "--category_file"), default="FALSE", type="character", help = "Path to tabular file with gene_id <-> category mapping."),
-    make_option(c("-g", "--genome"), default=NULL, type="character", help = "Genome [used for looking up correct gene length]"),
-    make_option(c("-i", "--gene_id"), default=NULL, type="character", help = "Gene ID format of genes in DGE file"),
-    make_option(c("-p", "--p_adj_method"), default="BH", type="character", help="Multiple hypothesis testing correction method to use"),
-    make_option(c("-cat", "--use_genes_without_cat"), default=FALSE, type="logical",
-                help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."),
-    make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="produce diagnostic plots?"),
-    make_option(c("-fc", "--fetch_cats"), default=NULL, type="character", help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"),
-    make_option(c("-rd", "--rdata"), default=NULL, type="character", help="Path to RData output file."),
-    make_option(c("-tp", "--top_plot"), default=NULL, type="logical", help="Output PDF with top10 over-rep GO terms?")
+    make_option(c("-lf", "--length_file"), type="character", default=NULL, help="Path to tabular file mapping gene id to length"),
+    make_option(c("-g", "--genome"), type="character", default=NULL, help="Genome [used for looking up correct gene length]"),
+    make_option(c("-i", "--gene_id"), type="character", default=NULL, help="Gene ID format of genes in DGE file"),
+    make_option(c("-fc", "--fetch_cats"), type="character", default=NULL, help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"),
+    make_option(c("-cat_file", "--category_file"), type="character", default=NULL, help="Path to tabular file with gene_id <-> category mapping"),
+    make_option(c("-w","--wallenius_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using wallenius distribution"),
+    make_option(c("-n","--nobias_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias"),
+    make_option(c("-r", "--repcnt"), type="integer", default=0, help="Number of repeats for sampling"),
+    make_option(c("-s","--sampling_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using sampling distribution"),
+    make_option(c("-p", "--p_adj_method"), type="character", default="BH", help="Multiple hypothesis testing correction method to use"),
+    make_option(c("-cat", "--use_genes_without_cat"), type="logical", default=FALSE, help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."),
+    make_option(c("-tp", "--top_plot"), type="character", default=NULL, help="Path to output PDF with top10 over-rep GO terms"),
+    make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="Produce diagnostic plots?"),
+    make_option(c("-l","--length_bias_plot"), type="character", default=NULL, help="Path to length-bias plot"),
+    make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=NULL, help="Path to plot comparing sampling with wallenius p-values"),
+    make_option(c("-rd", "--rdata"), type="character", default=NULL, help="Path to RData output file"),
+    make_option(c("-g2g", "--categories_genes_out_fp"), type="character", default=NULL, help="Path to file with categories (GO/KEGG terms) and associated DE genes")
     )
 
 parser <- OptionParser(usage = "%prog [options] file", option_list=option_list)
 args = parse_args(parser)
 
-# Vars:
-dge_file = args$dge_file
-category_file = args$category_file
-length_file = args$length_file
-genome = args$genome
-gene_id = args$gene_id
-wallenius_tab = args$wallenius_tab
-sampling_tab = args$sampling_tab
-nobias_tab = args$nobias_tab
-length_bias_plot = args$length_bias_plot
-sample_vs_wallenius_plot = args$sample_vs_wallenius_plot
-repcnt = args$repcnt
-p_adj_method = args$p_adj_method
-use_genes_without_cat = args$use_genes_without_cat
-make_plots = args$make_plots
-rdata = args$rdata
-
 if (!is.null(args$fetch_cats)) {
   fetch_cats = unlist(strsplit(args$fetch_cats, ","))
 } else {
@@ -59,101 +44,115 @@
 
 # format DE genes into named vector suitable for goseq
 # check if header is present
-first_line = read.delim(dge_file, header = FALSE, nrow=1)
+first_line = read.delim(args$dge_file, header=FALSE, nrow=1)
 second_col = toupper(first_line[, ncol(first_line)])
 if (second_col == TRUE || second_col == FALSE) {
-    dge_table = read.delim(dge_file, header = FALSE, sep="\t")
+  dge_table = read.delim(args$dge_file, header=FALSE, sep="\t")
 } else {
-    dge_table = read.delim(dge_file, header = TRUE, sep="\t")
+  dge_table = read.delim(args$dge_file, header=TRUE, sep="\t")
 }
-genes = as.numeric(as.logical(dge_table[,ncol(dge_table)])) # Last column contains TRUE/FALSE
+genes = as.numeric(as.logical(dge_table[, ncol(dge_table)])) # Last column contains TRUE/FALSE
 names(genes) = dge_table[,1] # Assuming first column contains gene names
 
