Mercurial > repos > iuc > limma_voom
view limma_voom.R @ 14:3133e833b3ce draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/limma_voom commit c915bd7e68cb3a2944397aaf184c2b1db97cb3a5
author | iuc |
---|---|
date | Fri, 04 Jan 2019 04:11:56 -0500 |
parents | d5a940112511 |
children | 5d903d528193 |
line wrap: on
line source
# This tool takes in a matrix of feature counts as well as gene annotations and # outputs a table of top expressions as well as various plots for differential # expression analysis # # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs # outPath", "o", 1, "character" -Path to folder to write all output to # filesPath", "j", 2, "character" -JSON list object if multiple files input # matrixPath", "m", 2, "character" -Path to count matrix # factFile", "f", 2, "character" -Path to factor information file # factInput", "i", 2, "character" -String containing factors if manually input # annoPath", "a", 2, "character" -Path to input containing gene annotations # contrastData", "C", 1, "character" -String containing contrasts of interest # cpmReq", "c", 2, "double" -Float specifying cpm requirement # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output # rdaOpt", "r", 0, "logical" -String specifying if RData should be output # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement # pValReq", "p", 1, "double" -Float specifying the p-value requirement # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method # normOpt", "n", 1, "character" -String specifying type of normalisation used # robOpt", "b", 0, "logical" -String specifying if robust options should be used # trend", "t", 1, "double" -Float for prior.count if limma-trend is used instead of voom # weightOpt", "w", 0, "logical" -String specifying if voomWithQualityWeights should be used # topgenes", "G", 1, "integer" -Integer specifying no. of genes to highlight in volcano and heatmap # treatOpt", "T", 0, "logical" -String specifying if TREAT function should be used # plots, "P", 1, "character" -String specifying additional plots to be created # # OUT: # Density Plots (if filtering) # Box Plots (if normalising) # MDS Plot # Voom/SA plot # MD Plot # Volcano Plot # Heatmap # Expression Table # HTML file linking to the ouputs # Optional: # Normalised counts Table # RData file # # # Author: Shian Su - registertonysu@gmail.com - Jan 2014 # Modified by: Maria Doyle - Jun 2017, Jan 2018, May 2018 # Record starting time timeStart <- as.character(Sys.time()) # Load all required libraries library(methods, quietly=TRUE, warn.conflicts=FALSE) library(statmod, quietly=TRUE, warn.conflicts=FALSE) library(splines, quietly=TRUE, warn.conflicts=FALSE) library(edgeR, quietly=TRUE, warn.conflicts=FALSE) library(limma, quietly=TRUE, warn.conflicts=FALSE) library(scales, quietly=TRUE, warn.conflicts=FALSE) library(getopt, quietly=TRUE, warn.conflicts=FALSE) library(gplots, quietly=TRUE, warn.conflicts=FALSE) ################################################################################ ### Function Declaration ################################################################################ # Function to sanitise contrast equations so there are no whitespaces # surrounding the arithmetic operators, leading or trailing whitespace sanitiseEquation <- function(equation) { equation <- gsub(" *[+] *", "+", equation) equation <- gsub(" *[-] *", "-", equation) equation <- gsub(" *[/] *", "/", equation) equation <- gsub(" *[*] *", "*", equation) equation <- gsub("^\\s+|\\s+$", "", equation) return(equation) } # Function to sanitise group information sanitiseGroups <- function(string) { string <- gsub(" *[,] *", ",", string) string <- gsub("^\\s+|\\s+$", "", string) return(string) } # Function to change periods to whitespace in a string unmake.names <- function(string) { string <- gsub(".", " ", string, fixed=TRUE) return(string) } # Generate output folder and paths makeOut <- function(filename) { return(paste0(opt$outPath, "/", filename)) } # Generating design information pasteListName <- function(string) { return(paste0("factors$", string)) } # Create cata function: default path set, default seperator empty and appending # true by default (Ripped straight from the cat function with altered argument # defaults) cata <- function(..., file = opt$htmlPath, sep = "", fill = FALSE, labels = NULL, append = TRUE) { if (is.character(file)) if (file == "") file <- stdout() else if (substring(file, 1L, 1L) == "|") { file <- pipe(substring(file, 2L), "w") on.exit(close(file)) } else { file <- file(file, ifelse(append, "a", "w")) on.exit(close(file)) } .Internal(cat(list(...), file, sep, fill, labels, append)) } # Function to write code for html head and title HtmlHead <- function(title) { cata("<head>\n") cata("<title>", title, "</title>\n") cata("</head>\n") } # Function to write code for html links HtmlLink <- function(address, label=address) { cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") } # Function to write code for html images HtmlImage <- function(source, label=source, height=500, width=500) { cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) cata("\" width=\"", width, "\"/>\n") } # Function to write code for html list items ListItem <- function(...) { cata("<li>", ..., "</li>\n") } TableItem <- function(...) { cata("<td>", ..., "</td>\n") } TableHeadItem <- function(...) { cata("<th>", ..., "</th>\n") } ################################################################################ ### Input Processing ################################################################################ # Collect arguments from command line args <- commandArgs(trailingOnly=TRUE) # Get options, using the spec as defined by the enclosed list. # Read the options from the default: commandArgs(TRUE). spec <- matrix(c( "htmlPath", "R", 1, "character", "outPath", "o", 1, "character", "filesPath", "j", 2, "character", "matrixPath", "m", 2, "character", "factFile", "f", 2, "character", "factInput", "i", 2, "character", "annoPath", "a", 2, "character", "contrastData", "C", 1, "character", "cpmReq", "c", 1, "double", "totReq", "y", 0, "logical", "cntReq", "z", 1, "integer", "sampleReq", "s", 1, "integer", "filtCounts", "F", 0, "logical", "normCounts", "x", 0, "logical", "rdaOpt", "r", 0, "logical", "lfcReq", "l", 1, "double", "pValReq", "p", 1, "double", "pAdjOpt", "d", 1, "character", "normOpt", "n", 1, "character", "robOpt", "b", 0, "logical", "trend", "t", 1, "double", "weightOpt", "w", 0, "logical", "topgenes", "G", 1, "integer", "treatOpt", "T", 0, "logical", "plots", "P", 1, "character", "libinfoOpt", "L", 0, "logical"), byrow=TRUE, ncol=4) opt <- getopt(spec) if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { cat("A counts matrix (or a set of counts files) is required.\n") q(status=1) } if (is.null(opt$cpmReq)) { filtCPM <- FALSE } else { filtCPM <- TRUE } if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { filtSmpCount <- FALSE } else { filtSmpCount <- TRUE } if (is.null(opt$totReq)) { filtTotCount <- FALSE } else { filtTotCount <- TRUE } if (is.null(opt$rdaOpt)) { wantRda <- FALSE } else { wantRda <- TRUE } if (is.null(opt$annoPath)) { haveAnno <- FALSE } else { haveAnno <- TRUE } if (is.null(opt$filtCounts)) { wantFilt <- FALSE } else { wantFilt <- TRUE } if (is.null(opt$normCounts)) { wantNorm <- FALSE } else { wantNorm <- TRUE } if (is.null(opt$robOpt)) { wantRobust <- FALSE } else { wantRobust <- TRUE } if (is.null(opt$weightOpt)) { wantWeight <- FALSE } else { wantWeight <- TRUE } if (is.null(opt$trend)) { wantTrend <- FALSE deMethod <- "limma-voom" } else { wantTrend <- TRUE deMethod <- "limma-trend" priorCount <- opt$trend } if (is.null(opt$treatOpt)) { wantTreat <- FALSE } else { wantTreat <- TRUE } if (is.null(opt$libinfoOpt)) { wantLibinfo <- FALSE } else { wantLibinfo <- TRUE } if (!is.null(opt$filesPath)) { # Process the separate count files (adapted from DESeq2 wrapper) library("rjson") parser <- newJSONParser() parser$addData(opt$filesPath) factorList <- parser$getObject() factors <- sapply(factorList, function(x) x[[1]]) filenamesIn <- unname(unlist(factorList[[1]][[2]])) sampleTable <- data.frame(sample=basename(filenamesIn), filename=filenamesIn, row.names=filenamesIn, stringsAsFactors=FALSE) for (factor in factorList) { factorName <- factor[[1]] sampleTable[[factorName]] <- character(nrow(sampleTable)) lvls <- sapply(factor[[2]], function(x) names(x)) for (i in seq_along(factor[[2]])) { files <- factor[[2]][[i]][[1]] sampleTable[files,factorName] <- lvls[i] } sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) } rownames(sampleTable) <- sampleTable$sample rem <- c("sample","filename") factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] #read in count files and create single table countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) counts <- do.call("cbind", countfiles) } else { # Process the single count matrix counts <- read.table(opt$matrixPath, header=TRUE, sep="\t", strip.white=TRUE, stringsAsFactors=FALSE) row.names(counts) <- counts[, 1] counts <- counts[ , -1] countsRows <- nrow(counts) # Process factors if (is.null(opt$factInput)) { factorData <- read.table(opt$factFile, header=TRUE, sep="\t", strip.white=TRUE) # order samples as in counts matrix factorData <- factorData[match(colnames(counts), factorData[, 1]), ] factors <- factorData[, -1, drop=FALSE] } else { factors <- unlist(strsplit(opt$factInput, "|", fixed=TRUE)) factorData <- list() for (fact in factors) { newFact <- unlist(strsplit(fact, split="::")) factorData <- rbind(factorData, newFact) } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. # Set the row names to be the name of the factor and delete first row row.names(factorData) <- factorData[, 1] factorData <- factorData[, -1] factorData <- sapply(factorData, sanitiseGroups) factorData <- sapply(factorData, strsplit, split=",") factorData <- sapply(factorData, make.names) # Transform factor data into data frame of R factor objects factors <- data.frame(factorData) } } # if annotation file provided if (haveAnno) { geneanno <- read.table(opt$annoPath, header=TRUE, sep="\t", quote= "", strip.white=TRUE, stringsAsFactors=FALSE) } #Create output directory dir.create(opt$outPath, showWarnings=FALSE) # Split up contrasts seperated by comma into a vector then sanitise contrastData <- unlist(strsplit(opt$contrastData, split=",")) contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) plots <- character() if (!is.null(opt$plots)) { plots <- unlist(strsplit(opt$plots, split=",")) } denOutPng <- makeOut("densityplots.png") denOutPdf <- makeOut("densityplots.pdf") cpmOutPdf <- makeOut("cpmplots.pdf") boxOutPng <- makeOut("boxplots.png") boxOutPdf <- makeOut("boxplots.pdf") mdsscreeOutPng <- makeOut("mdsscree.png") mdsscreeOutPdf <- makeOut("mdsscree.pdf") mdsxOutPdf <- makeOut("mdsplot_extra.pdf") mdsxOutPng <- makeOut("mdsplot_extra.png") mdsamOutPdf <- makeOut("mdplots_samples.pdf") mdOutPdf <- character() # Initialise character vector volOutPdf <- character() heatOutPdf <- character() stripOutPdf <- character() mdvolOutPng <- character() topOut <- character() glimmaOut <- character() for (i in 1:length(contrastData)) { con <- contrastData[i] con <- gsub("\\(|\\)", "", con) mdOutPdf[i] <- makeOut(paste0("mdplot_", con, ".pdf")) volOutPdf[i] <- makeOut(paste0("volplot_", con, ".pdf")) heatOutPdf[i] <- makeOut(paste0("heatmap_", con, ".pdf")) stripOutPdf[i] <- makeOut(paste0("stripcharts_", con, ".pdf")) mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", con, ".png")) topOut[i] <- makeOut(paste0(deMethod, "_", con, ".tsv")) glimmaOut[i] <- makeOut(paste0("glimma_", con, "/MD-Plot.html")) } filtOut <- makeOut(paste0(deMethod, "_", "filtcounts")) normOut <- makeOut(paste0(deMethod, "_", "normcounts")) rdaOut <- makeOut(paste0(deMethod, "_analysis.RData")) sessionOut <- makeOut("session_info.txt") # Initialise data for html links and images, data frame with columns Label and # Link linkData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) imageData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) # Initialise vectors for storage of up/down/neutral regulated counts upCount <- numeric() downCount <- numeric() flatCount <- numeric() ################################################################################ ### Data Processing ################################################################################ # Extract counts and annotation data print("Extracting counts") data <- list() data$counts <- counts if (haveAnno) { # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) annoord <- geneanno[match(row.names(counts), geneanno[,1]), ] data$genes <- annoord } else { data$genes <- data.frame(GeneID=row.names(counts)) } # Creating naming data samplenames <- colnames(data$counts) sampleanno <- data.frame("sampleID"=samplenames, factors) # Creating colours for the groups cols <- as.numeric(factors[, 1]) col.group <- palette()[cols] # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of # samples. Default is no filtering preFilterCount <- nrow(data$counts) nsamples <- ncol(data$counts) if (filtCPM || filtSmpCount || filtTotCount) { if (filtTotCount) { keep <- rowSums(data$counts) >= opt$cntReq } else if (filtSmpCount) { keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq } else if (filtCPM) { myCPM <- cpm(data$counts) thresh <- myCPM >= opt$cpmReq keep <- rowSums(thresh) >= opt$sampleReq if ("c" %in% plots) { # Plot CPM vs raw counts (to check threshold) pdf(cpmOutPdf, width=6.5, height=10) par(mfrow=c(3, 2)) for (i in 1:nsamples) { plot(data$counts[, i], myCPM[, i], xlim=c(0,50), ylim=c(0,3), main=samplenames[i], xlab="Raw counts", ylab="CPM") abline(v=10, col="red", lty=2, lwd=2) abline(h=opt$cpmReq, col=4) } linkName <- "CpmPlots.pdf" linkAddr <- "cpmplots.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } } data$counts <- data$counts[keep, ] data$genes <- data$genes[keep, , drop=FALSE] if (wantFilt) { print("Outputting filtered counts") filt_counts <- data.frame(data$genes, data$counts) write.table(filt_counts, file=filtOut, row.names=FALSE, sep="\t", quote=FALSE) linkData <- rbind(linkData, data.frame(Label=paste0(deMethod, "_", "filtcounts.tsv"), Link=paste0(deMethod, "_", "filtcounts"), stringsAsFactors=FALSE)) } # Plot Density if ("d" %in% plots) { # PNG png(denOutPng, width=1000, height=500) par(mfrow=c(1,2), cex.axis=0.8) # before filtering lcpm1 <- cpm(counts, log=TRUE) plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") title(main="Density Plot: Raw counts", xlab="Log-cpm") for (i in 2:nsamples){ den <- density(lcpm1[, i]) lines(den$x, den$y, col=col.group[i], lwd=2) } # after filtering lcpm2 <- cpm(data$counts, log=TRUE) plot(density(lcpm2[,1]), col=col.group[1], lwd=2, las=2, main="", xlab="") title(main="Density Plot: Filtered counts", xlab="Log-cpm") for (i in 2:nsamples){ den <- density(lcpm2[, i]) lines(den$x, den$y, col=col.group[i], lwd=2) } legend("topright", samplenames, text.col=col.group, bty="n") imgName <- "Densityplots.png" imgAddr <- "densityplots.png" imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) # PDF pdf(denOutPdf, width=14) par(mfrow=c(1,2), cex.axis=0.8) plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") title(main="Density Plot: Raw counts", xlab="Log-cpm") for (i in 2:nsamples){ den <- density(lcpm1[, i]) lines(den$x, den$y, col=col.group[i], lwd=2) } plot(density(lcpm2[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") title(main="Density Plot: Filtered counts", xlab="Log-cpm") for (i in 2:nsamples){ den <- density(lcpm2[, i]) lines(den$x, den$y, col=col.group[i], lwd=2) } legend("topright", samplenames, text.col=col.group, bty="n") linkName <- "DensityPlots.pdf" linkAddr <- "densityplots.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } } postFilterCount <- nrow(data$counts) filteredCount <- preFilterCount-postFilterCount # Generating the DGEList object "y" print("Generating DGEList object") data$samples <- sampleanno data$samples$lib.size <- colSums(data$counts) data$samples$norm.factors <- 1 row.names(data$samples) <- colnames(data$counts) y <- new("DGEList", data) print("Generating Design") # Name rows of factors according to their sample row.names(factors) <- names(data$counts) factorList <- sapply(names(factors), pasteListName) formula <- "~0" for (i in 1:length(factorList)) { formula <- paste(formula,factorList[i], sep="+") } formula <- formula(formula) design <- model.matrix(formula) for (i in 1:length(factorList)) { colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) } # Calculating normalising factors print("Calculating Normalisation Factors") logcounts <- y #store for plots y <- calcNormFactors(y, method=opt$normOpt) # Generate contrasts information print("Generating Contrasts") contrasts <- makeContrasts(contrasts=contrastData, levels=design) ################################################################################ ### Data Output ################################################################################ # Plot Box plots (before and after normalisation) if (opt$normOpt != "none" & "b" %in% plots) { png(boxOutPng, width=1000, height=500) par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) labels <- colnames(counts) lcpm1 <- cpm(y$counts, log=TRUE) boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") axis(1, at=seq_along(labels), labels = FALSE) abline(h=median(lcpm1), col=4) text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") lcpm2 <- cpm(y, log=TRUE) boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") axis(1, at=seq_along(labels), labels = FALSE) text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") imgName <- "Boxplots.png" imgAddr <- "boxplots.png" imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) pdf(boxOutPdf, width=14) par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") axis(1, at=seq_along(labels), labels = FALSE) abline(h=median(lcpm1), col=4) text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") axis(1, at=seq_along(labels), labels = FALSE) text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") linkName <- "BoxPlots.pdf" linkAddr <- "boxplots.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } # Plot MDS print("Generating MDS plot") labels <- names(counts) # Scree plot (Variance Explained) code copied from Glimma # get column of matrix getCols <- function(x, inds) { x[, inds, drop=FALSE] } x <- cpm(y, log=TRUE) ndim <- nsamples - 1 nprobes <- nrow(x) top <- 500 top <- min(top, nprobes) cn <- colnames(x) bad <- rowSums(is.finite(x)) < nsamples if (any(bad)) { warning("Rows containing infinite values have been removed") x <- x[!bad, , drop=FALSE] } dd <- matrix(0, nrow=nsamples, ncol=nsamples, dimnames=list(cn, cn)) topindex <- nprobes - top + 1L for (i in 2L:(nsamples)) { for (j in 1L:(i - 1L)) { dists <- (getCols(x, i) - getCols(x, j))^2 dists <- sort.int(dists, partial = topindex ) topdist <- dists[topindex:nprobes] dd[i, j] <- sqrt(mean(topdist)) } } a1 <- suppressWarnings(cmdscale(as.dist(dd), k=min(ndim, 8), eig=TRUE)) eigen <- data.frame(name = 1:min(ndim, 8), eigen = round(a1$eig[1:min(ndim, 8)]/sum(a1$eig), 2)) png(mdsscreeOutPng, width=1000, height=500) par(mfrow=c(1, 2)) plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) imgName <- paste0("MDSPlot_", names(factors)[1], ".png") imgAddr <- "mdsscree.png" imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) pdf(mdsscreeOutPdf, width=14) par(mfrow=c(1, 2)) plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) linkName <- paste0("MDSPlot_", names(factors)[1], ".pdf") linkAddr <- "mdsscree.