Mercurial > repos > iuc > raceid_main
view scripts/RaceID_class.R @ 0:e01c989c7543 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/raceid commit 39918bfdb08f06862ca395ce58a6f5e4f6dd1a5e
author | iuc |
---|---|
date | Sat, 03 Mar 2018 17:34:16 -0500 |
parents | |
children |
line wrap: on
line source
## load required packages. require(tsne) require(pheatmap) require(MASS) require(cluster) require(mclust) require(flexmix) require(lattice) require(fpc) require(amap) require(RColorBrewer) require(locfit) ## class definition SCseq <- setClass("SCseq", slots = c(expdata = "data.frame", ndata = "data.frame", fdata = "data.frame", distances = "matrix", tsne = "data.frame", kmeans = "list", background = "list", out = "list", cpart = "vector", fcol = "vector", filterpar = "list", clusterpar = "list", outlierpar ="list" )) setValidity("SCseq", function(object) { msg <- NULL if ( ! is.data.frame(object@expdata) ){ msg <- c(msg, "input data must be data.frame") }else if ( nrow(object@expdata) < 2 ){ msg <- c(msg, "input data must have more than one row") }else if ( ncol(object@expdata) < 2 ){ msg <- c(msg, "input data must have more than one column") }else if (sum( apply( is.na(object@expdata),1,sum ) ) > 0 ){ msg <- c(msg, "NAs are not allowed in input data") }else if (sum( apply( object@expdata,1,min ) ) < 0 ){ msg <- c(msg, "negative values are not allowed in input data") } if (is.null(msg)) TRUE else msg } ) setMethod("initialize", signature = "SCseq", definition = function(.Object, expdata ){ .Object@expdata <- expdata .Object@ndata <- expdata .Object@fdata <- expdata validObject(.Object) return(.Object) } ) setGeneric("filterdata", function(object, mintotal=3000, minexpr=5, minnumber=1, maxexpr=500, downsample=FALSE, dsn=1, rseed=17000) standardGeneric("filterdata")) setMethod("filterdata", signature = "SCseq", definition = function(object,mintotal,minexpr,minnumber,maxexpr,downsample,dsn,rseed) { if ( ! is.numeric(mintotal) ) stop( "mintotal has to be a positive number" ) else if ( mintotal <= 0 ) stop( "mintotal has to be a positive number" ) if ( ! is.numeric(minexpr) ) stop( "minexpr has to be a non-negative number" ) else if ( minexpr < 0 ) stop( "minexpr has to be a non-negative number" ) if ( ! is.numeric(minnumber) ) stop( "minnumber has to be a non-negative integer number" ) else if ( round(minnumber) != minnumber | minnumber < 0 ) stop( "minnumber has to be a non-negative integer number" ) if ( ! ( is.numeric(downsample) | is.logical(downsample) ) ) stop( "downsample has to be logical (TRUE/FALSE)" ) if ( ! is.numeric(dsn) ) stop( "dsn has to be a positive integer number" ) else if ( round(dsn) != dsn | dsn <= 0 ) stop( "dsn has to be a positive integer number" ) object@filterpar <- list(mintotal=mintotal, minexpr=minexpr, minnumber=minnumber, maxexpr=maxexpr, downsample=downsample, dsn=dsn) object@ndata <- object@expdata[,apply(object@expdata,2,sum,na.rm=TRUE) >= mintotal] if ( downsample ){ set.seed(rseed) object@ndata <- downsample(object@expdata,n=mintotal,dsn=dsn) }else{ x <- object@ndata object@ndata <- as.data.frame( t(t(x)/apply(x,2,sum))*median(apply(x,2,sum,na.rm=TRUE)) + .1 ) } x <- object@ndata object@fdata <- x[apply(x>=minexpr,1,sum,na.rm=TRUE) >= minnumber,] x <- object@fdata object@fdata <- x[apply(x,1,max,na.rm=TRUE) < maxexpr,] return(object) } ) downsample <- function(x,n,dsn){ x <- round( x[,apply(x,2,sum,na.rm=TRUE) >= n], 