# HG changeset patch
# User iuc
# Date 1710575777 0
# Node ID c0101c72b8aff349cbfa0be11792cc305f91b984
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/phyloseq commit 5ec9f9e81bb9a42dec5c331dd23215ca0b027b2b
diff -r 000000000000 -r c0101c72b8af macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,32 @@
+
+ 1.46.0
+ 0
+ 21.01
+
+
+ phyloseq
+
+
+
+
+ bioconductor-phyloseq
+ r-optparse
+ r-tidyverse
+
+
+
+
+
+
+
+
+
+
+
+
+ 10.18129/B9.bioc.phyloseq
+ 10.1371/journal.pone.0061217
+
+
+
+
diff -r 000000000000 -r c0101c72b8af phyloseq_from_biom.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_from_biom.R Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,30 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+suppressPackageStartupMessages(library("tidyverse"))
+
+option_list <- list(
+ make_option(c("--BIOMfilename"), action = "store", dest = "biom", help = "Input BIOM file"),
+ make_option(c("--treefilename"), action = "store", dest = "tree", default = NULL, help = "Input Tree newick/nexus file"),
+ make_option(c("--parseFunction"), action = "store", dest = "parsefoo", default = "parse_taxonomy_default", help = "Parse function parse_taxonomy_default/read_tree_greengenes"),
+ make_option(c("--refseqfilename"), action = "store", dest = "sequences", default = NULL, help = "Input Sequence fasta file"),
+ make_option(c("--output"), action = "store", dest = "output", help = "RDS output")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list)
+args <- parse_args(parser, positional_arguments = TRUE)
+opt <- args$options
+
+parsefoo <- get(opt$parsefoo)
+phyloseq_obj <- import_biom(
+ BIOMfilename = opt$biom,
+ treefilename = opt$tree,
+ refseqfilename = opt$sequences,
+ parseFunction = parsefoo
+)
+
+print(phyloseq_obj)
+
+# save R object to file
+saveRDS(phyloseq_obj, file = opt$output, compress = TRUE)
diff -r 000000000000 -r c0101c72b8af phyloseq_from_biom.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_from_biom.xml Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,92 @@
+
+ from a BIOM file
+
+ macros.xml
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+Read a BIOM file (and optionally sequences and a phylogeny) and store them in a phyloseq object.
+
+
+
+
diff -r 000000000000 -r c0101c72b8af phyloseq_from_dada2.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_from_dada2.R Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,55 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+suppressPackageStartupMessages(library("tidyverse"))
+
+option_list <- list(
+ make_option(c("--sequence_table"), action = "store", dest = "sequence_table", help = "Input sequence table"),
+ make_option(c("--taxonomy_table"), action = "store", dest = "taxonomy_table", help = "Input taxonomy table"),
+ make_option(c("--sample_table"), action = "store", default = NULL, dest = "sample_table", help = "Input sample table"),
+ make_option(c("--output"), action = "store", dest = "output", help = "RDS output")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list)
+args <- parse_args(parser, positional_arguments = TRUE)
+opt <- args$options
+# The input sequence_table is an integer matrix
+# stored as tabular (rows = samples, columns = ASVs).
+seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, header = T, sep = "\t", row.names = 1, check.names = FALSE))
+# The input taxonomy_table is a table containing
+# the assigned taxonomies exceeding the minBoot
+# level of bootstrapping confidence. Rows correspond
+# to sequences, columns to taxonomic levels. NA
+# indicates that the sequence was not consistently
+# classified at that level at the minBoot threshold.
+tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = T, sep = "\t", row.names = 1, check.names = FALSE))
+# Construct a tax_table object. The rownames of
+# tax_tab must match the OTU names (taxa_names)
+# of the otu_table defined below.
+tax_tab <- tax_table(tax_table_matrix)
+
+# Construct an otu_table object.
+otu_tab <- otu_table(seq_table_numeric_matrix, taxa_are_rows = TRUE)
+
+# Construct a phyloseq object.