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) # generate Glimma interactive MDS Plot if ("i" %in% plots) { Glimma::glMDSPlot(y, labels=samplenames, groups=factors[, 1], folder="glimma_MDS", launch=FALSE) linkName <- "Glimma_MDSPlot.html" linkAddr <- "glimma_MDS/MDS-Plot.html" linkData <- rbind(linkData, c(linkName, linkAddr)) } if ("x" %in% plots) { png(mdsxOutPng, width=1000, height=500) par(mfrow=c(1, 2)) for (i in 2:3) { dim1 <- i dim2 <- i + 1 plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) } imgName <- paste0("MDSPlot_extra.png") imgAddr <- paste0("mdsplot_extra.png") imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) pdf(mdsxOutPdf, width=14) par(mfrow=c(1, 2)) for (i in 2:3) { dim1 <- i dim2 <- i + 1 plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) } linkName <- "MDSPlot_extra.pdf" linkAddr <- "mdsplot_extra.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } if ("m" %in% plots) { # Plot MD plots for individual samples print("Generating MD plots for samples") pdf(mdsamOutPdf, width=6.5, height=10) par(mfrow=c(3, 2)) for (i in 1:nsamples) { if (opt$normOpt != "none") { plotMD(logcounts, column=i, main=paste(colnames(logcounts)[i], "(before)")) abline(h=0, col="red", lty=2, lwd=2) } plotMD(y, column=i) abline(h=0, col="red", lty=2, lwd=2) } linkName <- "MDPlots_Samples.pdf" linkAddr <- "mdplots_samples.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) } if (wantTrend) { # limma-trend approach logCPM <- cpm(y, log=TRUE, prior.count=opt$trend) fit <- lmFit(logCPM, design) fit$genes <- y$genes fit <- contrasts.fit(fit, contrasts) if (wantRobust) { fit <- eBayes(fit, trend=TRUE, robust=TRUE) } else { fit <- eBayes(fit, trend=TRUE, robust=FALSE) } plotData <- logCPM # Save normalised counts (log2cpm) if (wantNorm) { write.table(logCPM, file=normOut, row.names=TRUE, sep="\t", quote=FALSE) linkData <- rbind(linkData, c((paste0(deMethod, "_", "normcounts.tsv")), (paste0(deMethod, "_", "normcounts")))) } } else { # limma-voom approach if (wantWeight) { voomWtsOutPdf <- makeOut("voomwtsplot.pdf") voomWtsOutPng <- makeOut("voomwtsplot.png") # Creating voom data object and plot png(voomWtsOutPng, width=1000, height=500) vData <- voomWithQualityWeights(y, design=design, plot=TRUE) imgName <- "VoomWithQualityWeightsPlot.png" imgAddr <- "voomwtsplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(voomWtsOutPdf, width=14) vData <- voomWithQualityWeights(y, design=design, plot=TRUE) linkName <- "VoomWithQualityWeightsPlot.pdf" linkAddr <- "voomwtsplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # Generating fit data and top table with weights wts <- vData$weights voomFit <- lmFit(vData, design, weights=wts) } else { voomOutPdf <- makeOut("voomplot.pdf") voomOutPng <- makeOut("voomplot.png") # Creating voom data object and plot png(voomOutPng, width=500, height=500) vData <- voom(y, design=design, plot=TRUE) imgName <- "VoomPlot" imgAddr <- "voomplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(voomOutPdf) vData <- voom(y, design=design, plot=TRUE) linkName <- "VoomPlot.pdf" linkAddr <- "voomplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # Generate voom fit voomFit <- lmFit(vData, design) } # Save normalised counts (log2cpm) if (wantNorm) { norm_counts <- data.frame(vData$genes, vData$E) write.table(norm_counts, file=normOut, row.names=FALSE, sep="\t", quote=FALSE) linkData <- rbind(linkData, c((paste0(deMethod, "_", "normcounts.tsv")), (paste0(deMethod, "_", "normcounts")))) } # Fit linear model and estimate dispersion with eBayes voomFit <- contrasts.fit(voomFit, contrasts) if (wantRobust) { fit <- eBayes(voomFit, robust=TRUE) } else { fit <- eBayes(voomFit, robust=FALSE) } plotData <- vData } # plot final model mean-variance trend with plotSA saOutPng <- makeOut("saplot.png") saOutPdf <- makeOut("saplot.pdf") png(saOutPng, width=500, height=500) plotSA(fit, main="Final model: Mean-variance trend (SA Plot)") imgName <- "SAPlot.png" imgAddr <- "saplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(saOutPdf) plotSA(fit, main="Final model: Mean-variance trend (SA Plot)") linkName <- "SAPlot.pdf" linkAddr <- "saplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # Save library size info if (wantLibinfo) { efflibsize <- round(y$samples$lib.size * y$samples$norm.factors) libsizeinfo <- cbind(y$samples, EffectiveLibrarySize=efflibsize) libsizeinfo$lib.size <- round(libsizeinfo$lib.size) names(libsizeinfo)[names(libsizeinfo)=="sampleID"] <- "SampleID" names(libsizeinfo)[names(libsizeinfo)=="lib.size"] <- "LibrarySize" names(libsizeinfo)[names(libsizeinfo)=="norm.factors"] <- "NormalisationFactor" write.table(libsizeinfo, file="libsizeinfo", row.names=FALSE, sep="\t", quote=FALSE) } print("Generating DE