0) nn <- min( apply(x,2,sum) ) for ( j in 1:dsn ){ z <- data.frame(GENEID=rownames(x)) rownames(z) <- rownames(x) initv <- rep(0,nrow(z)) for ( i in 1:dim(x)[2] ){ y <- aggregate(rep(1,nn),list(sample(rep(rownames(x),x[,i]),nn)),sum) na <- names(x)[i] names(y) <- c("GENEID",na) rownames(y) <- y$GENEID z[,na] <- initv k <- intersect(rownames(z),y$GENEID) z[k,na] <- y[k,na] z[is.na(z[,na]),na] <- 0 } rownames(z) <- as.vector(z$GENEID) ds <- if ( j == 1 ) z[,-1] else ds + z[,-1] } ds <- ds/dsn + .1 return(ds) } dist.gen <- function(x,method="euclidean", ...) if ( method %in% c("spearman","pearson","kendall") ) as.dist( 1 - cor(t(x),method=method,...) ) else dist(x,method=method,...) dist.gen.pairs <- function(x,y,...) dist.gen(t(cbind(x,y)),...) clustfun <- function(x,clustnr=20,bootnr=50,metric="pearson",do.gap=TRUE,SE.method="Tibs2001SEmax",SE.factor=.25,B.gap=50,cln=0,rseed=17000) { if ( clustnr < 2) stop("Choose clustnr > 1") di <- dist.gen(t(x),method=metric) if ( do.gap | cln > 0 ){ gpr <- NULL if ( do.gap ){ set.seed(rseed) gpr <- clusGap(as.matrix(di), FUN = kmeans, K.max = clustnr, B = B.gap) if ( cln == 0 ) cln <- maxSE(gpr$Tab[,3],gpr$Tab[,4],method=SE.method,SE.factor) } if ( cln <= 1 ) { clb <- list(result=list(partition=rep(1,dim(x)[2])),bootmean=1) names(clb$result$partition) <- names(x) return(list(x=x,clb=clb,gpr=gpr,di=di)) } clb <- clusterboot(di,B=bootnr,distances=FALSE,bootmethod="boot",clustermethod=KmeansCBI,krange=cln,scaling=FALSE,multipleboot=FALSE,bscompare=TRUE,seed=rseed) return(list(x=x,clb=clb,gpr=gpr,di=di)) } } KmeansCBI <- function (data, krange, k = NULL, scaling = FALSE, runs = 1, criterion = "ch", method="euclidean",...) { if (!is.null(k)) krange <- k if (!identical(scaling, FALSE)) sdata <- scale(data, center = TRUE, scale = scaling) else sdata <- data c1 <- Kmeansruns(sdata, krange, runs = runs, criterion = criterion, method = method, ...) partition <- c1$cluster cl <- list() nc <- krange for (i in 1:nc) cl[[i]] <- partition == i out <- list(result = c1, nc = nc, clusterlist = cl, partition = partition, clustermethod = "kmeans") out } Kmeansruns <- function (data, krange = 2:10, criterion = "ch", iter.max = 100, runs = 100, scaledata = FALSE, alpha = 0.001, critout = FALSE, plot = FALSE, method="euclidean", ...) { data <- as.matrix(data) if (criterion == "asw") sdata <- dist(data) if (scaledata) data <- scale(data) cluster1 <- 1 %in% krange crit <- numeric(max(krange)) km <- list() for (k in krange) { if (k > 1) { minSS <- Inf kmopt <- NULL for (i in 1:runs) { options(show.error.messages = FALSE) repeat { kmm <- try(Kmeans(data, k, iter.max = iter.max, method=method, ...)) if (class(kmm) != "try-error") break } options(show.error.messages = TRUE) swss <- sum(kmm$withinss) if (swss < minSS) { kmopt <- kmm minSS <- swss } if (plot) { par(ask = TRUE) pairs(data, col = kmm$cluster, main = swss) } } km[[k]] <- kmopt crit[k] <- switch(criterion, asw = cluster.stats(sdata, km[[k]]$cluster)$avg.silwidth, ch = calinhara(data, km[[k]]$cluster)) if (critout) cat(k, " clusters ", crit[k], "\n") } } if (cluster1) cluster1 <- dudahart2(data, km[[2]]$cluster, alpha = alpha)$cluster1 k.best <- which.max(crit) if (cluster1) k.best <- 1 km[[k.best]]$crit <- crit km[[k.best]]$bestk <- k.best out <- km[[k.best]] out } binompval <- function(p,N,n){ pval <- pbinom(n,round(N,0),p,lower.tail=TRUE) pval[!is.na(pval) & pval > 0.5] <- 1-pval[!is.na(pval) & pval > 0.5] return(pval) } setGeneric("clustexp", function(object,clustnr=20,bootnr=50,metric="pearson",do.gap=TRUE,SE.method="Tibs2001SEmax",SE.factor=.25,B.gap=50,cln=0,rseed=17000) standardGeneric("clustexp")) setMethod("clustexp", signature = "SCseq", definition = function(object,clustnr,bootnr,metric,do.gap,SE.method,SE.factor,B.gap,cln,rseed) { if ( ! is.numeric(clustnr) ) stop("clustnr has to be a positive integer") else if ( round(clustnr) != clustnr | clustnr <= 0 ) stop("clustnr has to be a positive integer") if ( ! is.numeric(bootnr) ) stop("bootnr has to be a positive integer") else if ( round(bootnr) != bootnr | bootnr <= 0 ) stop("bootnr has to be a positive integer") if ( ! ( metric %in% c( "spearman","pearson","kendall","euclidean","maximum","manhattan","canberra","binary","minkowski") ) ) stop("metric has to be one of the following: spearman, pearson, kendall, euclidean, maximum, manhattan, canberra, binary, minkowski") if ( ! ( SE.method %in% c( "firstSEmax","Tibs2001SEmax","globalSEmax","firstmax","globalmax") ) ) stop("SE.method has to be one of the following: firstSEmax, Tibs2001SEmax, globalSEmax, firstmax, globalmax") if ( ! is.numeric(SE.factor) ) stop("SE.factor has to be a non-negative integer") else if ( SE.factor < 0 ) stop("SE.factor has to be a non-negative integer") if ( ! ( is.numeric(do.gap) | is.logical(do.gap) ) ) stop( "do.gap has to be logical (TRUE/FALSE)" ) if ( ! is.numeric(B.gap) ) stop("B.gap has to be a positive integer") else if ( round(B.gap) != B.gap | B.gap <= 0 ) stop("B.gap has to be a positive integer") if ( ! is.numeric(cln) ) stop("cln has to be a non-negative integer") else if ( round(cln) != cln | cln < 0 ) stop("cln has to be a non-negative integer") if ( ! is.numeric(rseed) ) stop("rseed has to be numeric") if ( !do.gap & cln == 0 ) stop("cln has to be a positive integer or do.gap has to be TRUE") object@clusterpar <- list(clustnr=clustnr,bootnr=bootnr,metric=metric,do.gap=do.gap,SE.method=SE.method,SE.factor=SE.factor,B.gap=B.gap,cln=cln,rseed=rseed) y <- clustfun(object@fdata,clustnr,bootnr,metric,do.gap,SE.method,SE.factor,B.gap,cln,rseed) object@kmeans <- list(kpart=y$clb$result$partition, jaccard=y$clb$bootmean, gap=y$gpr) object@distances <- as.matrix( y$di ) set.seed(111111) object@fcol <- sample(rainbow(max(y$clb$result$partition))) return(object) } ) setGeneric("findoutliers", function(object,outminc=5,outlg=2,probthr=1e-3,thr=2**-(1:40),outdistquant=.75) standardGeneric("findoutliers")) setMethod("findoutliers", signature = "SCseq", definition = function(object,outminc,outlg,probthr,thr,outdistquant) { if ( length(object@kmeans$kpart) == 0 ) stop("run clustexp before findoutliers") if ( ! is.numeric(outminc) ) stop("outminc has to be a non-negative integer") else if ( round(outminc) != outminc | outminc < 0 ) stop("outminc has to be a non-negative integer") if ( ! is.numeric(outlg) ) stop("outlg has to be a non-negative integer") else if ( round(outlg) != outlg | outlg < 0 ) stop("outlg has to be a non-negative integer") if ( ! is.numeric(probthr) ) stop("probthr has to be a number between 0 and 1") else if ( probthr < 0 | probthr > 1 ) stop("probthr has to be a number between 0 and 1") if ( ! is.numeric(thr) ) stop("thr hast to be a vector of numbers between 0 and 1") else if ( min(thr) < 0 | max(thr) > 1 ) stop("thr hast to be a