Mercurial > repos > iuc > goseq
view goseq.r @ 10:43798b4caee0 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/goseq commit 21f3eae641dd20a0f8724e0a05910396df8d028f
author | iuc |
---|---|
date | Thu, 09 Jun 2022 13:01:48 +0000 |
parents | ef2ad746b589 |
children | 602de62d995b |
line wrap: on
line source
options(show.error.messages = F, error = function() { cat(geterrmessage(), file = stderr()) q("no", 1, F) }) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") suppressPackageStartupMessages({ library("goseq") library("optparse") library("dplyr") library("ggplot2") }) sessionInfo() option_list <- list( make_option("--dge_file", type = "character", help = "Path to file with differential gene expression result"), make_option("--length_file", type = "character", default = NULL, help = "Path to tabular file mapping gene id to length"), make_option("--genome", type = "character", default = NULL, help = "Genome [used for looking up correct gene length]"), make_option("--gene_id", type = "character", default = NULL, help = "Gene ID format of genes in DGE file"), make_option("--fetch_cats", type = "character", default = NULL, help = "Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), make_option("--category_file", type = "character", default = NULL, help = "Path to tabular file with gene_id <-> category mapping"), make_option("--wallenius_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using wallenius distribution"), make_option("--nobias_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias"), make_option("--repcnt", type = "integer", default = 0, help = "Number of repeats for sampling"), make_option("--sampling_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using sampling distribution"), make_option("--p_adj_method", type = "character", default = "BH", help = "Multiple hypothesis testing correction method to use"), make_option("--use_genes_without_cat", type = "logical", default = FALSE, help = "A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), make_option("--top_plot", type = "character", default = NULL, help = "Path to output PDF with top10 over-rep GO terms"), make_option("--make_plots", default = FALSE, type = "logical", help = "Produce diagnostic plots?"), make_option("--length_bias_plot", type = "character", default = NULL, help = "Path to length-bias plot"), make_option("--sample_vs_wallenius_plot", type = "character", default = NULL, help = "Path to plot comparing sampling with wallenius p-values"), make_option("--rdata", type = "character", default = NULL, help = "Path to RData output file"), make_option("--categories_genes_out_fp", type = "character", default = NULL, help = "Path to file with categories (GO/KEGG terms) and associated DE genes") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args <- parse_args(parser) if (!is.null(args$fetch_cats)) { fetch_cats <- unlist(strsplit(args$fetch_cats, ",")) } else { fetch_cats <- "Custom" } # format DE genes into named vector suitable for goseq # check if header is present first_line <- read.delim(args$dge_file, header = FALSE, nrow = 1) second_col <- toupper(first_line[, ncol(first_line)]) if (second_col == TRUE || second_col == FALSE) { dge_table <- read.delim(args$dge_file, header = FALSE, sep = "\t") } else { dge_table <- read.delim(args$dge_file, header = TRUE, sep = "\t") } genes <- as.numeric(as.logical(dge_table[, ncol(dge_table)])) # Last column contains TRUE/FALSE names(genes) <- dge_table[, 1] # Assuming first column contains gene names # gene lengths, assuming last column first_line <- read.delim(args$length_file, header = FALSE, nrow = 1) if (is.numeric(first_line[, ncol(first_line)])) { length_table <- read.delim(args$length_file, header = FALSE, sep = "\t", check.names = FALSE) } else { length_table <- read.delim(args$length_file, header = TRUE, sep = "\t", check.names = FALSE) } row.names(length_table) <- length_table[, 1] # get vector of gene length in same order as the genes gene_lengths <- length_table[names(genes), ][, ncol(length_table)] # Estimate PWF if (args$make_plots) { pdf(args$length_bias_plot) } pwf <- nullp(genes, genome = args$genome, id = args$gene_id, bias.data = gene_lengths, plot.fit = args$make_plots) if (args$make_plots) { dev.off() } # Fetch GO annotations if category_file hasn't