results") if (wantTreat) { print("Applying TREAT method") if (wantRobust) { fit <- treat(fit, lfc=opt$lfcReq, robust=TRUE) } else { fit <- treat(fit, lfc=opt$lfcReq, robust=FALSE) } } status = decideTests(fit, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, lfc=opt$lfcReq) sumStatus <- summary(status) for (i in 1:length(contrastData)) { con <- contrastData[i] con <- gsub("\\(|\\)", "", con) # Collect counts for differential expression upCount[i] <- sumStatus["Up", i] downCount[i] <- sumStatus["Down", i] flatCount[i] <- sumStatus["NotSig", i] # Write top expressions table if (wantTreat) { top <- topTreat(fit, coef=i, number=Inf, sort.by="P") } else{ top <- topTable(fit, coef=i, number=Inf, sort.by="P") } write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) linkName <- paste0(deMethod, "_", con, ".tsv") linkAddr <- paste0(deMethod, "_", con, ".tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) # Plot MD (log ratios vs mean average) using limma package on weighted pdf(mdOutPdf[i]) limma::plotMD(fit, status=status[, i], coef=i, main=paste("MD Plot:", unmake.names(con)), hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) linkName <- paste0("MDPlot_", con, ".pdf") linkAddr <- paste0("mdplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # Generate Glimma interactive Volcano, MD plot and tables, requires annotation file (assumes gene labels/symbols in 2nd column) if ("i" %in% plots & haveAnno) { # make gene labels unique to handle NAs geneanno <- y$genes geneanno[, 2] <- make.unique(geneanno[, 2]) # MD plot Glimma::glMDPlot(fit, coef=i, counts=y$counts, anno=geneanno, groups=factors[, 1], status=status[, i], sample.cols=col.group, main=paste("MD Plot:", unmake.names(con)), side.main=colnames(y$genes)[2], folder=paste0("glimma_", unmake.names(con)), launch=FALSE) linkName <- paste0("Glimma_MDPlot_", con, ".html") linkAddr <- paste0("glimma_", con, "/MD-Plot.html") linkData <- rbind(linkData, c(linkName, linkAddr)) # Volcano plot Glimma::glXYPlot(x=fit$coefficients[, i], y=fit$lods[, i], counts=y$counts, anno=geneanno, groups=factors[, 1], status=status[, i], sample.cols=col.group, main=paste("Volcano Plot:", unmake.names(con)), side.main=colnames(y$genes)[2], xlab="logFC", ylab="logodds", folder=paste0("glimma_volcano_", unmake.names(con)), launch=FALSE) linkName <- paste0("Glimma_VolcanoPlot_", con, ".html") linkAddr <- paste0("glimma_volcano_", con, "/XY-Plot.html") linkData <- rbind(linkData, c(linkName, linkAddr)) } # Plot Volcano pdf(volOutPdf[i]) if (haveAnno) { # labels must be in second column currently labels <- fit$genes[, 2] } else { labels <- fit$genes$GeneID } limma::volcanoplot(fit, coef=i, main=paste("Volcano Plot:", unmake.names(con)), highlight=opt$topgenes, names=labels) linkName <- paste0("VolcanoPlot_", con, ".pdf") linkAddr <- paste0("volplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # PNG of MD and Volcano png(mdvolOutPng[i], width=1000, height=500) par(mfrow=c(1, 2), mar=c(5,4,2,2)+0.1, oma=c(0,0,3,0)) # MD plot limma::plotMD(fit, status=status[, i], coef=i, main="MD Plot", hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) # Volcano if (haveAnno) { # labels must be in second column currently limma::volcanoplot(fit, coef=i, main="Volcano Plot", highlight=opt$topgenes, names=fit$genes[, 2]) } else { limma::volcanoplot(fit, coef=i, main="Volcano Plot", highlight=opt$topgenes, names=fit$genes$GeneID) } imgName <- paste0("MDVolPlot_", con) imgAddr <- paste0("mdvolplot_", con, ".png") imageData <- rbind(imageData, c(imgName, imgAddr)) title(paste0("Contrast: ", unmake.names(con)), outer=TRUE, cex.main=1.5) invisible(dev.off()) if ("h" %in% plots) { # Plot Heatmap topgenes <- rownames(top[1:opt$topgenes, ]) if (wantTrend) { topexp <- plotData[topgenes, ] } else { topexp <- plotData$E[topgenes, ] } pdf(heatOutPdf[i]) mycol <- colorpanel(1000,"blue","white","red") if (haveAnno) { # labels must be in second column currently labels <- top[topgenes, 2] } else { labels <- rownames(topexp) } heatmap.2(topexp, scale="row", Colv=FALSE, Rowv=FALSE, dendrogram="none", main=paste("Contrast:", unmake.names(con), "\nTop", opt$topgenes, "genes by adj.P.Val"), trace="none", density.info="none", lhei=c(2,10), margin=c(8, 6), labRow=labels, cexRow=0.7, srtCol=45, col=mycol, ColSideColors=col.group) linkName <- paste0("Heatmap_", con, ".pdf") linkAddr <- paste0("heatmap_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) } if ("s" %in% plots) { # Plot Stripcharts of top genes pdf(stripOutPdf[i], title=paste("Contrast:", unmake.names(con))) par(mfrow = c(3,2), cex.main=0.8, cex.axis=0.8) cols <- unique(col.group) for (j in 1:length(topgenes)) { lfc <- round(top[topgenes[j], "logFC"], 2) pval <- round(top[topgenes[j], "adj.P.Val"], 5) if (wantTrend) { stripchart(plotData[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) } else { stripchart(plotData$E[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) } } linkName <- paste0("Stripcharts_", con, ".pdf") linkAddr <- paste0("stripcharts_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) } } sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) row.names(sigDiff) <- contrastData # Save relevant items as rda object if (wantRda) { print("Saving RData") if (wantWeight) { save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } else { save(counts, data, y, status, plotData, labels, factors, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } linkData <- rbind(linkData, c((paste0(deMethod, "_analysis.RData")), (paste0(deMethod, "_analysis.RData")))) } # Record session info writeLines(capture.output(sessionInfo()), sessionOut) linkData <- rbind(linkData, c("Session Info", "session_info.txt")) # Record ending time and calculate total run time timeEnd <- as.character(Sys.time()) timeTaken <- capture.output(round(difftime(timeEnd,timeStart), digits=3)) timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) ################################################################################ ### HTML Generation ################################################################################ # Clear file cat("", file=opt$htmlPath) cata("<html>\n") cata("<body>\n") cata("<h3>Limma Analysis Output:</h3>\n") cata("Links to PDF copies of plots are in 'Plots' section below <br />\n") for (i in 1:nrow(imageData)) { if (grepl("density|box|mds|mdvol|wts", imageData$Link[i])) { HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) } else { HtmlImage(imageData$Link[i], imageData$Label[i]) } } cata("<h4>Differential Expression Counts:</h4>\n") cata("<table border=\"1\" cellpadding=\"4\">\n") cata("<tr>\n") TableItem() for (i in colnames(sigDiff)) { TableHeadItem(i) } cata("</tr>\n") for (i in 1:nrow(sigDiff)) { cata("<tr>\n") TableHeadItem(unmake.names(row.names(sigDiff)[i])) for (j in 1:ncol(sigDiff)) { TableItem(as.character(sigDiff[i, j])) } cata("</tr>\n") } cata("</table>") cata("<h4>Plots:</h4>\n") #PDFs for (i in 1:nrow(linkData)) { if (grepl("density|cpm|boxplot|mds|mdplots|voom|saplot", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } for (i in 1:nrow(linkData)) { if (grepl("mdplot_", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } for (i in 1:nrow(linkData)) { if (grepl("volplot", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } for (i in 1:nrow(linkData)) { if (grepl("heatmap", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } for (i in 1:nrow(linkData)) { if (grepl("stripcharts", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } cata("<h4>Tables:</h4>\n") for (i in 1:nrow(linkData)) { if (grepl("counts$", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } else if (grepl(".tsv", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } if (wantRda) { cata("<h4>R Data Object:</h4>\n") for (i in 1:nrow(linkData)) { if (grepl(".RData", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } } if ("i" %in% plots) { cata("<h4>Glimma Interactive Results:</h4>\n") for (i in 1:nrow(linkData)) { if (grepl("glimma", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } } cata("<p>Alt-click links to download file.</p>\n") cata("<p>Click floppy disc icon associated history item to download ") cata("all files.</p>\n") cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") cata("<h4>Additional Information</h4>\n") cata("<ul>\n") if (filtCPM || filtSmpCount || filtTotCount) { if (filtCPM) { tempStr <- paste("Genes without more than", opt$cpmReq, "CPM in at least", opt$sampleReq, "samples are insignificant", "and filtered out.") } else if (filtSmpCount) { tempStr <- paste("Genes without more than", opt$cntReq, "counts in at least", opt$sampleReq, "samples are insignificant", "and filtered out.") } else if (filtTotCount) { tempStr <- paste("Genes without more than", opt$cntReq, "counts, after summing counts for all samples, are insignificant", "and filtered out.") } ListItem(tempStr) filterProp <- round(filteredCount/preFilterCount*100, digits=2) tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, "%) genes were filtered out for low expression.") ListItem(tempStr) } ListItem(opt$normOpt, " was the method used to normalise library sizes.") if (wantTrend) { ListItem("The limma-trend method was used.") } else { ListItem("The limma-voom method was used.") } if (wantWeight) { ListItem("Weights were applied to samples.") } else { ListItem("Weights were not applied to samples.") } if (wantTreat) { ListItem(paste("Testing significance relative to a fold-change threshold (TREAT) was performed using a threshold of log2 =", opt$lfcReq, "at FDR of", opt$pValReq, ".")) } if (wantRobust) { if (wantTreat) { ListItem("TREAT was used with robust settings (robust=TRUE).") } else { ListItem("eBayes was used with robust settings (robust=TRUE).") } } if (opt$pAdjOpt!