# HG changeset patch # User iuc # Date 1526366196 14400 # Node ID 00a42b66e522d95a7b2dc41a17073bc89fb29561 # Parent e6a4ff41af6b9ab029d7ea00dece56e04b26fd33 planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/limma_voom commit 48125e8638453668f889a67791421f14d3ebe623 diff -r e6a4ff41af6b -r 00a42b66e522 limma_voom.R --- a/limma_voom.R Wed May 09 13:27:14 2018 -0400 +++ b/limma_voom.R Tue May 15 02:36:36 2018 -0400 @@ -23,7 +23,8 @@ # trend", "t", 1, "double" -Float for prior.count if limma-trend is used instead of voom # weightOpt", "w", 0, "logical" -String specifying if voomWithQualityWeights should be used # topgenes", "G", 1, "integer" -Integer specifying no. of genes to highlight in volcano and heatmap -# treatOpt", "T", 0, "logical" -String specifying if TREAT function shuld be used +# treatOpt", "T", 0, "logical" -String specifying if TREAT function should be used +# plots, "P", 1, "character" -String specifying additional plots to be created # # OUT: # Density Plots (if filtering) @@ -125,7 +126,7 @@ } # Function to write code for html images -HtmlImage <- function(source, label=source, height=600, width=600) { +HtmlImage <- function(source, label=source, height=500, width=500) { cata("\"",\n") } @@ -175,7 +176,8 @@ "trend", "t", 1, "double", "weightOpt", "w", 0, "logical", "topgenes", "G", 1, "integer", - "treatOpt", "T", 0, "logical"), + "treatOpt", "T", 0, "logical", + "plots", "P", 1, "character"), byrow=TRUE, ncol=4) opt <- getopt(spec) @@ -322,28 +324,36 @@ contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) -denOutPng <- makeOut("densityplots.png") -denOutPdf <- makeOut("DensityPlots.pdf") -boxOutPng <- makeOut("boxplots.png") -boxOutPdf <- makeOut("BoxPlots.pdf") -mdsOutPdf <- character() # Initialise character vector -mdsOutPng <- character() -for (i in 1:ncol(factors)) { - mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) - mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) +plots <- character() +if (!is.null(opt$plots)) { + plots <- unlist(strsplit(opt$plots, split=",")) } -mdOutPdf <- character() +denOutPng <- makeOut("densityplots.png") +denOutPdf <- makeOut("densityplots.pdf") +cpmOutPdf <- makeOut("cpmplots.pdf") +boxOutPng <- makeOut("boxplots.png") +boxOutPdf <- makeOut("boxplots.pdf") +mdsscreeOutPng <- makeOut("mdsscree.png") +mdsscreeOutPdf <- makeOut("mdsscree.pdf") +mdsxOutPdf <- makeOut("mdsplot_extra.pdf") +mdsxOutPng <- makeOut("mdsplot_extra.png") +mdsamOutPdf <- makeOut("mdplots_samples.pdf") +mdOutPdf <- character() # Initialise character vector volOutPdf <- character() heatOutPdf <- character() +stripOutPdf <- character() mdvolOutPng <- character() topOut <- character() for (i in 1:length(contrastData)) { - mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) - volOutPdf[i] <- makeOut(paste0("volplot_", contrastData[i], ".pdf")) - heatOutPdf[i] <- makeOut(paste0("heatmap_", contrastData[i], ".pdf")) - mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", contrastData[i], ".png")) - topOut[i] <- makeOut(paste0(deMethod, "_", contrastData[i], ".tsv")) + con <- contrastData[i] + con <- gsub("\\(|\\)", "", con) + mdOutPdf[i] <- makeOut(paste0("mdplot_", con, ".pdf")) + volOutPdf[i] <- makeOut(paste0("volplot_", con, ".pdf")) + heatOutPdf[i] <- makeOut(paste0("heatmap_", con, ".pdf")) + stripOutPdf[i] <- makeOut(paste0("stripcharts_", con, ".pdf")) + mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", con, ".png")) + topOut[i] <- makeOut(paste0(deMethod, "_", con, ".tsv")) } normOut <- makeOut(paste0(deMethod, "_normcounts.tsv")) @@ -378,9 +388,18 @@ data$genes <- data.frame(GeneID=row.names(counts)) } +# Creating naming data +samplenames <- colnames(data$counts) +sampleanno <- data.frame("sampleID"=samplenames, factors) + +# Creating colours for the groups +cols <- as.numeric(factors[, 1]) +col.group <- palette()[cols] + # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of # samples. Default is no filtering preFilterCount <- nrow(data$counts) +nsamples <- ncol(data$counts) if (filtCPM || filtSmpCount || filtTotCount) { @@ -389,21 +408,84 @@ } else if (filtSmpCount) { keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq } else if (filtCPM) { - keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq + myCPM <- cpm(data$counts) + thresh <- myCPM >= opt$cpmReq + keep <- rowSums(thresh) >= opt$sampleReq + + if ("c" %in% plots) { + # Plot CPM vs raw counts (to check threshold) + pdf(cpmOutPdf, width=6.5, height=10) + par(mfrow=c(3, 2)) + for (i in 1:nsamples) { + plot(data$counts[, i], myCPM[, i], xlim=c(0,50), ylim=c(0,3), main=samplenames[i], xlab="Raw counts", ylab="CPM") + abline(v=10, col="red", lty=2, lwd=2) + abline(h=opt$cpmReq, col=4) + } + linkName <- "CpmPlots.pdf" + linkAddr <- "cpmplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + } } data$counts <- data$counts[keep, ] data$genes <- data$genes[keep, , drop=FALSE] + + # Plot Density + if ("d" %in% plots) { + # PNG + png(denOutPng, width=1000, height=500) + par(mfrow=c(1,2), cex.axis=0.8) + + # before filtering + lcpm1 <- cpm(counts, log=TRUE) + plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm1[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + + # after filtering + lcpm2 <- cpm(data$counts, log=TRUE) + plot(density(lcpm2[,1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm2[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + