view raceid_main.xml @ 0:e01c989c7543 draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/raceid commit 39918bfdb08f06862ca395ce58a6f5e4f6dd1a5e
author iuc
date Sat, 03 Mar 2018 17:34:16 -0500
parents
children
line wrap: on
line source

<tool id="raceid_main" name="RaceID" version="@VERSION@.0">
    <description>Race ID pipeline for single-cell RNA analysis</description>
    <macros>
        <import>macros.xml</import>
    </macros>
    <expand macro="requirements" />

    <command detect_errors="exit_code"><![CDATA[    
    ## Filter
    echo "Filtering" &&
    Rscript '@SCRIPT_DIR@/raceID_filter.R' '@SCRIPT_DIR@' '$rconf_source_filter' &&

    ## Kmeans
    echo "K-means" &&
    Rscript '@SCRIPT_DIR@/raceID_kmeans_heatmap.R' '@SCRIPT_DIR@' '$rconf_source_kmeans' &&

    mkdir '${out_html.files_path}' &&
    mv plot_*.svg '${out_html.files_path}' &&

    echo '
    <html><head></head>
    <body>
    <h1>RaceID k-means</title></h1><br />
    <h3>Gap statistic</h3>
    <img src="plot_gap.svg" ><br />
    <h3>Jaccard Similarity</h3>
    <img src="plot_jaccard.svg" ><br />
    <h3>Silhouette Plot</h3>
    <img src="plot_silhouette.svg" ><br />
    <h3>Cluster Heatmap</h3>
    <img src="plot_clustheatmap.svg" ><br />
    ' > '$out_html' &&

    ## Outlier -- relies on kmeans
    echo "Outlier" &&
    Rscript '@SCRIPT_DIR@/raceID_outlierdetect.R' '@SCRIPT_DIR@' '$rconf_source_outlier' &&

    mv plot_*.svg '${out_html.files_path}' &&
    echo '
    <br/>
    <h1>RaceID Outlier Detection</h1><br />
    <h3>Background</h3>
    <img src="plot_background.svg" ><br />
    <h3>Sensitivity</h3>
    <img src="plot_sensitivity.svg" ><br />
    <h3>Outlier Probability</h3>
    <img src="plot_outlierprobs.svg" ><br />
    <h3>Final Heatmap</h3>
    <img src="plot_finalheat.svg" ><br />
    ' >> '$out_html' &&

    ## tSNE -- relies on kmeans and outlier
    echo "tSNE" &&
    Rscript '@SCRIPT_DIR@/raceID_tsne.R' '@SCRIPT_DIR@' '$rconf_source_tsne' &&

    ##mkdir '${out_html.files_path}' &&
    mv plot_*.svg '${out_html.files_path}' &&

    echo '
    <br/>
    <h1>RaceID tSNE</h1><br />
    <h3>Initial k-means clusters</h3>
    <br /><img src="plot_initial.svg" >
    <h3>Final clusters</h3>
    <br /><img src="plot_final.svg" >
    <h3>Labelled</h3>
    <br /><img src="plot_labels.svg" >
    <h3>Symbols</h3>
    <br /><img src="plot_symbols.svg" >
    ' >> '$out_html' &&

    #if $section_tsne.genexp_select.use_gexpr == "Yes":
        #for $gene_set in $section_tsne.genexp_select.geneset:
            echo "<h3>Expression for: [${gene_set.genes.value}]</h3>" >> '$out_html' &&
            echo "<br /><img src=\"plot_${gene_set.genes.value}\" >" >> '$out_html' &&
        #end for
    #end if
    echo '</body></html>' >> '$out_html'

    ]]></command>

    <configfiles>
        <configfile name="rconf_source_filter">
            count_matrix = '$section_filter.inp_count'
            filtering = as.logical( '$section_filter.filtering.do_filter.value' )
            output_table = '$out_table_filter'
            output_rdat = '@out_rdat_filter@'

            # Defaults
            control_genes_filter="";
            c_mintotal = 3000; c_minexpr = 5; c_maxexpr = 500; c_minnumber = 1;
            c_downsample = F; c_dsn = 1; c_rseed = 17000;