+phyloseq_obj <- phyloseq(otu_tab, tax_tab)
+if (!is.null(opt$sample_table)) {
+ sample_tab <- sample_data(
+ read.table(opt$sample_table, header = T, sep = "\t", row.names = 1, check.names = FALSE)
+ )
+ phyloseq_obj <- merge_phyloseq(phyloseq_obj, sample_tab)
+}
+
+# use short names for our ASVs and save the ASV sequences
+# refseq slot of the phyloseq object as described in
+# https://benjjneb.github.io/dada2/tutorial.html
+dna <- Biostrings::DNAStringSet(taxa_names(phyloseq_obj))
+names(dna) <- taxa_names(phyloseq_obj)
+phyloseq_obj <- merge_phyloseq(phyloseq_obj, dna)
+taxa_names(phyloseq_obj) <- paste0("ASV", seq(ntaxa(phyloseq_obj)))
+
+print(phyloseq_obj)
+
+# save R object to file
+saveRDS(phyloseq_obj, file = opt$output, compress = TRUE)
diff -r 000000000000 -r c0101c72b8af phyloseq_plot_ordination.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_plot_ordination.R Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,27 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+
+option_list <- list(
+ make_option(c("--input"), action = "store", dest = "input", help = "Input file containing a phyloseq object"),
+ make_option(c("--method"), action = "store", dest = "method", help = "Ordination method"),
+ make_option(c("--distance"), action = "store", dest = "distance", help = "Distance method"),
+ make_option(c("--type"), action = "store", dest = "type", help = "Plot type"),
+ make_option(c("--output"), action = "store", dest = "output", help = "Output")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list)
+args <- parse_args(parser, positional_arguments = TRUE)
+opt <- args$options
+# Construct a phyloseq object.
+phyloseq_obj <- readRDS(opt$input)
+# Transform data to proportions as appropriate for
+# Bray-Curtis distances.
+proportions_obj <- transform_sample_counts(phyloseq_obj, function(otu) otu / sum(otu))
+ordination_obj <- ordinate(proportions_obj, method = opt$method, distance = opt$distance)
+# Start PDF device driver and generate the plot.
+dev.new()
+pdf(file = opt$output)
+plot_ordination(proportions_obj, ordination_obj, type = opt$type)
+dev.off()
diff -r 000000000000 -r c0101c72b8af phyloseq_plot_richness.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/phyloseq_plot_richness.R Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,19 @@
+#!/usr/bin/env Rscript
+
+suppressPackageStartupMessages(library("optparse"))
+suppressPackageStartupMessages(library("phyloseq"))
+
+option_list <- list(
+ make_option(c("--input"), action = "store", dest = "input", help = "Input RDS file containing a phyloseq object"),
+ make_option(c("--output"), action = "store", dest = "output", help = "Output PDF")
+)
+
+parser <- OptionParser(usage = "%prog [options] file", option_list = option_list)
+args <- parse_args(parser, positional_arguments = TRUE)
+opt <- args$options
+phyloseq_obj <- readRDS(opt$input)
+# Start PDF device driver and generate the plot.
