Mercurial > repos > iuc > goseq
changeset 9:ef2ad746b589 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/goseq commit e230a8db9e090c6e0ea9577863ec6153df79e145"
author | iuc |
---|---|
date | Sun, 06 Jun 2021 22:47:36 +0000 |
parents | 8b3e3657034e |
children | 43798b4caee0 |
files | goseq.r goseq.xml test-data/nobias.tab test-data/samp.tab |
diffstat | 4 files changed, 148 insertions(+), 126 deletions(-) [+] |
line wrap: on
line diff
--- a/goseq.r Fri Sep 06 07:50:46 2019 -0400 +++ b/goseq.r Sun Jun 06 22:47:36 2021 +0000 @@ -1,170 +1,183 @@ -options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) +options(show.error.messages = F, error = function() { + cat(geterrmessage(), file = stderr()) + q("no", 1, F) +}) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") suppressPackageStartupMessages({ - library("goseq") - library("optparse") - library("dplyr") - library("ggplot2") + library("goseq") + library("optparse") + library("dplyr") + library("ggplot2") }) sessionInfo() option_list <- list( - make_option(c("-d", "--dge_file"), type="character", help="Path to file with differential gene expression result"), - make_option(c("-lf", "--length_file"), type="character", default=NULL, help="Path to tabular file mapping gene id to length"), - make_option(c("-g", "--genome"), type="character", default=NULL, help="Genome [used for looking up correct gene length]"), - make_option(c("-i", "--gene_id"), type="character", default=NULL, help="Gene ID format of genes in DGE file"), - make_option(c("-fc", "--fetch_cats"), type="character", default=NULL, help="Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), - make_option(c("-cat_file", "--category_file"), type="character", default=NULL, help="Path to tabular file with gene_id <-> category mapping"), - make_option(c("-w","--wallenius_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using wallenius distribution"), - make_option(c("-n","--nobias_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias"), - make_option(c("-r", "--repcnt"), type="integer", default=0, help="Number of repeats for sampling"), - make_option(c("-s","--sampling_tab"), type="character", default=NULL, help="Path to output file with P-values estimated using sampling distribution"), - make_option(c("-p", "--p_adj_method"), type="character", default="BH", help="Multiple hypothesis testing correction method to use"), - make_option(c("-cat", "--use_genes_without_cat"), type="logical", default=FALSE, help="A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), - make_option(c("-tp", "--top_plot"), type="character", default=NULL, help="Path to output PDF with top10 over-rep GO terms"), - make_option(c("-plots", "--make_plots"), default=FALSE, type="logical", help="Produce diagnostic plots?"), - make_option(c("-l","--length_bias_plot"), type="character", default=NULL, help="Path to length-bias plot"), - make_option(c("-sw","--sample_vs_wallenius_plot"), type="character", default=NULL, help="Path to plot comparing sampling with wallenius p-values"), - make_option(c("-rd", "--rdata"), type="character", default=NULL, help="Path to RData output file"), - make_option(c("-g2g", "--categories_genes_out_fp"), type="character", default=NULL, help="Path to file with categories (GO/KEGG terms) and associated DE genes") - ) + make_option("--dge_file", type = "character", help = "Path to file with differential gene expression result"), + make_option("--length_file", type = "character", default = NULL, help = "Path to tabular file mapping gene id to length"), + make_option("--genome", type = "character", default = NULL, help = "Genome [used for looking up correct gene length]"), + make_option("--gene_id", type = "character", default = NULL, help = "Gene ID format of genes in DGE file"), + make_option("--fetch_cats", type = "character", default = NULL, help = "Categories to get can include one or more of GO:CC, GO:BP, GO:MF, KEGG"), + make_option("--category_file", type = "character", default = NULL, help = "Path to tabular file with gene_id <-> category mapping"), + make_option("--wallenius_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using wallenius distribution"), + make_option("--nobias_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using hypergeometric distribution and no correction for gene length bias"), + make_option("--repcnt", type = "integer", default = 0, help = "Number of repeats for sampling"), + make_option("--sampling_tab", type = "character", default = NULL, help = "Path to output file with P-values estimated using sampling distribution"), + make_option("--p_adj_method", type = "character", default = "BH", help = "Multiple hypothesis testing correction method to use"), + make_option("--use_genes_without_cat", type = "logical", default = FALSE, help = "A large number of gene may have no GO term annotated. If this option is set to FALSE, genes without category will be ignored in the calculation of p-values(default behaviour). If TRUE these genes will count towards the total number of genes outside the tested category (default behaviour prior to version 1.15.2)."), + make_option("--top_plot", type = "character", default = NULL, help = "Path to output PDF with top10 over-rep GO terms"), + make_option("--make_plots", default = FALSE, type = "logical", help = "Produce diagnostic plots?"), + make_option("--length_bias_plot", type = "character", default = NULL, help = "Path to length-bias plot"), + make_option("--sample_vs_wallenius_plot", type = "character", default = NULL, help = "Path to plot comparing sampling with wallenius p-values"), + make_option("--rdata", type = "character", default = NULL, help = "Path to RData output file"), + make_option("--categories_genes_out_fp", type = "character", default = NULL, help = "Path to file with categories (GO/KEGG terms) and associated DE genes") +) -parser <- OptionParser(usage = "%prog [options] file", option_list=option_list) -args = parse_args(parser) +parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) +args <- parse_args(parser) if (!is.null(args$fetch_cats)) { - fetch_cats = unlist(strsplit(args$fetch_cats, ",")) + fetch_cats <- unlist(strsplit(args$fetch_cats, ",")) } else { - fetch_cats = "Custom" + fetch_cats <- "Custom" } # format DE genes into named vector suitable for goseq # check if header is present -first_line = read.delim(args$dge_file, header=FALSE, nrow=1) -second_col = toupper(first_line[, ncol(first_line)]) +first_line <- read.delim(args$dge_file, header = FALSE, nrow = 1) +second_col <- toupper(first_line[, ncol(first_line)]) if (second_col == TRUE || second_col == FALSE) { - dge_table = read.delim(args$dge_file, header=FALSE, sep="\t") + dge_table <- read.delim(args$dge_file, header = FALSE, sep = "\t") } else { - dge_table = read.delim(args$dge_file, header=TRUE, sep="\t") + dge_table <- read.delim(args$dge_file, header = TRUE, sep = "\t") } -genes = as.numeric(as.logical(dge_table[, ncol(dge_table)])) # Last column contains TRUE/FALSE -names(genes) = dge_table[,1] # Assuming first column contains gene names +genes <- as.numeric(as.logical(dge_table[, ncol(dge_table)])) # Last column contains TRUE/FALSE +names(genes) <- dge_table[, 1] # Assuming first column contains gene names # gene lengths, assuming last column -first_line = read.delim(args$length_file, header=FALSE, nrow=1) +first_line <- read.delim(args$length_file, header = FALSE, nrow = 1) if (is.numeric(first_line[, ncol(first_line)])) { - length_table = read.delim(args$length_file, header=FALSE, sep="\t", check.names=FALSE) + length_table <- read.delim(args$length_file, header = FALSE, sep = "\t", check.names = FALSE) } else { - length_table = read.delim(args$length_file, header=TRUE, sep="\t", check.names=FALSE) + length_table <- read.delim(args$length_file, header = TRUE, sep = "\t", check.names = FALSE) } -row.names(length_table) = length_table[,1] +row.names(length_table) <- length_table[, 1] # get vector of gene length in same order as the genes -gene_lengths = length_table[names(genes),][, ncol(length_table)] +gene_lengths <- length_table[names(genes), ][, ncol(length_table)] # Estimate PWF if (args$make_plots) { pdf(args$length_bias_plot) } -pwf=nullp(genes, genome=args$genome, id=args$gene_id, bias.data=gene_lengths, plot.fit=args$make_plots) +pwf <- nullp(genes, genome = args$genome, id = args$gene_id, bias.data = gene_lengths, plot.fit = args$make_plots) if (args$make_plots) { dev.off() } # Fetch GO annotations if category_file hasn't been supplied: if (is.null(args$category_file)) { - go_map=getgo(genes=names(genes), genome=args$genome, id=args$gene_id, fetch.cats=fetch_cats) + go_map <- getgo(genes = names(genes), genome = args$genome, id = args$gene_id, fetch.cats = fetch_cats) } else { # check for header: first entry in first column must be present in genes, else it's a header - first_line = read.delim(args$category_file, header=FALSE, nrow=1) - if (first_line[,1] %in% names(genes)) { - go_map = read.delim(args$category_file, header=FALSE) + first_line <- read.delim(args$category_file, header = FALSE, nrow = 1) + if (first_line[, 1] %in% names(genes)) { + go_map <- read.delim(args$category_file, header = FALSE) } else { - go_map = read.delim(args$category_file, header=TRUE) + go_map <- read.delim(args$category_file, header = TRUE) } } results <- list() -runGoseq <- function(pwf, genome, gene_id, goseq_method, use_genes_without_cat, repcnt, gene2cat, p_adj_method, out_fp){ - out=goseq(pwf, genome=genome, id=gene_id, method=goseq_method, use_genes_without_cat=use_genes_without_cat, gene2cat=go_map) - out$p.adjust.over_represented = p.adjust(out$over_represented_pvalue, method=p_adj_method) - out$p.adjust.under_represented = p.adjust(out$under_represented_pvalue, method=p_adj_method) - write.table(out, out_fp, sep="\t", row.names=FALSE, quote=FALSE) +run_goseq <- function(pwf, genome, gene_id, goseq_method, use_genes_without_cat, repcnt, gene2cat, p_adj_method, out_fp) { + out <- goseq(pwf, genome = genome, id = gene_id, method = goseq_method, use_genes_without_cat = use_genes_without_cat, gene2cat = go_map) + out$p_adjust_over_represented <- p.adjust(out$over_represented_pvalue, method = p_adj_method) + out$p_adjust_under_represented <- p.adjust(out$under_represented_pvalue, method = p_adj_method) + write.table(out, out_fp, sep = "\t", row.names = FALSE, quote = FALSE) return(out) } # wallenius approximation of p-values -if (!is.null(args$wallenius_tab)) results[['Wallenius']] <- runGoseq( - pwf, - genome=args$genome, - gene_id=args$gene_id, - goseq_method="Wallenius", - use_genes_without_cat=args$use_genes_without_cat, - repcnt=args$repcnt, - gene2cat=go_map, - p_adj_method=args$p_adj_method, - out_fp=args$wallenius_tab) +if (!is.null(args$wallenius_tab)) { + results[["Wallenius"]] <- run_goseq( + pwf, + genome = args$genome, + gene_id = args$gene_id, + goseq_method = "Wallenius", + use_genes_without_cat = args$use_genes_without_cat, + repcnt = args$repcnt, + gene2cat = go_map, + p_adj_method = args$p_adj_method, + out_fp = args$wallenius_tab + ) +} # hypergeometric (no length bias correction) -if (!is.null(args$nobias_tab)) results[['Hypergeometric']] <- runGoseq( - pwf, - genome=args$genome, - gene_id=args$gene_id, - goseq_method="Hypergeometric", - use_genes_without_cat=args$use_genes_without_cat, - repcnt=args$repcnt, - gene2cat=go_map, - p_adj_method=args$p_adj_method, - out_fp=args$nobias_tab) +if (!is.null(args$nobias_tab)) { + results[["Hypergeometric"]] <- run_goseq( + pwf, + genome = args$genome, + gene_id = args$gene_id, + goseq_method = "Hypergeometric", + use_genes_without_cat = args$use_genes_without_cat, + repcnt = args$repcnt, + gene2cat = go_map, + p_adj_method = args$p_adj_method, + out_fp = args$nobias_tab + ) +} # Sampling distribution -if (args$repcnt > 0){ - results[['Sampling']] <- runGoseq( +if (args$repcnt > 0) { + results[["Sampling"]] <- run_goseq( pwf, - genome=args$genome, - gene_id=args$gene_id, - goseq_method="Sampling", - use_genes_without_cat=args$use_genes_without_cat, - repcnt=args$repcnt, - gene2cat=go_map, - p_adj_method=args$p_adj_method, - out_fp=args$sampling_tab) + genome = args$genome, + gene_id = args$gene_id, + goseq_method = "Sampling", + use_genes_without_cat = args$use_genes_without_cat, + repcnt = args$repcnt, + gene2cat = go_map, + p_adj_method = args$p_adj_method, + out_fp = args$sampling_tab + ) # Compare sampling with wallenius if (args$make_plots & !is.null(args$wallenius_tab)) { pdf(args$sample_vs_wallenius_plot) - plot(log10(results[['Wallenius']][,2]), - log10(results[['Sampling']][match(results[['Sampling']][,1], results[['Wallenius']][,1]), 2]), - xlab="log10(Wallenius p-values)", - ylab="log10(Sampling p-values)", - xlim=c(-3,0)) - abline(0,1,col=3,lty=2) + plot(log10(results[["Wallenius"]][, 2]), + log10(results[["Sampling"]][match(results[["Sampling"]][, 1], results[["Wallenius"]][, 1]), 2]), + xlab = "log10(Wallenius p-values)", + ylab = "log10(Sampling p-values)", + xlim = c(-3, 0) + ) + abline(0, 1, col = 3, lty = 2) dev.off() } } # Plot the