vector of numbers between 0 and 1") if ( ! is.numeric(outdistquant) ) stop("outdistquant has to be a number between 0 and 1") else if ( outdistquant < 0 | outdistquant > 1 ) stop("outdistquant has to be a number between 0 and 1") object@outlierpar <- list( outminc=outminc,outlg=outlg,probthr=probthr,thr=thr,outdistquant=outdistquant ) ### calibrate background model m <- log2(apply(object@fdata,1,mean)) v <- log2(apply(object@fdata,1,var)) f <- m > -Inf & v > -Inf m <- m[f] v <- v[f] mm <- -8 repeat{ fit <- lm(v ~ m + I(m^2)) if( coef(fit)[3] >= 0 | mm >= 3){ break } mm <- mm + .5 f <- m > mm m <- m[f] v <- v[f] } object@background <- list() object@background$vfit <- fit object@background$lvar <- function(x,object) 2**(coef(object@background$vfit)[1] + log2(x)*coef(object@background$vfit)[2] + coef(object@background$vfit)[3] * log2(x)**2) object@background$lsize <- function(x,object) x**2/(max(x + 1e-6,object@background$lvar(x,object)) - x) ### identify outliers out <- c() stest <- rep(0,length(thr)) cprobs <- c() for ( n in 1:max(object@kmeans$kpart) ){ if ( sum(object@kmeans$kpart == n) == 1 ){ cprobs <- append(cprobs,.5); names(cprobs)[length(cprobs)] <- names(object@kmeans$kpart)[object@kmeans$kpart == n]; next } x <- object@fdata[,object@kmeans$kpart == n] x <- x[apply(x,1,max) > outminc,] z <- t( apply(x,1,function(x){ apply( cbind( pnbinom(round(x,0),mu=mean(x),size=object@background$lsize(mean(x),object)) , 1 - pnbinom(round(x,0),mu=mean(x),size=object@background$lsize(mean(x),object)) ),1, min) } ) ) cp <- apply(z,2,function(x){ y <- p.adjust(x,method="BH"); y <- y[order(y,decreasing=FALSE)]; return(y[outlg]);}) f <- cp < probthr cprobs <- append(cprobs,cp) if ( sum(f) > 0 ) out <- append(out,names(x)[f]) for ( j in 1:length(thr) ) stest[j] <- stest[j] + sum( cp < thr[j] ) } object@out <-list(out=out,stest=stest,thr=thr,cprobs=cprobs) ### cluster outliers clp2p.cl <- c() cols <- names(object@fdata) di <- as.data.frame(object@distances) for ( i in 1:max(object@kmeans$kpart) ) { tcol <- cols[object@kmeans$kpart == i] if ( sum(!(tcol %in% out)) > 1 ) clp2p.cl <- append(clp2p.cl,as.vector(t(di[tcol[!(tcol %in% out)],tcol[!(tcol %in% out)]]))) } clp2p.cl <- clp2p.cl[clp2p.cl>0] cpart <- object@kmeans$kpart cadd <- list() if ( length(out) > 0 ){ if (length(out) == 1){ cadd <- list(out) }else{ n <- out m <- as.data.frame(di[out,out]) for ( i in 1:length(out) ){ if ( length(n) > 1 ){ o <- order(apply(cbind(m,1:dim(m)[1]),1,function(x) min(x[1:(length(x)-1)][-x[length(x)]])),decreasing=FALSE) m <- m[o,o] n <- n[o] f <- m[,1] < quantile(clp2p.cl,outdistquant) | m[,1] == min(clp2p.cl) ind <- 1 if ( sum(f) > 1 ) for ( j in 2:sum(f) ) if ( apply(m[f,f][j,c(ind,j)] > quantile(clp2p.cl,outdistquant) ,1,sum) == 0 ) ind <- append(ind,j) cadd[[i]] <- n[f][ind] g <- ! n %in% n[f][ind] n <- n[g] m <- m[g,g] if ( sum(g) == 0 ) break }else if (length(n) == 1){ cadd[[i]] <- n break } } } for ( i in 1:length(cadd) ){ cpart[cols %in% cadd[[i]]] <- max(cpart) + 1 } } ### determine final clusters for ( i in 1:max(cpart) ){ d <- object@fdata[,cols[cpart == i]] if ( sum(cpart == i) == 1 ) cent <- d else cent <- apply(d,1,mean) if ( i == 1 ) dcent <- data.frame(cent) else dcent <- cbind(dcent,cent) if ( i == 1 ) tmp <- data.frame(apply(object@fdata[,cols],2,dist.gen.pairs,y=cent,method=object@clusterpar$metric)) else tmp <- cbind(tmp,apply(object@fdata[,cols],2,dist.gen.pairs,y=cent,method=object@clusterpar$metric)) } cpart <- apply(tmp,1,function(x) order(x,decreasing=FALSE)[1]) for ( i in max(cpart):1){if (sum(cpart==i)==0) cpart[cpart>i] <- cpart[cpart>i] - 1 } object@cpart <- cpart set.seed(111111) object@fcol <- sample(rainbow(max(cpart))) return(object) } ) setGeneric("plotgap", function(object) standardGeneric("plotgap")) setMethod("plotgap", signature = "SCseq", definition = function(object){ if ( length(object@kmeans$kpart) == 0 ) stop("run clustexp before plotgap") plot(object@kmeans$gap) } ) setGeneric("plotsilhouette", function(object) standardGeneric("plotsilhouette")) setMethod("plotsilhouette", signature = "SCseq", definition = function(object){ if ( length(object@kmeans$kpart) == 0 ) stop("run clustexp before plotsilhouette") if ( length(unique(object@kmeans$kpart)) < 2 ) stop("only a single cluster: no silhouette plot") kpart <- object@kmeans$kpart distances <- dist.gen(object@distances) si <- silhouette(kpart,distances) plot(si) } ) setGeneric("plotjaccard", function(object) standardGeneric("plotjaccard")) setMethod("plotjaccard", signature = "SCseq", definition = function(object){ if ( length(object@kmeans$kpart) == 0 ) stop("run clustexp before plotjaccard") if ( length(unique(object@kmeans$kpart)) < 2 ) stop("only a single cluster: no Jaccard's similarity plot") barplot(object@kmeans$jaccard,names.arg=1:length(object@kmeans$jaccard),ylab="Jaccard's similarity") } ) setGeneric("plotoutlierprobs", function(object) standardGeneric("plotoutlierprobs")) setMethod("plotoutlierprobs", signature = "SCseq", definition = function(object){ if ( length(object@cpart) == 0 ) stop("run findoutliers before plotoutlierprobs") p <- object@kmeans$kpart[ order(object@kmeans$kpart,decreasing=FALSE)] x <- object@out$cprobs[names(p)] fcol <- object@fcol for ( i in 1:max(p) ){ y <- -log10(x + 2.2e-16) y[p != i] <- 0 if ( i == 1 ) b <- barplot(y,ylim=c(0,max(-log10(x + 2.2e-16))*1.1),col=fcol[i],border=fcol[i],names.arg=FALSE,ylab="-log10prob") else barplot(y,add=TRUE,col=fcol[i],border=fcol[i],names.arg=FALSE,axes=FALSE) } abline(-log10(object@outlierpar$probthr),0,col="black",lty=2) d <- b[2,1] - b[1,1] y <- 0 for ( i in 1:max(p) ) y <- append(y,b[sum(p <=i),1] + d/2) axis(1,at=(y[1:(length(y)-1)] + y[-1])/2,lab=1:max(p)) box() } ) setGeneric("plotbackground", function(object) standardGeneric("plotbackground")) setMethod("plotbackground", signature = "SCseq", definition = function(object){ if ( length(object@cpart) == 0 ) stop("run findoutliers before plotbackground") m <- apply(object@fdata,1,mean) v <- apply(object@fdata,1,var) fit <- locfit(v~lp(m,nn=.7),family="gamma",maxk=500) plot(log2(m),log2(v),pch=20,xlab="log2mean",ylab="log2var",col="grey") lines(log2(m[order(m)]),log2(object@background$lvar(m[order(m)],object)),col="red",lwd=2) lines(log2(m[order(m)]),log2(fitted(fit)[order(m)]),col="orange",lwd=2,lty=2) legend("topleft",legend=substitute(paste("y = ",a,"*x^2 + ",b,"*x + ",d,sep=""),list(a=round(coef(object@background$vfit)[3],2),b=round(coef(object@background$vfit)[2],2),d=round(coef(object@background$vfit)[1],2))),bty="n") } ) setGeneric("plotsensitivity", function(object) standardGeneric("plotsensitivity")) setMethod("plotsensitivity", signature = "SCseq", definition = function(object){ if ( length(object@cpart) == 0 ) stop("run findoutliers before