            #if $section_filter.filtering.do_filter.value == "T":
            control_genes_filter = '$section_filter.filtering.remove_nonendog.value'
                #if $section_filter.filtering.default_filtering_select.do_filter_defaults.value == "advanced_options":
            c_mintotal = as.integer( '$section_filter.filtering.default_filtering_select.mintotal' )
            c_minexpr = as.integer( '$section_filter.filtering.default_filtering_select.minexpr' )
            c_maxexpr = as.integer( '$section_filter.filtering.default_filtering_select.maxexpr' )
            c_minnumber = as.integer( '$section_filter.filtering.default_filtering_select.minnumber' )
                    #if $section_filter.filtering.default_filtering_select.dsn:
            c_downsample = T;
            c_dsn = as.integer( '$section_filter.filtering.default_filtering_select.dsn' )
                    #end if
            c_rseed = as.integer( '$section_filter.filtering.default_filtering_select.filter_rseed' )
                #end if
            #end if
        </configfile>
        <configfile name="rconf_source_kmeans">
            sc = readRDS( '@inp_rdat_kmeans@' )
            output_rdat = '@out_rdat_kmeans@'
            c_metric = 'pearson'; c_cln = 0; dogap = T; c_clustnr = 20; bgap = 50;
            semethod = 'Tibs2001SEmax'; sefactor = .25; c_bootnr = 50; c_rseed = 17000;

            c_metric = '$section_kmeans.metric'
            c_cln = as.integer( '$section_kmeans.cln' )
            dogap = as.logical( '$section_kmeans.gapstats.dogap.value' )
                #if $section_kmeans.gapstats.dogap.value == "T":
            c_clustnr = as.integer( '$section_kmeans.gapstats.clustnr' )
            bgap = as.integer( '$section_kmeans.gapstats.bgap' )
            semethod = '$section_kmeans.gapstats.semethod.value'
            sefactor = as.numeric( '$section_kmeans.gapstats.sefactor' )
                #end if
            c_bootnr = as.integer( '$section_kmeans.bootnr' )
            c_rseed = as.integer( '$section_kmeans.kmeans_rseed' )

            generate_final_rdata = T
        </configfile>
        <configfile name="rconf_source_outlier">
            sc = readRDS( '@inp_rdat_outlier@' )
            output_rdat = '@out_rdat_outlier@'
            output_table= '$out_table_outlier'
            # set defaults
            c_outminc = 5; c_outlg = 2; c_probthr = 1e-3; c_outdistquant = 0.75;

            c_outminc = as.integer( '$section_outlier.outminc' )
            c_outlg = as.integer( '$section_outlier.outlg' )
            c_probthr = as.numeric( '$section_outlier.probthr' )
            c_outdistquant = as.numeric( '$section_outlier.probthr' )