+dev.new()
+pdf(file = opt$output)
+plot_richness(phyloseq_obj, x = "samples", color = "samples")
+dev.off()
diff -r 000000000000 -r c0101c72b8af test-data/biom-refseq.fasta
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/biom-refseq.fasta Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,29 @@
+>GG_OTU_1
+AACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAGACAAGTTGGAAGTGAAATCCA
+TGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCCGTGTAGCGGTG
+AAATGCGTAGAGATGGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCTGAGGCACGAAAGCGTG
+GGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACTAGGTGTGGGGGTCTGACCCCTTCCGT
+GCCGGAGTTAACAC
+>GG_OTU_2
+TACGTAGGGAGCAAGCGTTATCCGGATTTATTGGGTGTAAAGGGTGCGTAGACGGGAGAACAAGTTAGTTGTGAAAGCCC
+TCGGCTTAACTGAGGAACTGCAACTAAAACTATTTTTCTTGAGTGCAGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTG
+AAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACTGTAACTGACGTTGAGGCACGAAAGTGTG
+GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACACCGTAAACGATGGATACTAGGTGTAGGAGATGATTTCATCATCT
+GTGCCGAAAGCAAACGCAATAAGTATCCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGATTGACGGGGCCCG
+CACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATA
+>GG_OTU_3
+TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATCACAAGTCAGAAGTGAAAAATC
+CGGGGGCTCCAACCCCGGAACTGCTTTTGAAACTGTGGAGCTGGAGTGCAGGAGAGGTAAGCGGAATTCCTAGTGTAGCG
+GTAGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGCTTACTGGACTGTAACTGACGTTGAGGCTCGAAAGC
+GTGGGGAGC
+>GG_OTU_4
+TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGCAGGCGGTGCGGCAAGTCTGATGTGAAAGCCC
+GGGGCTCAACCCCGGTACTGCATTGGAAACTGTCGTACTAGAGTGTCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTG
+AAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGCTGAGGCTCGAAAGCGTG
+GGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTTGGGAAGCATTGCTTCTCGGT
+GCCGTCGCAAACGCAGTAAGTATTCCACCTGGGGGATACGTTTCGACAAGAATAGAAACTACAAAAGGAATTAGGACGGG
+GACCCGCACAAGCGGTGAGCATGTGGTTAATCGAAGCAACGCGAAGAACCTTA
+>GG_OTU_5
+AACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAGACAAGTTGGAAGTGAAACCATG
+GGCTCAACCCATGAATTGCTTTCAAAACTGTTTTTCTTGAGTTAGTGCAGAGGTAGATGGAATTCCCGGTGTAGCGGTGG
+AATGCGTAGATATCGGGA
diff -r 000000000000 -r c0101c72b8af test-data/biom-tree.phy
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/biom-tree.phy Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,1 @@
+(((GG_OTU_1:0.00892,GG_OTU_2:0.01408)1.000.2:0.12196,GG_OTU_3:0.16022)0.995.2:0.01869,(GG_OTU_4:0.08976,GG_OTU_5:0.0665)0.766:0.09714)0.764.3;
diff -r 000000000000 -r c0101c72b8af test-data/output.phyloseq
Binary file test-data/output.phyloseq has changed
diff -r 000000000000 -r c0101c72b8af test-data/rich_dense_otu_table.biom
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/rich_dense_otu_table.biom Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,56 @@
+{
+ "id":null,
+ "format": "Biological Observation Matrix 1.0.0-dev",
+ "format_url": "http://biom-format.org",
+ "type": "OTU table",
+ "generated_by": "QIIME revision XYZ",
+ "date": "2011-12-19T19:00:00",
+ "rows":[
+ {"id":"GG_OTU_1", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}},
+ {"id":"GG_OTU_2", "metadata":{"taxonomy":["k__Bacteria", "p__Cyanobacteria", "c__Nostocophycideae", "o__Nostocales", "f__Nostocaceae", "g__Dolichospermum", "s__"]}},
+ {"id":"GG_OTU_3", "metadata":{"taxonomy":["k__Archaea", "p__Euryarchaeota", "c__Methanomicrobia", "o__Methanosarcinales", "f__Methanosarcinaceae", "g__Methanosarcina", "s__"]}},
+ {"id":"GG_OTU_4", "metadata":{"taxonomy":["k__Bacteria", "p__Firmicutes", "c__Clostridia", "o__Halanaerobiales", "f__Halanaerobiaceae", "g__Halanaerobium", "s__Halanaerobiumsaccharolyticum"]}},
+ {"id":"GG_OTU_5", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}}
+ ],
+ "columns":[
+ {"id":"Sample1", "metadata":{
+ "BarcodeSequence":"CGCTTATCGAGA",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"gut",
+ "Description":"human gut"}},
+ {"id":"Sample2", "metadata":{
+ "BarcodeSequence":"CATACCAGTAGC",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"gut",
+ "Description":"human gut"}},
+ {"id":"Sample3", "metadata":{
+ "BarcodeSequence":"CTCTCTACCTGT",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"gut",
+ "Description":"human gut"}},
+ {"id":"Sample4", "metadata":{
+ "BarcodeSequence":"CTCTCGGCCTGT",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"skin",
+ "Description":"human skin"}},
+ {"id":"Sample5", "metadata":{
+ "BarcodeSequence":"CTCTCTACCAAT",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"skin",
+ "Description":"human skin"}},
+ {"id":"Sample6", "metadata":{
+ "BarcodeSequence":"CTAACTACCAAT",
+ "LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
+ "BODY_SITE":"skin",
+ "Description":"human skin"}}
+ ],
+ "matrix_type": "dense",
+ "matrix_element_type": "int",
+ "shape": [5,6],
+ "data": [[0,0,1,0,0,0],
+ [5,1,0,2,3,1],
+ [0,0,1,4,2,0],
+ [2,1,1,0,0,1],
+ [0,1,1,0,0,0]]
+ }
+
diff -r 000000000000 -r c0101c72b8af test-data/rich_dense_otu_table.biom2