plotsensitivity") plot(log10(object@out$thr), object@out$stest, type="l",xlab="log10 Probability cutoff", ylab="Number of outliers") abline(v=log10(object@outlierpar$probthr),col="red",lty=2) } ) setGeneric("clustdiffgenes", function(object,pvalue=.01) standardGeneric("clustdiffgenes")) setMethod("clustdiffgenes", signature = "SCseq", definition = function(object,pvalue){ if ( length(object@cpart) == 0 ) stop("run findoutliers before clustdiffgenes") if ( ! is.numeric(pvalue) ) stop("pvalue has to be a number between 0 and 1") else if ( pvalue < 0 | pvalue > 1 ) stop("pvalue has to be a number between 0 and 1") cdiff <- list() x <- object@ndata y <- object@expdata[,names(object@ndata)] part <- object@cpart for ( i in 1:max(part) ){ if ( sum(part == i) == 0 ) next m <- apply(x,1,mean) n <- if ( sum(part == i) > 1 ) apply(x[,part == i],1,mean) else x[,part == i] no <- if ( sum(part == i) > 1 ) median(apply(y[,part == i],2,sum))/median(apply(x[,part == i],2,sum)) else sum(y[,part == i])/sum(x[,part == i]) m <- m*no n <- n*no pv <- binompval(m/sum(m),sum(n),n) d <- data.frame(mean.all=m,mean.cl=n,fc=n/m,pv=pv)[order(pv,decreasing=FALSE),] cdiff[[paste("cl",i,sep=".")]] <- d[d$pv < pvalue,] } return(cdiff) } ) setGeneric("diffgenes", function(object,cl1,cl2,mincount=5) standardGeneric("diffgenes")) setMethod("diffgenes", signature = "SCseq", definition = function(object,cl1,cl2,mincount){ part <- object@cpart cl1 <- c(cl1) cl2 <- c(cl2) if ( length(part) == 0 ) stop("run findoutliers before diffgenes") if ( ! is.numeric(mincount) ) stop("mincount has to be a non-negative number") else if ( mincount < 0 ) stop("mincount has to be a non-negative number") if ( length(intersect(cl1, part)) < length(unique(cl1)) ) stop( paste("cl1 has to be a subset of ",paste(sort(unique(part)),collapse=","),"\n",sep="") ) if ( length(intersect(cl2, part)) < length(unique(cl2)) ) stop( paste("cl2 has to be a subset of ",paste(sort(unique(part)),collapse=","),"\n",sep="") ) f <- apply(object@ndata[,part %in% c(cl1,cl2)],1,max) > mincount x <- object@ndata[f,part %in% cl1] y <- object@ndata[f,part %in% cl2] if ( sum(part %in% cl1) == 1 ) m1 <- x else m1 <- apply(x,1,mean) if ( sum(part %in% cl2) == 1 ) m2 <- y else m2 <- apply(y,1,mean) if ( sum(part %in% cl1) == 1 ) s1 <- sqrt(x) else s1 <- sqrt(apply(x,1,var)) if ( sum(part %in% cl2) == 1 ) s2 <- sqrt(y) else s2 <- sqrt(apply(y,1,var)) d <- ( m1 - m2 )/ apply( cbind( s1, s2 ),1,mean ) names(d) <- rownames(object@ndata)[f] if ( sum(part %in% cl1) == 1 ){ names(x) <- names(d) x <- x[order(d,decreasing=TRUE)] }else{ x <- x[order(d,decreasing=TRUE),] } if ( sum(part %in% cl2) == 1 ){ names(y) <- names(d) y <- y[order(d,decreasing=TRUE)] }else{ y <- y[order(d,decreasing=TRUE),] } return(list(z=d[order(d,decreasing=TRUE)],cl1=x,cl2=y,cl1n=cl1,cl2n=cl2)) } ) plotdiffgenes <- function(z,gene=g){ if ( ! is.list(z) ) stop("first arguments needs to be output of function diffgenes") if ( length(z) < 5 ) stop("first arguments needs to be output of function diffgenes") if ( sum(names(z) == c("z","cl1","cl2","cl1n","cl2n")) < 5 ) stop("first arguments needs to be output of function diffgenes") if ( length(gene) > 1 ) stop("only single value allowed for argument gene") if ( !is.numeric(gene) & !