            generate_final_rdata = T
        </configfile>
        <configfile name="rconf_source_tsne" >
            sc = readRDS( '@inp_rdat_tsne@' )
            output_rdat = '$out_rdat_tsne'  # final output RData
            regex_val = ""
            c_rseed = '$section_tsne.tsne_rseed'
            gene_sets = ""
            #if $section_tsne.genexp_select.use_gexpr == 'Yes':
            gene_sets = '#for $gns in $section_tsne.genexp_select.geneset# $gns.genes.value _split_ #end for#'
            regex_val = '$section_tsne.genexp_select.regex'
            #end if
            final_rdata = T
        </configfile>
    </configfiles>
    <!-- Filter -->
    <inputs>
        <section name="section_filter" title="Filtering and Normalisation" expanded="true" >
            <param name="inp_count" type="data" format="tsv" label="Count matrix" help="A spreadsheet file with the first row indicating cell IDs, and the first column indicating transcript or gene IDs" />
            <conditional name="filtering" >
                <param name="do_filter" type="select" label="Perform filtering?"  >
                    <option value="T" selected="true" >Yes</option>
                    <option value="F" >No</option>
                </param>
                <when value="F" />
                <when value="T" >
                    <param name="remove_nonendog" type="text" label="Control gene name prefixes" help="If ERCC or other non-endogenous spike-in RNAs are within the data, please specify their prefixes (e.g. 'ERCC, HK00') in order to filter them out. (Leave blank if control genes were not used in the experiment.)" />
                    <conditional name="default_filtering_select" >
                        <param name="do_filter_defaults" type="select" label="Parameters" >
                            <option value="use_defaults" selected="true" >Use Defaults</option>
                            <option value="advanced_options" >Advanced Options</option >
                        </param>
                        <when value="use_defaults" />
                        <when value="advanced_options" >
                            <param name="mintotal" type="integer" value="3000" min="1" label="Minimum total transcripts" help="Discard cells with less than this number of total transcripts before normalisation." />
                            <param name="minexpr" type="integer" value="5" min="1" label="Minimum expressed genes" help="Discard genes that do not express a minimum of this number of transcripts after normalisation."/>
                            <param name="maxexpr" type="integer" value="500" min="0" label="Maximum expressed genes" help="Discard genes that express more than this number of transcripts after normalisation. Useful if genes have oversaturated counts derived from UMI data. Set to 0 to disable this step." />

                            <param name="minnumber" type="integer" value="1" label="Minimum Cells" help="Discard genes that do not have the minimum expressed transcripts in at least this number of cells" />

                            <param name="dsn" type="integer" value="1" min="1" optional="true" label="Downsample counts" help="Average transcripts across this many samples. If this is set to 1, then sampling noise should be comparable across cells. For higher values, the data approximates median normalisation." />
                            <param name="filter_rseed" type="integer" value="17000" min="0" label="Seed value (for reproducibility)" />
                        </when>
                    </conditional>
                </when>
            </conditional>
            <param name="filter_table_output" type="boolean" checked="false" label="Generate output table of filtered matrix?" />
        </section>

        <!-- Kmeans -->
        <section name="section_kmeans" title="Clustering (k-means)" expanded="true" >
            <param name="metric" type="select" label="Distance metric">
                <option value="pearson" selected="true" />
                <option value="spearman" />
                <option value="kendall" />
                <option value="euclidean" />
                <option value="maximum" />
                <option value="manhattan" />
                <option value="canberra" />
                <option value="binary" />
                <option value="minkowski" />
            </param>

            <param name="cln" type="integer" value="0" min="0" label="Number of clusters for k-means" help="Leave as zero to automatically determine the number based on gap statistics" />

            <conditional name="gapstats">
                <param name="dogap" type="select" label="Use gap statistics to determine clusters" >
                    <option value="T" selected="true" >Yes</option>
                    <option value="F" >No</option>
                </param>

                <when value="F" />
                <when value="T" >
                    <param name="clustnr" type="integer" value="2" min="0" label="Maximum number of clusters for the computation of the gap statistic" help="If more major cell types are expected, a higher number than 2 should bde chosen." />
                    <param name="bgap" type="integer" value="50" min="1" label="Number of bootstraps to run the gap statistic calculation" />
                    <param name="semethod" type="select" label="Method used for determining first local maximum" >
                        <option value="Tibs2001SEmax" selected="true" />
                        <option value="globalmax" />
                        <option value="firstmax" />
                        <option value="firstSEmax" />
                        <option value="globalSEmax" />
                    </param>

                    <param name="sefactor" type="float" value="0.25" min="0.0001" max="1" label="Fraction of the standard deviation that the local maximum must differ from neighbouring points." />
                </when>
            </conditional>