="none") { if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") { tempStr <- paste0("MD Plot highlighted genes are significant at FDR ", "of ", opt$pValReq," and exhibit log2-fold-change of at ", "least ", opt$lfcReq, ".") ListItem(tempStr) } else if (opt$pAdjOpt=="holm") { tempStr <- paste0("MD Plot highlighted genes are significant at adjusted ", "p-value of ", opt$pValReq," by the Holm(1979) ", "method, and exhibit log2-fold-change of at least ", opt$lfcReq, ".") ListItem(tempStr) } } else { tempStr <- paste0("MD Plot highlighted genes are significant at p-value ", "of ", opt$pValReq," and exhibit log2-fold-change of at ", "least ", opt$lfcReq, ".") ListItem(tempStr) } cata("</ul>\n") cata("<h4>Summary of experimental data:</h4>\n") cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") cata("<table border=\"1\" cellpadding=\"3\">\n") cata("<tr>\n") TableHeadItem("SampleID") TableHeadItem(names(factors)[1]," (Primary Factor)") if (ncol(factors) > 1) { for (i in names(factors)[2:length(names(factors))]) { TableHeadItem(i) } cata("</tr>\n") } for (i in 1:nrow(factors)) { cata("<tr>\n") TableHeadItem(row.names(factors)[i]) for (j in 1:ncol(factors)) { TableItem(as.character(unmake.names(factors[i, j]))) } cata("</tr>\n") } cata("</table>") cit <- character() link <- character() link[1] <- paste0("<a href=\"", "http://www.bioconductor.org/packages/release/bioc/", "vignettes/limma/inst/doc/usersguide.pdf", "\">", "limma User's Guide", "</a>.") link[2] <- paste0("<a href=\"", "http://www.bioconductor.org/packages/release/bioc/", "vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf", "\">", "edgeR User's Guide", "</a>") cit[1] <- paste("Please cite the following paper for this tool:") cit[2] <- paste("Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME,", "Asselin-Labat ML, Smyth GK, Ritchie ME (2015). Why weight? ", "Modelling sample and observational level variability improves power ", "in RNA-seq analyses. Nucleic Acids Research, 43(15), e97.") cit[3] <- paste("Please cite the paper below for the limma software itself.", "Please also try to cite the appropriate methodology articles", "that describe the statistical methods implemented in limma,", "depending on which limma functions you are using. The", "methodology articles are listed in Section 2.1 of the", link[1], "Cite no. 3 only if sample weights were used.") cit[4] <- paste("Smyth GK (2005). Limma: linear models for microarray data.", "In: 'Bioinformatics and Computational Biology Solutions using", "R and Bioconductor'. R. Gentleman, V. Carey, S. doit,.", "Irizarry, W. Huber (eds), Springer, New York, pages 397-420.") cit[5] <- paste("Please cite the first paper for the software itself and the", "other papers for the various original statistical methods", "implemented in edgeR. See Section 1.2 in the", link[2], "for more detail.") cit[6] <- paste("Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a", "Bioconductor package for differential expression analysis", "of digital gene expression data. Bioinformatics 26, 139-140") cit[7] <- paste("Robinson MD and Smyth GK (2007). Moderated statistical tests", "for assessing differences in tag abundance. Bioinformatics", "23, 2881-2887") cit[8] <- paste("Robinson MD and Smyth GK (2008). Small-sample estimation of", "negative binomial dispersion, with applications to SAGE data.", "Biostatistics, 9, 321-332") cit[9] <- paste("McCarthy DJ, Chen Y and Smyth GK (2012). Differential", "expression analysis of multifactor RNA-Seq experiments with", "respect to biological variation. Nucleic Acids Research 40,", "4288-4297") cit[10] <- paste("Law CW, Chen Y, Shi W, and Smyth GK (2014). Voom:", "precision weights unlock linear model analysis tools for", "RNA-seq read counts. Genome Biology 15, R29.") cit[11] <- paste("Ritchie ME, Diyagama D, Neilson J, van Laar R,", "Dobrovic A, Holloway A and Smyth GK (2006).", "Empirical array quality weights for microarray data.", "BMC Bioinformatics 7, Article 261.") cata("<h3>Citations</h3>\n") cata(cit[1], "\n") cata("<br>\n") cata(cit[2], "\n") cata("<h4>limma</h4>\n") cata(cit[3], "\n") cata("<ol>\n") ListItem(cit[4]) ListItem(cit[10]) ListItem(cit[11]) cata("</ol>\n") cata("<h4>edgeR</h4>\n") cata(cit[5], "\n") cata("<ol>\n") ListItem(cit[6]) ListItem(cit[7]) ListItem(cit[8]) ListItem(cit[9]) cata("</ol>\n") cata("<p>Please report problems or suggestions to: su.s@wehi.edu.au</p>\n") for (i in 1:nrow(linkData)) { if (grepl("session_info", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } cata("<table border=\"0\">\n") cata("<tr>\n") TableItem("Task started at:"); TableItem(timeStart) cata("</tr>\n") cata("<tr>\n") TableItem("Task ended at:"); TableItem(timeEnd) cata("</tr>\n") cata("<tr>\n") TableItem("Task run time:"); TableItem(timeTaken) cata("<tr>\n") cata("</table>\n") cata("</body>\n") cata("</html>")