Binary file test-data/rich_dense_otu_table.biom2 has changed
diff -r 000000000000 -r c0101c72b8af test-data/sample_data.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/sample_data.tabular Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,3 @@
+ Property Number
+SRR14190457 Early 1
+SRR14190458 Late 2
\ No newline at end of file
diff -r 000000000000 -r c0101c72b8af test-data/sequence_table.dada2_sequencetable
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/sequence_table.dada2_sequencetable Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,65 @@
+ SRR14190457 SRR14190458
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 178 11
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 136 15
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 129 16
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 128 22
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 110 22
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 104 22
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 97 24
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 90 25
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC 88 26
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 86 26
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 84 27
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 83 27
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC 71 28
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC 71 28
+GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC 70 28
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 68 28
+GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC 66 31
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC 66 32
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC 65 38
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 62 38
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 61 39
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC 60 40
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC 59 42
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC 58 42
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 57 43
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 57 45
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC 56 45
+GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC 55 47
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 54 47
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 54 47
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC 53 51
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC 52 52
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 52 52
+GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC 51 53
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC 47 54
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC 47 54
+GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 47 55
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC 45 56
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC 45 57
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC 43 57
+GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC 42 58
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC 42 59
+GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC 40 60
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC 39 61
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC 38 62
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC 38 65
+GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC 32 66
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC 31 66
+GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 28 68
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC 28 70
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 28 71
+GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC 28 71
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 27 83
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC 27 84
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC 26 86
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC 26 88
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC 25 90
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC 24 97
+GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC 22 104
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC 22 110
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC 22 128
+GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC 16 129
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC 15 136
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC 11 178
diff -r 000000000000 -r c0101c72b8af test-data/taxonomy_table.tabular
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/taxonomy_table.tabular Sat Mar 16 07:56:17 2024 +0000
@@ -0,0 +1,65 @@