            <param name="bootnr" type="integer" value="50" min="1" label="Number of bootstraps for clustering" />
            <param name="kmeans_rseed" type="integer" value="17000" min="1" label="Seed value (for reproducibility)" />
        </section>
        <!-- Outlier -->
        <section name="section_outlier" title="Outlier Detection" expanded="true" >
            <param name="outminc" type="integer" value="5" min="1" label="Expression cutoff threshold for outlier genes"  />
            <param name="probthr" type="float" value="1e-3" min="1e-8" max="1" label="Probability threshold of observing a given gene expression level in a cell" help="If lower than this cutoff, the cell is considered an outlier for this gene." />
            <param name="outlg" type="integer" value="2" min="1" label="Minimal number of outlier genes required to flag an outlier cells" />
            <param name="outdistquant" type="select" label="Merge cells into outlier clusters if their similarity exceeds this quantile in a similarity distribution for all cell pairs" >
                <option value="0.25">first (0.25)</option>
                <option value="0.50">second (0.50)</option>
                <option value="0.75">third (0.75)</option>
            </param>
        </section>
        <section name="section_tsne" title="tSNE plots" expanded="true" >
            <!-- tSNE -->
            <conditional name="genexp_select" >
                <param name="use_gexpr" type="select" label="Highlight the expression of a set of (related) genes over all clusters?" >
                    <option value="Yes" />
                    <option value="No" selected="true" />
                </param>
                <when value="No" />
                <when value="Yes" >
                    <repeat name="geneset" title="Gene sets" >
                        <param name="genes" type="text" label="Gene(s) of interest" help="e.g. 'Apoa1__chr9+Apoa1bp__chr6'" >
                            <sanitizer invalid_char="" >
                                <valid initial="string.letters,string.digits">
                                    <add value="+" /><add value="_" /><add value="-" />
                                </valid>
                            </sanitizer>
                        </param>
                    </repeat>
                    <param name="regex" type="text" value="" label="Regular expression to apply over cell labels to identify cell types" help="e.g. for barcodes [ cl_1_ACCAG, cl_1_ACGGA, cl_2_TTAC, ... ] can be grouped into [ cl_1, cl_2, ... ] by the expression: '_[ACTG]+', which removes the last '_' and any following characters belonging to A C T or G." >
                        <sanitizer invalid_char="" >
                            <valid initial="string.printable" />
                        </sanitizer>
                    </param>
                </when>
            </conditional>
            <param name="tsne_rseed" type="integer" min="1" value="15555" label="Seed (for reproducibility)" />
        </section>
    </inputs>

    <outputs>
        <!-- Filter -->
        <data name="out_table_filter" format="tabular" label="${tool.name} on ${on_string}: Filter Table" >
            <filter>section_filter['filtering']['do_filter'] == "T"</filter>
        </data>
        <!-- Outlier -->
        <data name="out_table_outlier" format="tabular" label="${tool.name} on ${on_string}: Outliers" />
        <!-- TSNE -->
        <data name="out_html" format="html" label="${tool.name} on ${on_string}: Web Report" />
        <data name="out_rdat_tsne" format="rdata" label="${tool.name} on ${on_string}: tSNE RData" />
    </outputs>