been supplied: if (is.null(args$category_file)) { go_map <- getgo(genes = names(genes), genome = args$genome, id = args$gene_id, fetch.cats = fetch_cats) } else { # check for header: first entry in first column must be present in genes, else it's a header first_line <- read.delim(args$category_file, header = FALSE, nrow = 1) if (first_line[, 1] %in% names(genes)) { go_map <- read.delim(args$category_file, header = FALSE) } else { go_map <- read.delim(args$category_file, header = TRUE) } } results <- list() run_goseq <- function(pwf, genome, gene_id, goseq_method, use_genes_without_cat, repcnt, gene2cat, p_adj_method, out_fp) { out <- goseq(pwf, genome = genome, id = gene_id, method = goseq_method, use_genes_without_cat = use_genes_without_cat, gene2cat = go_map) out$p_adjust_over_represented <- p.adjust(out$over_represented_pvalue, method = p_adj_method) out$p_adjust_under_represented <- p.adjust(out$under_represented_pvalue, method = p_adj_method) write.table(out, out_fp, sep = "\t", row.names = FALSE, quote = FALSE) return(out) } # wallenius approximation of p-values if (!is.null(args$wallenius_tab)) { results[["Wallenius"]] <- run_goseq( pwf, genome = args$genome, gene_id = args$gene_id, goseq_method = "Wallenius", use_genes_without_cat = args$use_genes_without_cat, repcnt = args$repcnt, gene2cat = go_map, p_adj_method = args$p_adj_method, out_fp = args$wallenius_tab ) } # hypergeometric (no length bias correction) if (!is.null(args$nobias_tab)) { results[["Hypergeometric"]] <- run_goseq( pwf, genome = args$genome, gene_id = args$gene_id, goseq_method = "Hypergeometric", use_genes_without_cat = args$use_genes_without_cat, repcnt = args$repcnt, gene2cat = go_map, p_adj_method = args$p_adj_method, out_fp = args$nobias_tab ) } # Sampling distribution if (args$repcnt > 0) { results[["Sampling"]] <- run_goseq( pwf, genome = args$genome, gene_id = args$gene_id, goseq_method = "Sampling", use_genes_without_cat = args$use_genes_without_cat, repcnt = args$repcnt, gene2cat = go_map, p_adj_method = args$p_adj_method, out_fp = args$sampling_tab ) # Compare sampling with wallenius if (args$make_plots & !is.null(args$wallenius_tab)) { pdf(args$sample_vs_wallenius_plot) plot(log10(results[["Wallenius"]][, 2]), log10(results[["Sampling"]][match(results[["Sampling"]][, 1], results[["Wallenius"]][, 1]), 2]), xlab = "log10(Wallenius p-values)", ylab = "log10(Sampling p-values)", xlim = c(-3, 0) ) abline(0, 1, col = 3, lty = 2) dev.off() } } # Plot the top 10 if (!is.null(args$top_plot)) { cats_title <- gsub("GO:", "", args$fetch_cats) # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html pdf(args$top_plot) for (m in names(results)) { p <- results[[m]] %>% top_n(10, wt = -over_represented_pvalue) %>% mutate(hitsPerc = numDEInCat * 100 / numInCat) %>% ggplot(aes( x = hitsPerc, y = reorder(substr(term, 1, 40), -over_represented_pvalue), # only use 1st 40 chars of terms otherwise squashes plot colour = p_adjust_over_represented, size = numDEInCat )) + geom_point() + expand_limits(x = 0) + labs(x = "% DE in category", y = "Category", colour = "Adj P value", size = "Count", title = paste("Top over-represented categories in", cats_title), subtitle = paste(m, " method")) + theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) print(p) } dev.off() } # Extract the genes to the categories (GO/KEGG terms) if (!is.null(args$categories_genes_out_fp)) { cat2gene <- split(rep(names(go_map), sapply(go_map, length)), unlist(go_map, use.names = FALSE)) # extract categories (GO/KEGG terms) for all results categories <- c() for (m in names(results)) { categories <- c(categories, results[[m]]$category) } categories <- unique(categories) # extract the DE genes for each catge term categories_genes <- data.frame(category = categories, de_genes = rep("", length(categories))) categories_genes$de_genes <- as.character(categories_genes$de_genes) rownames(categories_genes) <- categories for (cat in categories) { tmp <- pwf[cat2gene[[cat]], ] tmp <- rownames(tmp[tmp$DEgenes > 0, ]) categories_genes[cat, "de_genes"] <- paste(tmp, collapse = ",") } # output write.table(categories_genes, args$categories_genes_out_fp, sep = "\t", row.names = FALSE, quote = FALSE) } # Output RData file if (!is.null(args$rdata)) { save.image(file = args$rdata) }