legend("topright", samplenames, text.col=col.group, bty="n") + imgName <- "Densityplots.png" + imgAddr <- "densityplots.png" + imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + + # PDF + pdf(denOutPdf, width=14) + par(mfrow=c(1,2), cex.axis=0.8) + plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm1[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + plot(density(lcpm2[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm2[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + legend("topright", samplenames, text.col=col.group, bty="n") + linkName <- "DensityPlots.pdf" + linkAddr <- "densityplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + } } postFilterCount <- nrow(data$counts) filteredCount <- preFilterCount-postFilterCount -# Creating naming data -samplenames <- colnames(data$counts) -sampleanno <- data.frame("sampleID"=samplenames, factors) - - # Generating the DGEList object "y" print("Generating DGEList object") data$samples <- sampleanno @@ -438,87 +520,42 @@ ### Data Output ################################################################################ -# Plot Density (if filtering low counts) -if (filtCPM || filtSmpCount || filtTotCount) { - nsamples <- ncol(counts) - - # PNG - png(denOutPng, width=1200, height=600) - par(mfrow=c(1,2), cex.axis=0.8) - - # before filtering - logcpm <- cpm(counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Raw counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - - # after filtering - logcpm <- cpm(data$counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Filtered counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") - imgName <- "Densityplots.png" - imgAddr <- "densityplots.png" - imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) - invisible(dev.off()) +# Plot Box plots (before and after normalisation) +if (opt$normOpt != "none" & "b" %in% plots) { + png(boxOutPng, width=1000, height=500) + par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) + labels <- colnames(counts) - # PDF - pdf(denOutPdf, width=14) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Raw counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - logcpm <- cpm(data$counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Filtered counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") - linkName <- "DensityPlots.pdf" - linkAddr <- "densityplots.pdf" - linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) - invisible(dev.off()) -} + lcpm1 <- cpm(y$counts, log=TRUE) + boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + abline(h=median(lcpm1), col=4) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") -# Plot Box plots (before and after normalisation) -if (opt$normOpt != "none") { - png(boxOutPng, width=1200, height=600) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(y$counts, log=TRUE) - boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(logcpm), col=4) - title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") - lcpm <- cpm(y, log=TRUE) - boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(lcpm), col=4) + lcpm2 <- cpm(y, log=TRUE) + boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") + imgName <- "Boxplots.png" imgAddr <- "boxplots.png" imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) pdf(boxOutPdf, width=14) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(y$counts, log=TRUE) - boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(logcpm), col=4) + par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) + boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + abline(h=median(lcpm1), col=4) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") - lcpm <- cpm(y, log=TRUE) - boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(lcpm), col=4) + boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") linkName <- "BoxPlots.pdf" linkAddr <- "boxplots.pdf" @@ -530,22 +567,100 @@ print("Generating MDS plot") labels <- names(counts) -for (i in 1:ncol(factors)) { - png(mdsOutPng[i], width=600, height=600) - plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) - imgName <- paste0("MDSPlot_", names(factors)[i], ".png") - imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") +# Scree plot (Variance Explained) code copied from Glimma + +# get column of matrix +getCols <- function(x, inds) { + x[, inds, drop=FALSE] +} + +x <- cpm(y, log=TRUE) +ndim <- nsamples - 1 +nprobes <- nrow(x) +top <- 500 +top <- min(top, nprobes) +cn <- colnames(x) +bad <- rowSums(is.finite(x)) < nsamples + +if (any(bad)) { + warning("Rows containing infinite values have been removed") + x <- x[!bad, , drop=FALSE] +} + +dd <- matrix(0, nrow=nsamples, ncol=nsamples, dimnames=list(cn, cn)) +topindex <- nprobes - top + 1L +for (i in 2L:(nsamples)) { + for (j in 1L:(i - 1L)) { + dists <- (getCols(x, i) - getCols(x, j))^2 + dists <- sort.int(dists, partial = topindex ) + topdist <- dists[topindex:nprobes] + dd[i, j] <- sqrt(mean(topdist)) + } +} + +a1 <- suppressWarnings(cmdscale(as.dist(dd), k=min(ndim, 8), eig=TRUE)) +eigen <- data.frame(name = 1:min(ndim, 8), eigen = round(a1$eig[1:min(ndim, 8)]/sum(a1$eig), 2)) + +png(mdsscreeOutPng, width=1000, height=500) +par(mfrow=c(1, 2)) +plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") +barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) +imgName <- paste0("MDSPlot_", names(factors)[1], ".png") +imgAddr <- "mdsscree.png" +imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) +invisible(dev.off()) + +pdf(mdsscreeOutPdf, width=14) +par(mfrow=c(1, 2)) +plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") +barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) +linkName <- paste0("MDSPlot_", names(factors)[1], ".pdf") +linkAddr <- "mdsscree.pdf" +linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) +invisible(dev.off()) + +if ("x" %in% plots) { + png(mdsxOutPng, width=1000, height=500) + par(mfrow=c(1, 2)) + for (i in 2:3) { + dim1 <- i + dim2 <- i + 1 + plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) + } + imgName <- paste0("MDSPlot_extra.png") + imgAddr <- paste0("mdsplot_extra.png") imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) - pdf(mdsOutPdf[i]) - plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) - linkName <- paste0("MDSPlot_", names(factors)[i], ".pdf") - linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") + pdf(mdsxOutPdf, width=14) + par(mfrow=c(1, 2)) + for (i in 2:3) { + dim1 <- i + dim2 <- i + 1 + plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) + } + linkName <- "MDSPlot_extra.pdf" + linkAddr <- "mdsplot_extra.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } +if ("m" %in% plots) { + # Plot MD plots for individual samples + print("Generating MD plots for samples") + pdf(mdsamOutPdf, width=6.5, height=10) + par(mfrow=c(3, 2)) + for (i in 1:nsamples) { + plotMD(y, column = i) + abline(h=0, col="red", lty=2, lwd=2) + } + linkName <- "MDPlots_Samples.pdf" + linkAddr <- "mdplots_samples.pdf" + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) +} + + if (wantTrend) { # limma-trend approach logCPM <- cpm(y, log=TRUE, prior.count=opt$trend) @@ -561,7 +676,7 @@ saOutPng <- makeOut("saplot.png") saOutPdf <- makeOut("saplot.pdf") - png(saOutPng, width=600, height=600) + png(saOutPng, width=500, height=500) plotSA(fit, main="SA Plot") imgName <- "SAPlot.png" imgAddr <- "saplot.png" @@ -589,7 +704,7 @@ if (wantWeight) { # Creating voom data object and plot - png(voomOutPng, width=1000, height=600) + png(voomOutPng, width=1000, height=500) vData <- voomWithQualityWeights(y, design=design, plot=TRUE) imgName <- "VoomPlot.png" imgAddr <- "voomplot.png" @@ -609,7 +724,7 @@ } else { # Creating voom data object and plot - png(voomOutPng, width=600, height=600) + png(voomOutPng, width=500, height=500) vData <- voom(y, design=design, plot=TRUE) imgName <- "VoomPlot" imgAddr <- "voomplot.png" @@ -661,6 +776,8 @@ sumStatus <- summary(status) for (i in 1:length(contrastData)) { + con <- contrastData[i] + con <- gsub("\\(|\\)", "", con) # Collect counts for differential expression upCount[i] <- sumStatus["Up", i] downCount[i] <- sumStatus["Down", i] @@ -673,22 +790,19 @@ top <- topTable(fit, coef=i, number=Inf, sort.by="P") } write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) - - linkName <- paste0(deMethod, "_", contrastData[i], ".tsv") - linkAddr <- paste0(deMethod, "_", contrastData[i], ".tsv") + linkName <- paste0(deMethod, "_", con, ".tsv") + linkAddr <- paste0(deMethod, "_", con, ".tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) # Plot MD (log ratios vs mean average) using limma package on weighted pdf(mdOutPdf[i]) limma::plotMD(fit, status=status[, i], coef=i, - main=paste("MD Plot:", unmake.names(contrastData[i])), - hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), - xlab="Average Expression", ylab="logFC") - + main=paste("MD Plot:", unmake.names(con)), + hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), + xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) - - linkName <- paste0("MDPlot_", contrastData[i], ".pdf") - linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") + linkName <- paste0("MDPlot_", con, ".pdf") + linkAddr <- paste0("mdplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) @@ -696,60 +810,30 @@ pdf(volOutPdf[i]) if (haveAnno) { # labels must be in second column currently - limma::volcanoplot(fit, coef=i, - main=paste("Volcano Plot:", unmake.names(contrastData[i])), - highlight=opt$topgenes, - names=fit$genes[, 2]) - } else { - limma::volcanoplot(fit, coef=i, - main=paste("Volcano Plot:", unmake.names(contrastData[i])), - highlight=opt$topgenes, - names=fit$genes$GeneID) - } - linkName <- paste0("VolcanoPlot_", contrastData[i], ".pdf") - linkAddr <- paste0("volplot_", contrastData[i], ".pdf") - linkData <- rbind(linkData, c(linkName, linkAddr)) - invisible(dev.off()) - - # Plot Heatmap - topgenes <- rownames(top[1:opt$topgenes, ]) - if (wantTrend) { - topexp <- plotData[topgenes, ] + labels <- fit$genes[, 2] } else { - topexp <- plotData$E[topgenes, ] + labels <- fit$genes$GeneID } - - pdf(heatOutPdf[i]) - par(cex.main=0.8) - if (haveAnno) { - # labels must be in second column currently - heatmap.2(topexp, scale="row", - main=paste("Heatmap:", unmake.names(contrastData[i])), - col="bluered", trace="none", density.info="none", - margin=c(8,6), lhei=c(2,10), dendrogram="column", - cexRow=0.7, cexCol=0.7, srtCol=45, - labRow=top[topgenes, 2]) - } else { - heatmap.2(topexp, scale="row", - main=paste("Heatmap:", unmake.names(contrastData[i])), - col="bluered", trace="none", density.info="none", - margin=c(8,6), lhei=c(2,10), dendrogram="column", - cexRow=0.7, cexCol=0.7, srtCol=45) - } - linkName <- paste0("Heatmap_", contrastData[i], ".pdf") - linkAddr <- paste0("heatmap_", contrastData[i], ".pdf") + limma::volcanoplot(fit, coef=i, + main=paste("Volcano Plot:", unmake.names(con)), + highlight=opt$topgenes, + names=labels) + linkName <- paste0("VolcanoPlot_", con, ".pdf") + linkAddr <- paste0("volplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # PNG of MD and Volcano - png(mdvolOutPng[i], width=1200, height=600) + png(mdvolOutPng[i], width=1000, height=500) par(mfrow=c(1, 2), mar=c(5,4,2,2)+0.1, oma=c(0,0,3,0)) + + # MD plot limma::plotMD(fit, status=status[, i], coef=i, main="MD Plot", - hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), - xlab="Average Expression", ylab="logFC") + hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), + xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) - # Volcano plots + # Volcano if (haveAnno) { # labels must be in second column currently limma::volcanoplot(fit, coef=i, main="Volcano Plot", @@ -761,11 +845,60 @@ names=fit$genes$GeneID) } - imgName <- paste0("MDVolPlot_", contrastData[i]) - imgAddr <- paste0("mdvolplot_", contrastData[i], ".png") + imgName <- paste0("MDVolPlot_", con) + imgAddr <- paste0("mdvolplot_", con, ".png") imageData <- rbind(imageData, c(imgName, imgAddr)) - title(paste0("Contrast: ", unmake.names(contrastData[i])), outer=TRUE, cex.main=1.5) + title(paste0("Contrast: ", unmake.names(con)), outer=TRUE, cex.main=1.5) invisible(dev.off()) + + if ("h" %in% plots) { + # Plot Heatmap + topgenes <- rownames(top[1:opt$topgenes, ]) + if (wantTrend) { + topexp <- plotData[topgenes, ] + } else { + topexp <- plotData$E[topgenes, ] + } + pdf(heatOutPdf[i]) + mycol <- colorpanel(1000,"blue","white","red") + if (haveAnno) { + # labels must be in second column currently + labels <- top[topgenes, 2] + } else { + labels <- rownames(topexp) + } + heatmap.2(topexp, scale="row", Colv=FALSE, Rowv=FALSE, dendrogram="none", + main=paste("Contrast:", unmake.names(con), "\nTop", opt$topgenes, "genes by adj.P.Val"), + trace="none", density.info="none", lhei=c(2,10), margin=c(8, 6), labRow=labels, cexRow=0.7, srtCol=45, + col=mycol, ColSideColors=col.group) + linkName <- paste0("Heatmap_", con, ".pdf") + linkAddr <- paste0("heatmap_", con, ".pdf") + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) + } + + if ("s" %in% plots) { + # Plot Stripcharts of top genes + pdf(stripOutPdf[i], title=paste("Contrast:", unmake.names(con))) + par(mfrow = c(3,2), cex.main=0.8, cex.axis=0.8) + cols <- unique(col.group) + + for (j in 1:length(topgenes)) { + lfc <- round(top[topgenes[j], "logFC"], 2) + pval <- round(top[topgenes[j], "adj.P.Val"], 5) + if (wantTrend) { + stripchart(plotData[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, + method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) + } else { + stripchart(plotData$E[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, + method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) + } + } + linkName <- paste0("Stripcharts_", con, ".pdf") + linkAddr <- paste0("stripcharts_", con, ".pdf") + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) + } } sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) row.names(sigDiff) <- contrastData @@ -774,10 +907,10 @@ if (wantRda) { print("Saving RData") if (wantWeight) { - save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrasts, design, + save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } else { - save(counts, data, y, status, plotData, labels, factors, fit, top, contrasts, design, + save(counts, data, y, status, plotData, labels, factors, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } linkData <- rbind(linkData, c((paste0(deMethod, "_analysis.RData")), (paste0(deMethod, "_analysis.RData")))) @@ -805,8 +938,8 @@ cata("Links to PDF copies of plots are in 'Plots' section below
\n") for (i in 1:nrow(imageData)) { - if (grepl("density|box|mdvol", imageData$Link[i])) { - HtmlImage(imageData$Link[i], imageData$Label[i], width=1200) + if (grepl("density|box|mds|mdvol", imageData$Link[i])) { + HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) } else if (wantWeight) { HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) } else { @@ -834,8 +967,33 @@ cata("") cata("

Plots:

\n") +#PDFs for (i in 1:nrow(linkData)) { - if (grepl(".pdf", linkData$Link[i])) { + if (grepl("density|cpm|boxplot|mds|mdplots|voomplot|saplot", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("mdplot_", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("volplot", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("heatmap", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("stripcharts", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } } diff -r e6a4ff41af6b -r 00a42b66e522 limma_voom.xml --- a/limma_voom.xml Wed May 09 13:27:14 2018 -0400 +++ b/limma_voom.xml Tue May 15 02:36:36 2018 -0400 @@ -1,4 +1,4 @@ - + Perform differential expression with limma-voom or limma-trend @@ -72,6 +72,10 @@ #end if #end if +#if $out.plots: + -P $out.plots +#end if + #if $out.normCounts: -x #end if @@ -202,9 +206,9 @@ - + - ^[\w-]+$ + ^[\(\w\)-]+$ @@ -250,6 +254,15 @@