    <tests>
        <!-- vanilla run on all but filter -->
        <test>
            <!-- Filter -->
            <param name="inp_count" value="transcript_counts_intestine_sub.tsv" />
            <!-- These test params are MANDATORY due to the reduced size of the
                 input set (due to file size constraints) -->
            <param name="do_filter" value="T" />
            <param name="do_filter_defaults" value="advanced_options" />
            <param name="mintotal" value="10" />
            <param name="minexpr" value="1" />
            <param name="maxexpr" value="2000" />
            <!-- Outlier -->
            <!-- ... With reduced minc -->
            <param name="inp_rdat_outlier" value="trans_outlier_in.rds" />
            <param name="outminc" value="1" />
            <output name="out_table_outlier" value="out_outlier1.table" />
            <!-- tSNE -->
            <output name="out_html" value="out_1.html" />
            <output name="out_rdat_tsne" value="out_tsne1.rdat" />
        </test>
        <!-- manual gap statistics -->
        <test>
            <!-- Filter -->
            <param name="inp_count" value="transcript_counts_intestine_sub.tsv" />
            <param name="filter_table_output" value="T" />
            <!-- See message from previous test .. -->
            <param name="do_filter" value="T" />
            <param name="do_filter_defaults" value="advanced_options" />
            <param name="mintotal" value="10" />
            <param name="minexpr" value="1" />
            <param name="maxexpr" value="2000" />
            <output name="out_table_filter" value="out_filter2.table" />
            <!-- Kmeans -->
            <!-- ... Auto gap with gap params -->
            <param name="inp_rdat_kmeans" value="trans_filter_ds.rds" />
            <param name="clustnr" value="5" />
            <param name="bgap" value="10" />
            <param name="semethod" value="globalSEmax" />
            <param name="sefactor" value="0.6" />
            <!-- Outlier -->
            <!-- ... With reduced minc -->
            <param name="inp_rdat_outlier" value="trans_outlier_in.rds" />
            <param name="outminc" value="1" />
            <output name="out_table_outlier" value="out_outlier2.table" />
            <!-- tSNE -->
            <output name="out_html" value="out_2.html" />
            <output name="out_rdat_tsne" value="out_tsne2.rdat" />
        </test>
        <!-- complex run -->
        <test>
            <!-- Filter -->
            <param name="inp_count" value="transcript_counts_intestine_sub.tsv" />
            <param name="do_filter" value="T" />
            <param name="do_filter_defaults" value="advanced_options" />
            <param name="mintotal" value="10" />
            <param name="minexpr" value="1" />
            <param name="maxexpr" value="2000" />
            <param name="dsn" value="3" />
            <output name="out_table_filter" value="out_filter3.table" />
            <!-- Kmeans -->
            <!-- ... Set k-value, no gap, no R obj, metrics and bootrepl. -->
            <param name="inp_rdat_kmeans" value="trans_filter_ds.rds" />
            <param name="metric" value="manhattan" />
            <param name="cln" value="6" />
            <param name="dogap" value="T" />
            <param name="bootnr" value="10" />
            <!-- Outlier -->
            <!-- ... No R out, other opts-->
            <param name="inp_rdat_outlier" value="trans_outlier_in.rds" />
            <param name="outminc" value="1" />
            <param name="probthr" value="1e-5" />
            <param name="outlg" value="10" />
            <param name="outdistquant" value="0.50" />
            <output name="out_table_outlier" value="out_outlier3.table" />
            <!-- tSNE -->
            <param name="use_gexpr" value="Yes" />
            <repeat name="geneset">
                <param name="genes" value="1110007C09Rik__chr13+1110037F02Rik__chr4+1300002K09Rik__chr4" />
            </repeat>
            <repeat name="geneset">
                <param name="genes" value="0610010K14Rik__chr11+1500009L16Rik__chr10" />
            </repeat>
            <param name="regex" value="[^_]+__" />
            <output name="out_html" value="out_3.html" />
            <output name="out_rdat_tsne" value="out_tsne3.rdat" />
        </test>
    </tests>

    <help><![CDATA[

******
RaceID
******

RaceID(v2) pipeline for scRNA, performs: 
 * filtering
 * normalisation
 * k-means clustering
 * outlier detection

Generates heatmaps, tSNE plots, and an R object which can be passed into the RaceID DiffGenes tool for expression analysis between different sets of clusters.

**Filtering**

This takes a count matrix/spreadsheet with cellIDs as columns and geneIDs/transcriptIDs as rows, and filters based on standard single-cell RNA pre-processing methods (minimum/maximum transcript expression in a minimum of X number of cells). A filtered matrix is produced as output

**K-means Clustering**

This performs k-means clustering and plots gap statistics, jaccard similarity, silhoutte plots, and preliminary heatmap.

**Outlier Detection**

This performs outlier detection by calibrating against a background noise model within each cluster, and searching for cells that fall outside of the transcript count distribution for that gene (modelled as a negative binomial). Cells that are outliers for more than a user-set amount of genes are suspected as being outlier cells.

**tSNE plots**

Generates multiple tSNE plots with custom expression highlighting for gene subsets of interest. A tSNE map can be drawn for original clusters (derived via k-means) and final clustering (derived from outliers). Any number of genes subsets of interest can be specified to measure expression within clusters for related marker genes or genes characterising a cell type.

    ]]></help>
    <expand macro="citations" />
</tool>