+ Kingdom Phylum Class Order Family Genus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGGCGGGCTTGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATATCTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTATGTAACTAGAGTGTCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Tyzzerella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGAACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGAGTGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTGGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGAGAGTGCAGGCGGTTTTCTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAGGGTAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCCGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGACTGGTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGTCAGTCTTGAGTACAGTAGAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTCACTGGACTGCAACTGACACTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGATTAGTCAGTCTGTCTTAAAAGTTCGGGGCTTAACCCCGTGATGGGATGGAAACTGCTAATCTAGAGTATCGGAGAGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAGGGGAGCGAAAGGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Veillonella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCTGATGTGAAAGCCCCCGGCTTAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales NA NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCGCGCAGGTGGTTAATTAAGTCTGATGTGAAAGCCCACGGCTTAACCGTGGAGGGTCATTGGAAACTGGTTGACTTGAGTGCAGAAGAGGGAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Turicibacter
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGGCTATTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAAACTGGTTGTCTTGAGTGCAGTTGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTACTAAACTGTAACTGACATTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATGACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGGGCGCAGACGGCTGTGCAAGCCAGGAGTGAAAGCCCGGGGCCCAACCCCGGGACTGCTCTTGGAACTGCCTGGCTGGAGTGCAGGAGGGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTTGTGTAAGTCTGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTGGAAACTGTCAATCTAGAGTACCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCGAAGCAAGTCTGAAGTGAAAACCCAGGGCTCAACCCTGGGACTGCTTTGGAAACTGTTTTGCTAGAGTGTCGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Lachnoclostridium
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCGGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGCTTGCAAGTTGGAAGTGAAATCTCGGGGCTTAACCCCGAAACTGCTTTCAAAACTGCGAGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGGGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Butyricicoccaceae Butyricicoccus
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGAGTAAGACAGATGTGAAATCCCCGAGCTTAACTCGGGAATGGCATATGTGACTGCTCGACTAGAGTGTGTCAGAGGGAGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAAGAACACCGATGGCGAAGGCAGCCTCCTGGGACATAACTGACGCTCAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Burkholderiales Sutterellaceae Parasutterella
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCGGGACGTTAAGTGAGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Pseudocitrobacter
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCGCGCAGGCGGCGTCGTAAGTCGGTCTTAAAAGTGCGGGGCTTAACCCCGTGAGGGGACCGAAACTGCGATGCTAGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAAGCGGCTTTCTGGACGACAACTGACGCTGAGGCGCGAAAGCCAGGGGAGCAAACGGGATTAGAAACCCCCGTAGTCC Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Megasphaera
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTGCTTAGGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGAAGTGCATCGGAAACCGGGCGACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGTTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGTGGGATATTAAGTCAGCTGTGAAAGTTTGGGGCTCAACCTTAAAATTGCAGTTGATACTGGTTTCCTTGAGTACGGTACAGGTGGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAGGAACTCCGATTGCGAAGGCAGCTTACTGTAGTTGTACTGACGCTGAAGCTCGAAGGTGCGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGGAGGATACGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGCTTTTTAAGTCAGTGGTGAAAAGCTGTGGCTCAACCATAGTCTTGCCGTTGAAACTGAGGAGCTTGAGTGTAGATGCTGTAGGCGGAACGCGTAGTGTAGCGGTGAAATGCATAGATATTACGCAGAACTCCGATTGCGAAGGCAGCTTACAAAGTTACAACTGACACTGAAGCACGAGAGCGTGGGTATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTTGTTTTGTAAGTCAGTGGTGAAACCCCGTGGCTCAACCCCGGGCATGCCATTGAAACTGCAGGACTTGAGAATGGACGAGGCAGGCGGAATGTGTGGTGTAGCGGTGAAATGCATAGATATCACACAGAACACCGATTGCGAAGGCAGCTTGCCAGACCATATCTGACACTGAAGCACGAAAGCGTGGGTATCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales NA NA
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCATGTAGGCGGGCTTTTAAGTCCGACGTGAAAATGCGGGGCTTAACCCCGTATGGCGTTGGATACTGGAAGTCTTGAGTGCAGGAGAGGAAAGGGGAATTCCCAGTGTAGCGGTGAAATGCGCAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCAAACGGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Acidaminococcus
+GTGTCAGCCGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGACGCTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGGTGTCTTGAGTACAGTAGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTGCGAAGGCAGCTTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTGGGTATCAAACAGGATTAGAAACCCCAGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAGGCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCGCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACATAGGTTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTTGTTTGTTAAGTCTGGCGTTAAATTTTGGGGCTCAACCCCAAACCGCGTTGGATACTGGCAAACTAGAGTTATGTAGAGGTTAGCGGAATTCCTTGTGAAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAACATGGCGAAGGCAGCTAACTGGACATACACTGACACTGAGAGACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTCC Bacteria Firmicutes Bacilli Mycoplasmatales Mycoplasmataceae Mycoplasma