+ + + + + + + + + @@ -278,9 +291,9 @@ - + diff -r e6a4ff41af6b -r 00a42b66e522 test-data/out_rscript.txt --- a/test-data/out_rscript.txt Wed May 09 13:27:14 2018 -0400 +++ b/test-data/out_rscript.txt Tue May 15 02:36:36 2018 -0400 @@ -23,7 +23,8 @@ # trend", "t", 1, "double" -Float for prior.count if limma-trend is used instead of voom # weightOpt", "w", 0, "logical" -String specifying if voomWithQualityWeights should be used # topgenes", "G", 1, "integer" -Integer specifying no. of genes to highlight in volcano and heatmap -# treatOpt", "T", 0, "logical" -String specifying if TREAT function shuld be used +# treatOpt", "T", 0, "logical" -String specifying if TREAT function should be used +# plots, "P", 1, "character" -String specifying additional plots to be created # # OUT: # Density Plots (if filtering) @@ -125,7 +126,7 @@ } # Function to write code for html images -HtmlImage <- function(source, label=source, height=600, width=600) { +HtmlImage <- function(source, label=source, height=500, width=500) { cata("\"",\n") } @@ -175,7 +176,8 @@ "trend", "t", 1, "double", "weightOpt", "w", 0, "logical", "topgenes", "G", 1, "integer", - "treatOpt", "T", 0, "logical"), + "treatOpt", "T", 0, "logical", + "plots", "P", 1, "character"), byrow=TRUE, ncol=4) opt <- getopt(spec) @@ -322,28 +324,36 @@ contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) -denOutPng <- makeOut("densityplots.png") -denOutPdf <- makeOut("DensityPlots.pdf") -boxOutPng <- makeOut("boxplots.png") -boxOutPdf <- makeOut("BoxPlots.pdf") -mdsOutPdf <- character() # Initialise character vector -mdsOutPng <- character() -for (i in 1:ncol(factors)) { - mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) - mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) +plots <- character() +if (!is.null(opt$plots)) { + plots <- unlist(strsplit(opt$plots, split=",")) } -mdOutPdf <- character() +denOutPng <- makeOut("densityplots.png") +denOutPdf <- makeOut("densityplots.pdf") +cpmOutPdf <- makeOut("cpmplots.pdf") +boxOutPng <- makeOut("boxplots.png") +boxOutPdf <- makeOut("boxplots.pdf") +mdsscreeOutPng <- makeOut("mdsscree.png") +mdsscreeOutPdf <- makeOut("mdsscree.pdf") +mdsxOutPdf <- makeOut("mdsplot_extra.pdf") +mdsxOutPng <- makeOut("mdsplot_extra.png") +mdsamOutPdf <- makeOut("mdplots_samples.pdf") +mdOutPdf <- character() # Initialise character vector volOutPdf <- character() heatOutPdf <- character() +stripOutPdf <- character() mdvolOutPng <- character() topOut <- character() for (i in 1:length(contrastData)) { - mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) - volOutPdf[i] <- makeOut(paste0("volplot_", contrastData[i], ".pdf")) - heatOutPdf[i] <- makeOut(paste0("heatmap_", contrastData[i], ".pdf")) - mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", contrastData[i], ".png")) - topOut[i] <- makeOut(paste0(deMethod, "_", contrastData[i], ".tsv")) + con <- contrastData[i] + con <- gsub("\\(|\\)", "", con) + mdOutPdf[i] <- makeOut(paste0("mdplot_", con, ".pdf")) + volOutPdf[i] <- makeOut(paste0("volplot_", con, ".pdf")) + heatOutPdf[i] <- makeOut(paste0("heatmap_", con, ".pdf")) + stripOutPdf[i] <- makeOut(paste0("stripcharts_", con, ".pdf")) + mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", con, ".png")) + topOut[i] <- makeOut(paste0(deMethod, "_", con, ".tsv")) } normOut <- makeOut(paste0(deMethod, "_normcounts.tsv")) @@ -378,9 +388,18 @@ data$genes <- data.frame(GeneID=row.names(counts)) } +# Creating naming data +samplenames <- colnames(data$counts) +sampleanno <- data.frame("sampleID"=samplenames, factors) + +# Creating colours for the groups +cols <- as.numeric(factors[, 1]) +col.group <- palette()[cols] + # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of # samples. Default is no filtering preFilterCount <- nrow(data$counts) +nsamples <- ncol(data$counts) if (filtCPM || filtSmpCount || filtTotCount) { @@ -389,21 +408,84 @@ } else if (filtSmpCount) { keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq } else if (filtCPM) { - keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq + myCPM <- cpm(data$counts) + thresh <- myCPM >= opt$cpmReq + keep <- rowSums(thresh) >= opt$sampleReq + + if ("c" %in% plots) { + # Plot CPM vs raw counts (to check threshold) + pdf(cpmOutPdf, width=6.5, height=10) + par(mfrow=c(3, 2)) + for (i in 1:nsamples) { + plot(data$counts[, i], myCPM[, i], xlim=c(0,50), ylim=c(0,3), main=samplenames[i], xlab="Raw counts", ylab="CPM") + abline(v=10, col="red", lty=2, lwd=2) + abline(h=opt$cpmReq, col=4) + } + linkName <- "CpmPlots.pdf" + linkAddr <- "cpmplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + } } data$counts <- data$counts[keep, ] data$genes <- data$genes[keep, , drop=FALSE] + + # Plot Density + if ("d" %in% plots) { + # PNG + png(denOutPng, width=1000, height=500) + par(mfrow=c(1,2), cex.axis=0.8) + + # before filtering + lcpm1 <- cpm(counts, log=TRUE) + plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm1[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + + # after filtering + lcpm2 <- cpm(data$counts, log=TRUE) + plot(density(lcpm2[,1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm2[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + legend("topright", samplenames, text.col=col.group, bty="n") + imgName <- "Densityplots.png" + imgAddr <- "densityplots.png" + imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + + # PDF + pdf(denOutPdf, width=14) + par(mfrow=c(1,2), cex.axis=0.8) + plot(density(lcpm1[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm1[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + plot(density(lcpm2[, 1]), col=col.group[1], lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(lcpm2[, i]) + lines(den$x, den$y, col=col.group[i], lwd=2) + } + legend("topright", samplenames, text.col=col.group, bty="n") + linkName <- "DensityPlots.pdf" + linkAddr <- "densityplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + } } postFilterCount <- nrow(data$counts) filteredCount <- preFilterCount-postFilterCount -# Creating naming data -samplenames <- colnames(data$counts) -sampleanno <- data.frame("sampleID"=samplenames, factors) - - # Generating the DGEList object "y" print("Generating DGEList object") data$samples <- sampleanno @@ -438,87 +520,42 @@ ### Data Output ################################################################################ -# Plot Density (if filtering low counts) -if (filtCPM || filtSmpCount || filtTotCount) { - nsamples <- ncol(counts) - - # PNG - png(denOutPng, width=1200, height=600) - par(mfrow=c(1,2), cex.axis=0.8) - - # before filtering - logcpm <- cpm(counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Raw counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - - # after filtering - logcpm <- cpm(data$counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Filtered counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") - imgName <- "Densityplots.png" - imgAddr <- "densityplots.png" - imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) - invisible(dev.off()) +# Plot Box plots (before and after normalisation) +if (opt$normOpt != "none" & "b" %in% plots) { + png(boxOutPng, width=1000, height=500) + par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) + labels <- colnames(counts) - # PDF - pdf(denOutPdf, width=14) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Raw counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - logcpm <- cpm(data$counts, log=TRUE) - plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") - title(main="Density Plot: Filtered counts", xlab="Log-cpm") - for (i in 2:nsamples){ - den <- density(logcpm[,i]) - lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) - } - legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") - linkName <- "DensityPlots.pdf" - linkAddr <- "densityplots.pdf" - linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) - invisible(dev.off()) -} + lcpm1 <- cpm(y$counts, log=TRUE) + boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + abline(h=median(lcpm1), col=4) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") -# Plot Box plots (before and after normalisation) -if (opt$normOpt != "none") { - png(boxOutPng, width=1200, height=600) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(y$counts, log=TRUE) - boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(logcpm), col=4) - title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") - lcpm <- cpm(y, log=TRUE) - boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(lcpm), col=4) + lcpm2 <- cpm(y, log=TRUE) + boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") + imgName <- "Boxplots.png" imgAddr <- "boxplots.png" imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) pdf(boxOutPdf, width=14) - par(mfrow=c(1,2), cex.axis=0.8) - logcpm <- cpm(y$counts, log=TRUE) - boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(logcpm), col=4) + par(mfrow=c(1,2), mar=c(6,4,2,2)+0.1) + boxplot(lcpm1, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + abline(h=median(lcpm1), col=4) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") - lcpm <- cpm(y, log=TRUE) - boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) - abline(h=median(lcpm), col=4) + boxplot(lcpm2, las=2, col=col.group, xaxt="n", xlab="") + axis(1, at=seq_along(labels), labels = FALSE) + text(x=seq_along(labels), y=par("usr")[3]-1, srt=45, adj=1, labels=labels, xpd=TRUE) + abline(h=median(lcpm2), col=4) title(main="Box Plot: Normalised counts", ylab="Log-cpm") linkName <- "BoxPlots.pdf" linkAddr <- "boxplots.pdf" @@ -530,22 +567,100 @@ print("Generating MDS plot") labels <- names(counts) -for (i in 1:ncol(factors)) { - png(mdsOutPng[i], width=600, height=600) - plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) - imgName <- paste0("MDSPlot_", names(factors)[i], ".png") - imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") +# Scree plot (Variance Explained) code copied from Glimma + +# get column of matrix +getCols <- function(x, inds) { + x[, inds, drop=FALSE] +} + +x <- cpm(y, log=TRUE) +ndim <- nsamples - 1 +nprobes <- nrow(x) +top <- 500 +top <- min(top, nprobes) +cn <- colnames(x) +bad <- rowSums(is.finite(x)) < nsamples + +if (any(bad)) { + warning("Rows containing infinite values have been removed") + x <- x[!bad, , drop=FALSE] +} + +dd <- matrix(0, nrow=nsamples, ncol=nsamples, dimnames=list(cn, cn)) +topindex <- nprobes - top + 1L +for (i in 2L:(nsamples)) { + for (j in 1L:(i - 1L)) { + dists <- (getCols(x, i) - getCols(x, j))^2 + dists <- sort.int(dists, partial = topindex ) + topdist <- dists[topindex:nprobes] + dd[i, j] <- sqrt(mean(topdist)) + } +} + +a1 <- suppressWarnings(cmdscale(as.dist(dd), k=min(ndim, 8), eig=TRUE)) +eigen <- data.frame(name = 1:min(ndim, 8), eigen = round(a1$eig[1:min(ndim, 8)]/sum(a1$eig), 2)) + +png(mdsscreeOutPng, width=1000, height=500) +par(mfrow=c(1, 