top 10 if (!is.null(args$top_plot)) { - cats_title <- gsub("GO:","", args$fetch_cats) + cats_title <- gsub("GO:", "", args$fetch_cats) # modified from https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html pdf(args$top_plot) for (m in names(results)) { p <- results[[m]] %>% - top_n(10, wt=-over_represented_pvalue) %>% - mutate(hitsPerc=numDEInCat*100/numInCat) %>% - ggplot(aes(x=hitsPerc, - y=reorder(substr(term, 1, 40), -over_represented_pvalue), # only use 1st 40 chars of terms otherwise squashes plot - colour=p.adjust.over_represented, - size=numDEInCat)) + + top_n(10, wt = -over_represented_pvalue) %>% + mutate(hitsPerc = numDEInCat * 100 / numInCat) %>% + ggplot(aes( + x = hitsPerc, + y = reorder(substr(term, 1, 40), -over_represented_pvalue), # only use 1st 40 chars of terms otherwise squashes plot + colour = p_adjust_over_represented, + size = numDEInCat + )) + geom_point() + - expand_limits(x=0) + - labs(x="% DE in category", y="Category", colour="Adj P value", size="Count", title=paste("Top over-represented categories in", cats_title), subtitle=paste(m, " method")) + - theme(plot.title=element_text(hjust = 0.5), plot.subtitle=element_text(hjust = 0.5)) + expand_limits(x = 0) + + labs(x = "% DE in category", y = "Category", colour = "Adj P value", size = "Count", title = paste("Top over-represented categories in", cats_title), subtitle = paste(m, " method")) + + theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) print(p) } dev.off() @@ -172,27 +185,27 @@ # Extract the genes to the categories (GO/KEGG terms) if (!is.null(args$categories_genes_out_fp)) { - cat2gene = split(rep(names(go_map), sapply(go_map, length)), unlist(go_map, use.names = FALSE)) + cat2gene <- split(rep(names(go_map), sapply(go_map, length)), unlist(go_map, use.names = FALSE)) # extract categories (GO/KEGG terms) for all results - categories = c() + categories <- c() for (m in names(results)) { - categories = c(categories, results[[m]]$category) + categories <- c(categories, results[[m]]$category) } - categories = unique(categories) + categories <- unique(categories) # extract the DE genes for each catge term - categories_genes = data.frame(Categories=categories, DEgenes=rep('', length(categories))) - categories_genes$DEgenes = as.character(categories_genes$DEgenes) - rownames(categories_genes) = categories - for (cat in categories){ - tmp = pwf[cat2gene[[cat]],] - tmp = rownames(tmp[tmp$DEgenes > 0, ]) - categories_genes[cat, 'DEgenes'] = paste(tmp, collapse=',') + categories_genes <- data.frame(category = categories, de_genes = rep("", length(categories))) + categories_genes$de_genes <- as.character(categories_genes$de_genes) + rownames(categories_genes) <- categories + for (cat in categories) { + tmp <- pwf[cat2gene[[cat]], ] + tmp <- rownames(tmp[tmp$DEgenes > 0, ]) + categories_genes[cat, "de_genes"] <- paste(tmp, collapse = ",") } # output - write.table(categories_genes, args$categories_genes_out_fp, sep = "\t", row.names=FALSE, quote=FALSE) + write.table(categories_genes, args$categories_genes_out_fp, sep = "\t", row.names = FALSE, quote = FALSE) } # Output RData file if (!is.null(args$rdata)) { - save.image(file=args$rdata) + save.image(file = args$rdata) }
--- a/goseq.xml Fri Sep 06 07:50:46 2019 -0400 +++ b/goseq.xml Sun Jun 06 22:47:36 2021 +0000 @@ -1,18 +1,27 @@ <tool id="goseq" name="goseq" version="@VERSION@+@GALAXY_VERSION@"> <description>tests for overrepresented gene categories</description> + <xrefs> + <xref type="bio.tools">goseq</xref> + </xrefs> + <edam_topics> + <edam_topic>topic_3308</edam_topic> + </edam_topics> + <edam_operations> + <edam_operation>operation_2436</edam_operation> + </edam_operations> <macros> - <token name="@VERSION@">1.36.0</token> + <token name="@VERSION@">1.44.0</token> <token name="@GALAXY_VERSION@">galaxy0</token> </macros> <requirements> <requirement type="package" version="@VERSION@">bioconductor-goseq</requirement> - <requirement type="package" version="3.8.2">bioconductor-org.hs.eg.db</requirement> - <requirement type="package" version="3.8.2">bioconductor-org.dm.eg.db</requirement> - <requirement type="package" version="3.8.2">bioconductor-org.dr.eg.db</requirement> - <requirement type="package" version="3.8.2">bioconductor-org.mm.eg.db</requirement> - <requirement type="package" version="0.8.3">r-dplyr</requirement> - <requirement