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAAATAAGTCTAATGTGAAAGCCCTCGGCTTAACCGAGGAACTGCATCGGAAACTGTTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAAACTTGAGTGCAGAAGGGGAGAGTGGAATTCCTATTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTATCCGGAATGATTGGGCGTAAAGGGTGCGTAGGCGGTACGGTAAGTCTGTAGTAAAAGGCGGCAGCTCAACTGTCGTAGGCTATGGAAACTGTCGAACTAGAGTGCAGAAGAGGGCGATGGAACTCCATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGTCGTCTGGTCTGTAACTGACGCTGAAGCACGAAAGCGTGGGGAGCAAATAGGATTAGAAACCCTGGTAGTCC Bacteria Firmicutes Bacilli Erysipelotrichales Erysipelotrichaceae Faecalicoccus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Bacilli Staphylococcales Staphylococcaceae Staphylococcus
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGTGCAGGCGGTTCAATAAGTCTGATGTGAAAGCCTTCGGCTCAACCGGAGAATTGCATCAGAAACTGTTGAACTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGTCAGCAGCCGCGGTAATACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCCGTGGATTAAGTGTGTTGTGAAATGTAGGCGCTCAACGTCTGACTTGCAGCGCATACTGGTCCACTTGAGTGCGCGCAACGCGGGCGGAATTTGTCGTGTAGCGGTGAAATGCTTAGATATGACGAAGAACCCCGATTGCGAAGGCAGCTCGCGGGAGCGCAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCGTGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGTGTGGCAAGTCTGATGTGAAAGGCATGGGCTCAACCTGTGGACTGCATTGGAAACTGTCATACTTGAGTGCCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGATACCCCTGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCCGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTAGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCAGCCGGTCTGGTAAGTCATATGTGAAATGCGTGGGCTCAACCCACGAACTGCATTTGAAACTGCGAGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Oscillospiraceae Oscillibacter
+GTGTCAGCAGCCGCGGTAAAACGTAGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAAGCAAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATTGGGAGGAACACCAGTGGCGAAGGCGCCTTTCTGGACTGTGTCTGACGCTGAGATGCGAAAGCCAGGGTAGCGAACGGGATTAGATACCCCCGTAGTCC Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae NA
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGATGGACAAGTCTGATGTGAAAGGCTGGGGCTCAACCCCGGGACTGCATTGGAAACTGCCCGTCTTGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACGATCACTGACGTTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGTAGGCGGCTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCGATGGCGAAGGCAGGTCTCTGGGCCGTCACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGAAACCCCCGTAGTCC Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
+GTGTCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCTCGTAGGTGGTTTGTCGCGTCGTCTGTGAAATTCTGGGGCTTAACTCCGGGCGTGCAGGCGATACGGGCATAACTTGAGTGCTGTAGGGGTAACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTTACTGGGCAGTTACTGACGCTGAGGAGCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCAGTAGTCC Bacteria Actinobacteriota Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
+GTGTCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGAAAGATAAGTCTGATGTGAAAGCCCCCGGCTTAACCGAGGAATTGCATCGGAAACTGTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCTAGTAGTCC Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCTTGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAAACCCGCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Azorhizophilus
+GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCCGTAGTCC Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia/Shigella
+GTGTCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACGGCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCGCGTAGTCC Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia
+GTGTCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGCTCGTAGGTGGTTGATCGCGTCGGAAGTGTAATCTTGGGGCTTAACCCTGAGCGTGCTTTCGATACGGGTTGACTTGAGGAAGGTAGGGGAGAATGGAATTCCTGGTGGAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGGCCTTTCCTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGCTTAGATACCCCTGTAGTCC Bacteria Actinobacteriota Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium
+GTGTCAGCAGCCGCGGTAATACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCGAGCCGTTGAAACTGGCGGTCTTGAGTGAGCGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCTCAACTGACGCTCATGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCCCGTAGTCC Bacteria Bacteroidota Bacteroidia Bacteroidales Muribaculaceae NA
+GTGTCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGTGCGTAGGCGGGCGTATAAGTCAGTGGTGAAATCCTGGAGCTTAACTCCAGAACTGCCATTGATACTATATGTCTTGAATATGGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCATAGATATGACATAGAACACCTATTGCGAAGGCAGCTTACTACGCCTATATTGACGCTGAGGCACGAAAGCGTGGGGATCAAACAGGATTAGAAACCCGAGTAGTCC Bacteria Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae Asinibacterium