2)) +plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") +barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) +imgName <- paste0("MDSPlot_", names(factors)[1], ".png") +imgAddr <- "mdsscree.png" +imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) +invisible(dev.off()) + +pdf(mdsscreeOutPdf, width=14) +par(mfrow=c(1, 2)) +plotMDS(y, labels=samplenames, col=as.numeric(factors[, 1]), main="MDS Plot: Dims 1 and 2") +barplot(eigen$eigen, names.arg=eigen$name, main = "Scree Plot: Variance Explained", xlab = "Dimension", ylab = "Proportion", las=1) +linkName <- paste0("MDSPlot_", names(factors)[1], ".pdf") +linkAddr <- "mdsscree.pdf" +linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) +invisible(dev.off()) + +if ("x" %in% plots) { + png(mdsxOutPng, width=1000, height=500) + par(mfrow=c(1, 2)) + for (i in 2:3) { + dim1 <- i + dim2 <- i + 1 + plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) + } + imgName <- paste0("MDSPlot_extra.png") + imgAddr <- paste0("mdsplot_extra.png") imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) invisible(dev.off()) - pdf(mdsOutPdf[i]) - plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) - linkName <- paste0("MDSPlot_", names(factors)[i], ".pdf") - linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") + pdf(mdsxOutPdf, width=14) + par(mfrow=c(1, 2)) + for (i in 2:3) { + dim1 <- i + dim2 <- i + 1 + plotMDS(y, dim=c(dim1, dim2), labels=samplenames, col=as.numeric(factors[, 1]), main=paste("MDS Plot: Dims", dim1, "and", dim2)) + } + linkName <- "MDSPlot_extra.pdf" + linkAddr <- "mdsplot_extra.pdf" linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) invisible(dev.off()) } +if ("m" %in% plots) { + # Plot MD plots for individual samples + print("Generating MD plots for samples") + pdf(mdsamOutPdf, width=6.5, height=10) + par(mfrow=c(3, 2)) + for (i in 1:nsamples) { + plotMD(y, column = i) + abline(h=0, col="red", lty=2, lwd=2) + } + linkName <- "MDPlots_Samples.pdf" + linkAddr <- "mdplots_samples.pdf" + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) +} + + if (wantTrend) { # limma-trend approach logCPM <- cpm(y, log=TRUE, prior.count=opt$trend) @@ -561,7 +676,7 @@ saOutPng <- makeOut("saplot.png") saOutPdf <- makeOut("saplot.pdf") - png(saOutPng, width=600, height=600) + png(saOutPng, width=500, height=500) plotSA(fit, main="SA Plot") imgName <- "SAPlot.png" imgAddr <- "saplot.png" @@ -589,7 +704,7 @@ if (wantWeight) { # Creating voom data object and plot - png(voomOutPng, width=1000, height=600) + png(voomOutPng, width=1000, height=500) vData <- voomWithQualityWeights(y, design=design, plot=TRUE) imgName <- "VoomPlot.png" imgAddr <- "voomplot.png" @@ -609,7 +724,7 @@ } else { # Creating voom data object and plot - png(voomOutPng, width=600, height=600) + png(voomOutPng, width=500, height=500) vData <- voom(y, design=design, plot=TRUE) imgName <- "VoomPlot" imgAddr <- "voomplot.png" @@ -661,6 +776,8 @@ sumStatus <- summary(status) for (i in 1:length(contrastData)) { + con <- contrastData[i] + con <- gsub("\\(|\\)", "", con) # Collect counts for differential expression upCount[i] <- sumStatus["Up", i] downCount[i] <- sumStatus["Down", i] @@ -673,22 +790,19 @@ top <- topTable(fit, coef=i, number=Inf, sort.by="P") } write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) - - linkName <- paste0(deMethod, "_", contrastData[i], ".tsv") - linkAddr <- paste0(deMethod, "_", contrastData[i], ".tsv") + linkName <- paste0(deMethod, "_", con, ".tsv") + linkAddr <- paste0(deMethod, "_", con, ".tsv") linkData <- rbind(linkData, c(linkName, linkAddr)) # Plot MD (log ratios vs mean average) using limma package on weighted pdf(mdOutPdf[i]) limma::plotMD(fit, status=status[, i], coef=i, - main=paste("MD Plot:", unmake.names(contrastData[i])), - hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), - xlab="Average Expression", ylab="logFC") - + main=paste("MD Plot:", unmake.names(con)), + hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), + xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) - - linkName <- paste0("MDPlot_", contrastData[i], ".pdf") - linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") + linkName <- paste0("MDPlot_", con, ".pdf") + linkAddr <- paste0("mdplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) @@ -696,60 +810,30 @@ pdf(volOutPdf[i]) if (haveAnno) { # labels must be in second column currently - limma::volcanoplot(fit, coef=i, - main=paste("Volcano Plot:", unmake.names(contrastData[i])), - highlight=opt$topgenes, - names=fit$genes[, 2]) - } else { - limma::volcanoplot(fit, coef=i, - main=paste("Volcano Plot:", unmake.names(contrastData[i])), - highlight=opt$topgenes, - names=fit$genes$GeneID) - } - linkName <- paste0("VolcanoPlot_", contrastData[i], ".pdf") - linkAddr <- paste0("volplot_", contrastData[i], ".pdf") - linkData <- rbind(linkData, c(linkName, linkAddr)) - invisible(dev.off()) - - # Plot Heatmap - topgenes <- rownames(top[1:opt$topgenes, ]) - if (wantTrend) { - topexp <- plotData[topgenes, ] + labels <- fit$genes[, 2] } else { - topexp <- plotData$E[topgenes, ] + labels <- fit$genes$GeneID } - - pdf(heatOutPdf[i]) - par(cex.main=0.8) - if (haveAnno) { - # labels must be in second column currently - heatmap.2(topexp, scale="row", - main=paste("Heatmap:", unmake.names(contrastData[i])), - col="bluered", trace="none", density.info="none", - margin=c(8,6), lhei=c(2,10), dendrogram="column", - cexRow=0.7, cexCol=0.7, srtCol=45, - labRow=top[topgenes, 2]) - } else { - heatmap.2(topexp, scale="row", - main=paste("Heatmap:", unmake.names(contrastData[i])), - col="bluered", trace="none", density.info="none", - margin=c(8,6), lhei=c(2,10), dendrogram="column", - cexRow=0.7, cexCol=0.7, srtCol=45) - } - linkName <- paste0("Heatmap_", contrastData[i], ".pdf") - linkAddr <- paste0("heatmap_", contrastData[i], ".pdf") + limma::volcanoplot(fit, coef=i, + main=paste("Volcano Plot:", unmake.names(con)), + highlight=opt$topgenes, + names=labels) + linkName <- paste0("VolcanoPlot_", con, ".pdf") + linkAddr <- paste0("volplot_", con, ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) # PNG of MD and Volcano - png(mdvolOutPng[i], width=1200, height=600) + png(mdvolOutPng[i], width=1000, height=500) par(mfrow=c(1, 2), mar=c(5,4,2,2)+0.1, oma=c(0,0,3,0)) + + # MD plot limma::plotMD(fit, status=status[, i], coef=i, main="MD Plot", - hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), - xlab="Average Expression", ylab="logFC") + hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), + xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) - # Volcano plots + # Volcano if (haveAnno) { # labels must be in second column currently limma::volcanoplot(fit, coef=i, main="Volcano Plot", @@ -761,11 +845,60 @@ names=fit$genes$GeneID) } - imgName <- paste0("MDVolPlot_", contrastData[i]) - imgAddr <- paste0("mdvolplot_", contrastData[i], ".png") + imgName <- paste0("MDVolPlot_", con) + imgAddr <- paste0("mdvolplot_", con, ".png") imageData <- rbind(imageData, c(imgName, imgAddr)) - title(paste0("Contrast: ", unmake.names(contrastData[i])), outer=TRUE, cex.main=1.5) + title(paste0("Contrast: ", unmake.names(con)), outer=TRUE, cex.main=1.5) invisible(dev.off()) + + if ("h" %in% plots) { + # Plot Heatmap + topgenes <- rownames(top[1:opt$topgenes, ]) + if (wantTrend) { + topexp <- plotData[topgenes, ] + } else { + topexp <- plotData$E[topgenes, ] + } + pdf(heatOutPdf[i]) + mycol <- colorpanel(1000,"blue","white","red") + if (haveAnno) { + # labels must be in second column currently + labels <- top[topgenes, 2] + } else { + labels <- rownames(topexp) + } + heatmap.2(topexp, scale="row", Colv=FALSE, Rowv=FALSE, dendrogram="none", + main=paste("Contrast:", unmake.names(con), "\nTop", opt$topgenes, "genes by adj.P.Val"), + trace="none", density.info="none", lhei=c(2,10), margin=c(8, 6), labRow=labels, cexRow=0.7, srtCol=45, + col=mycol, ColSideColors=col.group) + linkName <- paste0("Heatmap_", con, ".pdf") + linkAddr <- paste0("heatmap_", con, ".pdf") + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) + } + + if ("s" %in% plots) { + # Plot Stripcharts of top genes + pdf(stripOutPdf[i], title=paste("Contrast:", unmake.names(con))) + par(mfrow = c(3,2), cex.main=0.8, cex.axis=0.8) + cols <- unique(col.group) + + for (j in 1:length(topgenes)) { + lfc <- round(top[topgenes[j], "logFC"], 2) + pval <- round(top[topgenes[j], "adj.P.Val"], 5) + if (wantTrend) { + stripchart(plotData[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, + method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) + } else { + stripchart(plotData$E[topgenes[j], ] ~ factors[, 1], vertical=TRUE, las=2, pch=16, cex=0.8, cex.lab=0.8, col=cols, + method="jitter", ylab="Normalised log2 expression", main=paste0(labels[j], "\nlogFC=", lfc, ", adj.P.Val=", pval)) + } + } + linkName <- paste0("Stripcharts_", con, ".pdf") + linkAddr <- paste0("stripcharts_", con, ".pdf") + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) + } } sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) row.names(sigDiff) <- contrastData @@ -774,10 +907,10 @@ if (wantRda) { print("Saving RData") if (wantWeight) { - save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrasts, design, + save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } else { - save(counts, data, y, status, plotData, labels, factors, fit, top, contrasts, design, + save(counts, data, y, status, plotData, labels, factors, fit, top, contrastData, contrasts, design, file=rdaOut, ascii=TRUE) } linkData <- rbind(linkData, c((paste0(deMethod, "_analysis.RData")), (paste0(deMethod, "_analysis.RData")))) @@ -805,8 +938,8 @@ cata("Links to PDF copies of plots are in 'Plots' section below
\n") for (i in 1:nrow(imageData)) { - if (grepl("density|box|mdvol", imageData$Link[i])) { - HtmlImage(imageData$Link[i], imageData$Label[i], width=1200) + if (grepl("density|box|mds|mdvol", imageData$Link[i])) { + HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) } else if (wantWeight) { HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) } else { @@ -834,8 +967,33 @@ cata("") cata("

Plots:

\n") +#PDFs for (i in 1:nrow(linkData)) { - if (grepl(".pdf", linkData$Link[i])) { + if (grepl("density|cpm|boxplot|mds|mdplots|voomplot|saplot", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("mdplot_", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("volplot", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("heatmap", linkData$Link[i])) { + HtmlLink(linkData$Link[i], linkData$Label[i]) + } +} + +for (i in 1:nrow(linkData)) { + if (grepl("stripcharts", linkData$Link[i])) { HtmlLink(linkData$Link[i], linkData$Label[i]) } }