type="package" version="3.2.1">r-ggplot2</requirement> - <requirement type="package" version="1.6.2">r-optparse</requirement> + <requirement type="package" version="3.13.0">bioconductor-org.hs.eg.db</requirement> + <requirement type="package" version="3.13.0">bioconductor-org.dm.eg.db</requirement> + <requirement type="package" version="3.13.0">bioconductor-org.dr.eg.db</requirement> + <requirement type="package" version="3.13.0">bioconductor-org.mm.eg.db</requirement> + <requirement type="package" version="1.0.6">r-dplyr</requirement> + <requirement type="package" version="3.3.3">r-ggplot2</requirement> + <requirement type="package" version="1.6.6">r-optparse</requirement> </requirements> <stdio> <regex match="Execution halted" @@ -194,7 +203,7 @@ <output name="top_plot" ftype="pdf" file="topgo.pdf" compare="sim_size"/> <output name="wallenius_tab"> <assert_contents> - <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p.adjust.over_represented.*p.adjust.under_represented" /> + <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p_adjust_over_represented.*p_adjust_under_represented" /> <has_text_matching expression="GO:0000278.*0.01" /> </assert_contents> </output> @@ -226,13 +235,13 @@ </section> <output name="wallenius_tab"> <assert_contents> - <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p.adjust.over_represented.*p.adjust.under_represented" /> - <has_text_matching expression="GO:0005576.*9.0" /> + <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p_adjust_over_represented.*p_adjust_under_represented" /> + <has_text_matching expression="GO:0005576.*0.9" /> </assert_contents> </output> <output name="cat_genes_tab"> <assert_contents> - <has_text_matching expression="Categories.*DEgenes" /> + <has_text_matching expression="category.*de_genes" /> <has_text_matching expression="GO:0005615.*ENSG00000090402,ENSG00000108953,ENSG00000070961" /> </assert_contents> </output> @@ -264,8 +273,8 @@ </section> <output name="wallenius_tab"> <assert_contents> - <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p.adjust.over_represented.*p.adjust.under_represented" /> - <has_text_matching expression="GO:0016569.*0.8" /> + <has_text_matching expression="category.*over_represented_pvalue.*under_represented_pvalue.*numDEInCat.*numInCat.*term.*ontology.*p_adjust_over_represented.*p_adjust_under_represented" /> + <has_text_matching expression="GO:0016569.*0.90" /> </assert_contents> </output> </test> @@ -438,7 +447,7 @@ Example: =========== =============== ================ ============ ========== ======================================== ========== =================== ==================== -*category* *over_rep_pval* *under_rep_pval* *numDEInCat* *numInCat* *term* *ontology* *p.adjust.over_rep* *p.adjust.under_rep* +*category* *over_rep_pval* *under_rep_pval* *numDEInCat* *numInCat* *term* *ontology* *p_adjust_over_rep* *p_adjust_under_rep* ----------- --------------- ---------------- ------------ ---------- ---------------------------------------- ---------- ------------------- -------------------- GO\:0005576 0.000054 0.999975 56 142 extracellular region CC 0.394825 1 GO\:0005840 0.000143 0.999988 9 12 ribosome CC 0.394825 1
--- a/test-data/nobias.tab Fri Sep 06 07:50:46 2019 -0400 +++ b/test-data/nobias.tab Sun Jun 06 22:47:36 2021 +0000 @@ -1,3 +1,3 @@ -category over_represented_pvalue under_represented_pvalue numDEInCat numInCat term ontology p.adjust.over_represented p.adjust.under_represented +category over_represented_pvalue under_represented_pvalue numDEInCat numInCat term ontology p_adjust_over_represented p_adjust_under_represented GO:0000278 0.0129827306163772 0.999244816412166 4 5 mitotic cell cycle BP 0.0259654612327543 0.999244816412166 GO:0000003 1 0.761 0 1 reproduction BP 1 0.999244816412166
--- a/test-data/samp.tab Fri Sep 06 07:50:46 2019 -0400 +++ b/test-data/samp.tab Sun Jun 06 22:47:36 2021 +0000 @@ -1,3 +1,3 @@ -category over_represented_pvalue under_represented_pvalue numDEInCat numInCat term ontology p.adjust.over_represented p.adjust.under_represented +category over_represented_pvalue under_represented_pvalue numDEInCat numInCat term ontology p_adjust_over_represented p_adjust_under_represented GO:0000278 0.016983016983017 1 4 5 mitotic cell cycle BP 0.033966033966034 1 GO:0000003 1 0.802197802197802 0 1 reproduction BP 1 1