(gene %in% names(z$z)) ) stop("argument gene needs to be within rownames of first argument or a positive integer number") if ( is.numeric(gene) ){ if ( gene < 0 | round(gene) != gene ) stop("argument gene needs to be within rownames of first argument or a positive integer number") } x <- if ( is.null(dim(z$cl1)) ) z$cl1[gene] else t(z$cl1[gene,]) y <- if ( is.null(dim(z$cl2)) ) z$cl2[gene] else t(z$cl2[gene,]) plot(1:length(c(x,y)),c(x,y),ylim=c(0,max(c(x,y))),xlab="",ylab="Expression",main=gene,cex=0,axes=FALSE) axis(2) box() u <- 1:length(x) rect(u - .5,0,u + .5,x,col="red") v <- c(min(u) - .5,max(u) + .5) axis(1,at=mean(v),lab=paste(z$cl1n,collapse=",")) lines(v,rep(mean(x),length(v))) lines(v,rep(mean(x)-sqrt(var(x)),length(v)),lty=2) lines(v,rep(mean(x)+sqrt(var(x)),length(v)),lty=2) u <- ( length(x) + 1 ):length(c(x,y)) v <- c(min(u) - .5,max(u) + .5) rect(u - .5,0,u + .5,y,col="blue") axis(1,at=mean(v),lab=paste(z$cl2n,collapse=",")) lines(v,rep(mean(y),length(v))) lines(v,rep(mean(y)-sqrt(var(y)),length(v)),lty=2) lines(v,rep(mean(y)+sqrt(var(y)),length(v)),lty=2) abline(v=length(x) + .5) } setGeneric("clustheatmap", function(object,final=FALSE,hmethod="single") standardGeneric("clustheatmap")) setMethod("clustheatmap", signature = "SCseq", definition = function(object,final,hmethod){ if ( final & length(object@cpart) == 0 ) stop("run findoutliers before clustheatmap") if ( !final & length(object@kmeans$kpart) == 0 ) stop("run clustexp before clustheatmap") x <- object@fdata part <- if ( final ) object@cpart else object@kmeans$kpart na <- c() j <- 0 for ( i in 1:max(part) ){ if ( sum(part == i) == 0 ) next j <- j + 1 na <- append(na,i) d <- x[,part == i] if ( sum(part == i) == 1 ) cent <- d else cent <- apply(d,1,mean) if ( j == 1 ) tmp <- data.frame(cent) else tmp <- cbind(tmp,cent) } names(tmp) <- paste("cl",na,sep=".") if ( max(part) > 1 ) cclmo <- hclust(dist.gen(as.matrix(dist.gen(t(tmp),method=object@clusterpar$metric))),method=hmethod)$order else cclmo <- 1 q <- part for ( i in 1:max(part) ){ q[part == na[cclmo[i]]] <- i } part <- q di <- as.data.frame( as.matrix( dist.gen(t(object@distances)) ) ) pto <- part[order(part,decreasing=FALSE)] ptn <- c() for ( i in 1:max(pto) ){ pt <- names(pto)[pto == i]; z <- if ( length(pt) == 1 ) pt else pt[hclust(as.dist(t(di[pt,pt])),method=hmethod)$order]; ptn <- append(ptn,z) } col <- object@fcol mi <- min(di,na.rm=TRUE) ma <- max(di,na.rm=TRUE) layout(matrix(data=c(1,3,2,4), nrow=2, ncol=2), widths=c(5,1,5,1), heights=c(5,1,1,1)) ColorRamp <- colorRampPalette(brewer.pal(n = 7,name = "RdYlBu"))(100) ColorLevels <- seq(mi, ma, length=length(ColorRamp)) if ( mi == ma ){ ColorLevels <- seq(0.99*mi, 1.01*ma, length=length(ColorRamp)) } par(mar = c(3,5,2.5,2)) image(as.matrix(di[ptn,ptn]),col=ColorRamp,axes=FALSE) abline(0,1) box() tmp <- c() for ( u in 1:max(part) ){ ol <- (0:(length(part) - 1)/(length(part) - 1))[ptn %in% names(x)[part == u]] points(rep(0,length(ol)),ol,col=col[cclmo[u]],pch=15,cex=.75) points(ol,rep(0,length(ol)),col=col[cclmo[u]],pch=15,cex=.75) tmp <- append(tmp,mean(ol)) } axis(1,at=tmp,lab=cclmo) axis(2,at=tmp,lab=cclmo) par(mar = c(3,2.5,2.5,2)) image(1, ColorLevels, matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), col=ColorRamp, xlab="",ylab="", xaxt="n") layout(1) return(cclmo) } ) setGeneric("comptsne", function(object,rseed=15555) standardGeneric("comptsne")) setMethod("comptsne", signature = "SCseq", definition = function(object,rseed){ if ( length(object@kmeans$kpart) == 0 ) stop("run clustexp before