 # gene lengths, assuming last column
-if (length_file != "FALSE" ) {
-  first_line = read.delim(length_file, header = FALSE, nrow=1)
-  if (is.numeric(first_line[, ncol(first_line)])) {
-    length_table = read.delim(length_file, header=FALSE, sep="\t", check.names=FALSE)
-    } else {
-    length_table = read.delim(length_file, header=TRUE, sep="\t", check.names=FALSE)
-    }
-  row.names(length_table) = length_table[,1]
-  gene_lengths = length_table[names(genes),][,ncol(length_table)]
-  } else {
-  gene_lengths = getlength(names(genes), genome, gene_id)
-  }
+first_line = read.delim(args$length_file, header=FALSE, nrow=1)
+if (is.numeric(first_line[, ncol(first_line)])) {
+  length_table = read.delim(args$length_file, header=FALSE, sep="\t", check.names=FALSE)
+} else {
+  length_table = read.delim(args$length_file, header=TRUE, sep="\t", check.names=FALSE)
+}
+row.names(length_table) = length_table[,1]
+# get vector of gene length in same order as the genes
+gene_lengths = length_table[names(genes),][, ncol(length_table)]
 
 # Estimate PWF
-
-if (make_plots != 'false') {
-  pdf(length_bias_plot)
+if (args$make_plots) {
+  pdf(args$length_bias_plot)
 }
-pwf=nullp(genes, genome = genome, id = gene_id, bias.data = gene_lengths, plot.fit=make_plots)
-if (make_plots != 'false') {
+pwf=nullp(genes, genome=args$genome, id=args$gene_id, bias.data=gene_lengths, plot.fit=args$make_plots)
+if (args$make_plots) {
   dev.off()
 }
 
 # Fetch GO annotations if category_file hasn't been supplied:
-if (category_file == "FALSE") {
-  go_map=getgo(genes = names(genes), genome=genome, id=gene_id, fetch.cats=fetch_cats)
-  } else {
+if (is.null(args$category_file)) {
+  go_map=getgo(genes=names(genes), genome=args$genome, id=args$gene_id, fetch.cats=fetch_cats)
+} else {
   # check for header: first entry in first column must be present in genes, else it's a header
-  first_line = read.delim(category_file, header = FALSE, nrow=1)
+  first_line = read.delim(args$category_file, header=FALSE, nrow=1)
   if (first_line[,1] %in% names(genes)) {
-     go_map = read.delim(category_file, header = FALSE)
-     } else {
-     go_map = read.delim(category_file, header= TRUE)
-    }
+    go_map = read.delim(args$category_file, header=FALSE)
+  } else {
+    go_map = read.delim(args$category_file, header=TRUE)
+  }
 }
 
 results <- list()
 
-# wallenius approximation of p-values
-if (wallenius_tab != FALSE) {
-  GO.wall=goseq(pwf, genome = genome, id = gene_id, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map)
-  GO.wall$p.adjust.over_represented = p.adjust(GO.wall$over_represented_pvalue, method=p_adj_method)
-  GO.wall$p.adjust.under_represented = p.adjust(GO.wall$under_represented_pvalue, method=p_adj_method)
-  write.table(GO.wall, args$wallenius_tab, sep="\t", row.names = FALSE, quote = FALSE)
-  results[['Wallenius']] <- GO.wall
+runGoseq <- function(pwf, genome, gene_id, goseq_method, use_genes_without_cat, repcnt, gene2cat, p_adj_method, out_fp){
+  out=goseq(pwf, genome=genome, id=gene_id, method=goseq_method, use_genes_without_cat=use_genes_without_cat, gene2cat=go_map)
+  out$p.adjust.over_represented = p.adjust(out$over_represented_pvalue, method=p_adj_method)
+  out$p.adjust.under_represented = p.adjust(out$under_represented_pvalue, method=p_adj_method)
+  write.table(out, out_fp, sep="\t", row.names=FALSE, quote=FALSE)
+  return(out)
 }
 
+# wallenius approximation of p-values
+if (!is.null(args$wallenius_tab)) results[['Wallenius']] <- runGoseq(
+  pwf,
+  genome=args$genome,
+  gene_id=args$gene_id,
+  goseq_method="Wallenius",
+  use_genes_without_cat=args$use_genes_without_cat,
+  repcnt=args$repcnt,
+  gene2cat=go_map,
+  p_adj_method=args$p_adj_method,
+  out_fp=args$wallenius_tab)
+
+
 # hypergeometric (no length bias correction)
-if (nobias_tab != FALSE) {
-  GO.nobias=goseq(pwf, genome = genome, id = gene_id, method="Hypergeometric", use_genes_without_cat = use_genes_without_cat, gene2cat=go_map)
-  GO.nobias$p.adjust.over_represented = p.adjust(GO.nobias$over_represented_pvalue, method=p_adj_method)
-  GO.nobias$p.adjust.under_represented = p.adjust(GO.nobias$under_represented_pvalue, method=p_adj_method)
-  write.table(GO.nobias, args$nobias_tab, sep="\t", row.names = FALSE, quote = FALSE)
-  results[['Hypergeometric']] <- GO.nobias
-}
+if (!is.null(args$nobias_tab)) results[['Hypergeometric']] <- runGoseq(
+  pwf,
+  genome=args$genome,
+  gene_id=args$gene_id,
+  goseq_method="Hypergeometric",
+  use_genes_without_cat=args$use_genes_without_cat,
+  repcnt=args$repcnt,
+  gene2cat=go_map,
+  p_adj_method=args$p_adj_method,
+  out_fp=args$nobias_tab)
 
 # Sampling distribution
-if (repcnt > 0) {
-
-  # capture the sampling progress so it doesn't fill stdout  
-  zz <- file("/dev/null", open = "wt")
-  sink(zz)
-  GO.samp=goseq(pwf, genome = genome, id = gene_id, method="Sampling", repcnt=repcnt, use_genes_without_cat = use_genes_without_cat, gene2cat=go_map)
-  sink()
+if (args$repcnt > 0){
+  results[['Sampling']] <- runGoseq(
+    pwf,
+    genome=args$genome,
+    gene_id=args$gene_id,
+    goseq_method="Sampling",
+    use_genes_without_cat=args$use_genes_without_cat,
+    repcnt=args$repcnt,
+    gene2cat=go_map,
+    p_adj_method=args$p_adj_method,
+    out_fp=args$sampling_tab)
 
-  GO.samp$p.adjust.over_represented = p.adjust(GO.samp$over_represented_pvalue, method=p_adj_method)
-  GO.samp$p.adjust.under_represented = p.adjust(GO.samp$under_represented_pvalue, method=p_adj_method)
-  write.table(GO.samp, sampling_tab, sep="\t", row.names = FALSE, quote = FALSE)
   # Compare sampling with wallenius
-  if (make_plots == TRUE) {
-  pdf(sample_vs_wallenius_plot)
-  plot(log10(GO.wall[,2]), log10(GO.samp[match(GO.samp[,1],GO.wall[,1]),2]),
-     xlab="log10(Wallenius p-values)",ylab="log10(Sampling p-values)",
-     xlim=c(-3,0))
-     abline(0,1,col=3,lty=2)
-  dev.off()
+  if (args$make_plots & !is.null(args$wallenius_tab)) {
+    pdf(args$sample_vs_wallenius_plot)
+    plot(log10(results[['Wallenius']][,2]), 
+      log10(results[['Sampling']][match(results[['Sampling']][,1], results[['Wallenius']][,1]), 2]),
+      xlab="log10(Wallenius p-values)",
+      ylab="log10(Sampling p-values)",
+      xlim=c(-3,0))
+    abline(0,1,col=3,lty=2)
+    dev.off()
   }
-  results[['Sampling']] <- GO.samp
 }
 
+# Plot the top 10
 if (!is.null(args$top_plot)) {
   cats_title <- gsub("GO:","", args$fetch_cats)
   # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html
-  pdf("top10.pdf")
+  pdf(args$top_plot)
   for (m in names(results)) {
     p <- results[[m]] %>%
       top_n(10, wt=-over_represented_pvalue)  %>%
@@ -165,16 +164,35 @@
       geom_point() +
       expand_limits(x=0) +
       labs(x="% DE in category", y="Category", colour="Adj P value", size="Count", title=paste("Top over-represented categories in", cats_title), subtitle=paste(m, " method")) +
-      theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5))
+      theme(plot.title=element_text(hjust = 0.5), plot.subtitle=element_text(hjust = 0.5))
     print(p)
   }
   dev.off()
 }
 
+# Extract the genes to the categories (GO/KEGG terms)
+if (!is.null(args$categories_genes_out_fp)) {
+  cat2gene = split(rep(names(go_map), sapply(go_map, length)), unlist(go_map, use.names = FALSE))
+  # extract categories (GO/KEGG terms) for all results
+  categories = c()
+  for (m in names(results)) {
+    categories = c(categories, results[[m]]$category)
+  }
+  categories = unique(categories)
+  # extract the DE genes for each catge term
+  categories_genes = data.frame(Categories=categories, DEgenes=rep('', length(categories)))
+  categories_genes$DEgenes = as.character(categories_genes$DEgenes)
+  rownames(categories_genes) = categories
+  for (cat in categories){
+    tmp = pwf[cat2gene[[cat]],]
+    tmp = rownames(tmp[tmp$DEgenes > 0, ])
+    categories_genes[cat, 'DEgenes'] = paste(tmp, collapse=',')
+  }
+  # output
+  write.table(categories_genes, args$categories_genes_out_fp, sep = "\t", row.names=FALSE, quote=FALSE)
+}
+
 # Output RData file
 if (!is.null(args$rdata)) {
-  save.image(file = "goseq_analysis.RData")
+  save.image(file=args$rdata)
 }
-
-
-sessionInfo()