comptsne") set.seed(rseed) di <- dist.gen(as.matrix(object@distances)) ts <- tsne(di,k=2) object@tsne <- as.data.frame(ts) return(object) } ) setGeneric("plottsne", function(object,final=TRUE) standardGeneric("plottsne")) setMethod("plottsne", signature = "SCseq", definition = function(object,final){ if ( length(object@tsne) == 0 ) stop("run comptsne before plottsne") if ( final & length(object@cpart) == 0 ) stop("run findoutliers before plottsne") if ( !final & length(object@kmeans$kpart) == 0 ) stop("run clustexp before plottsne") part <- if ( final ) object@cpart else object@kmeans$kpart plot(object@tsne,xlab="Dim 1",ylab="Dim 2",pch=20,cex=1.5,col="lightgrey") for ( i in 1:max(part) ){ if ( sum(part == i) > 0 ) text(object@tsne[part == i,1],object@tsne[part == i,2],i,col=object@fcol[i],cex=.75,font=4) } } ) setGeneric("plotlabelstsne", function(object,labels=NULL) standardGeneric("plotlabelstsne")) setMethod("plotlabelstsne", signature = "SCseq", definition = function(object,labels){ if ( is.null(labels ) ) labels <- names(object@ndata) if ( length(object@tsne) == 0 ) stop("run comptsne before plotlabelstsne") plot(object@tsne,xlab="Dim 1",ylab="Dim 2",pch=20,cex=1.5,col="lightgrey") text(object@tsne[,1],object@tsne[,2],labels,cex=.5) } ) setGeneric("plotsymbolstsne", function(object,types=NULL) standardGeneric("plotsymbolstsne")) setMethod("plotsymbolstsne", signature = "SCseq", definition = function(object,types){ if ( is.null(types) ) types <- names(object@fdata) if ( length(object@tsne) == 0 ) stop("run comptsne before plotsymbolstsne") if ( length(types) != ncol(object@fdata) ) stop("types argument has wrong length. Length has to equal to the column number of object@ndata") coloc <- rainbow(length(unique(types))) syms <- c() plot(object@tsne,xlab="Dim 1",ylab="Dim 2",pch=20,col="grey") for ( i in 1:length(unique(types)) ){ f <- types == sort(unique(types))[i] syms <- append( syms, ( (i-1) %% 25 ) + 1 ) points(object@tsne[f,1],object@tsne[f,2],col=coloc[i],pch=( (i-1) %% 25 ) + 1,cex=1) } legend("topleft", legend=sort(unique(types)), col=coloc, pch=syms) } ) setGeneric("plotexptsne", function(object,g,n="",logsc=FALSE) standardGeneric("plotexptsne")) setMethod("plotexptsne", signature = "SCseq", definition = function(object,g,n="",logsc=FALSE){ if ( length(object@tsne) == 0 ) stop("run comptsne before plottsne") if ( length(intersect(g,rownames(object@ndata))) < length(unique(g)) ) stop("second argument does not correspond to set of rownames slot ndata of SCseq object") if ( !is.numeric(logsc) & !is.logical(logsc) ) stop("argument logsc has to be logical (TRUE/FALSE)") if ( n == "" ) n <- g[1] l <- apply(object@ndata[g,] - .1,2,sum) + .1 if (logsc) { f <- l == 0 l <- log(l) l[f] <- NA } mi <- min(l,na.rm=TRUE) ma <- max(l,na.rm=TRUE) ColorRamp <- colorRampPalette(rev(brewer.pal(n = 7,name = "RdYlBu")))(100) ColorLevels <- seq(mi, ma, length=length(ColorRamp)) v <- round((l - mi)/(ma - mi)*99 + 1,0) layout(matrix(data=c(1,3,2,4), nrow=2, ncol=2), widths=c(5,1,5,1), heights=c(5,1,1,1)) par(mar = c(3,5,2.5,2)) plot(object@tsne,xlab="Dim 1",ylab="Dim 2",main=n,pch=20,cex=0,col="grey") for ( k in 1:length(v) ){ points(object@tsne[k,1],object@tsne[k,2],col=ColorRamp[v[k]],pch=20,cex=1.5) } par(mar = c(3,2.5,2.5,2)) image(1, ColorLevels, matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), col=ColorRamp, xlab="",ylab="", xaxt="n") layout(1) } )