Mercurial > repos > iuc > scanpy_cluster_reduce_dimension
comparison cluster_reduce_dimension.xml @ 5:6f2d2c7f77ee draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 6b5d0d6f038ebd0fae5dbca02ada51555518ed85"
author | iuc |
---|---|
date | Mon, 10 Feb 2020 05:27:02 -0500 |
parents | 766be978777a |
children | 77b91b9bdf52 |
comparison
equal
deleted
inserted
replaced
4:766be978777a | 5:6f2d2c7f77ee |
---|---|
1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster," version="@galaxy_version@" profile="@profile@"> | 1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@galaxy_version@" profile="@profile@"> |
2 <description>infer trajectories and embed with scanpy</description> | 2 <description>with scanpy</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 <xml name="pca_inputs"> | 5 <xml name="pca_inputs"> |
6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help=""/> | 6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help=""/> |
7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""/> | 7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""/> |
538 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell | 538 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell |
539 analysis by Levine et al, 2015. | 539 analysis by Levine et al, 2015. |
540 | 540 |
541 This requires to run `pp.neighbors`, first. | 541 This requires to run `pp.neighbors`, first. |
542 | 542 |
543 More details on the `scanpy documentation | 543 More details on the `tl.louvain scanpy documentation |
544 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.louvain.html>`_ | 544 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.louvain.html>`_ |
545 | 545 |
546 Cluster cells into subgroups (`tl.leiden`) | 546 Cluster cells into subgroups (`tl.leiden`) |
547 ========================================== | 547 ========================================== |
548 | 548 |
549 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). | 549 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). |
550 | 550 |
551 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. | 551 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. |
552 | 552 |
553 More details on the `scanpy documentation | 553 More details on the `tl.leiden scanpy documentation |
554 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.leiden.html>`_ | 554 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.leiden.html>`_ |
555 | 555 |
556 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` | 556 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` |
557 ============================================================================================================ | 557 ============================================================================================================ |
558 | 558 |
559 @CMD_pca_outputs@ | 559 @CMD_pca_outputs@ |
560 | 560 |
561 More details on the `scanpy documentation | 561 More details on the `pp.pca scanpy documentation |
562 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.pca.html>`__ | 562 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.pca.html>`__ |
563 | 563 |
564 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` | 564 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` |
565 ============================================================================================================ | 565 ============================================================================================================ |
566 | 566 |
567 @CMD_pca_outputs@ | 567 @CMD_pca_outputs@ |
568 | 568 |
569 More details on the `scanpy documentation | 569 More details on the `tl.pca scanpy documentation |
570 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.pca.html>`__ | 570 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.pca.html>`__ |
571 | 571 |
572 Diffusion Maps, using `tl.diffmap` | 572 Diffusion Maps, using `tl.diffmap` |
573 ================================== | 573 ================================== |
574 | 574 |
575 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell | 575 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell |
586 | 586 |
587 The diffusion map representation of data are added to the return AnnData in the multi-dimensional | 587 The diffusion map representation of data are added to the return AnnData in the multi-dimensional |
588 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors | 588 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors |
589 as colum. It can be accessed using the inspect tool for AnnData | 589 as colum. It can be accessed using the inspect tool for AnnData |
590 | 590 |
591 More details on the `scanpy documentation | 591 More details on the `tl.diffmap scanpy documentation |
592 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.diffmap.html>`__ | 592 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.diffmap.html>`__ |
593 | 593 |
594 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` | 594 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` |
595 ======================================================================= | 595 ======================================================================= |
596 | 596 |
597 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been | 597 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been |
598 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, | 598 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, |
599 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). | 599 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). |
600 | 600 |
601 It returns `X_tsne`, tSNE coordinates of data. | 601 It returns `X_tsne`, tSNE coordinates of data. |
602 | 602 |
603 More details on the `scanpy documentation | 603 More details on the `tl.tsne scanpy documentation |
604 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.tsne.html>`__ | 604 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.tsne.html>`__ |
605 | 605 |
606 Embed the neighborhood graph using UMAP, using `tl.umap` | 606 Embed the neighborhood graph using UMAP, using `tl.umap` |
607 ======================================================== | 607 ======================================================== |
608 | 608 |
609 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning | 609 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning |
618 <https://doi.org/10.1101/298430>`__. | 618 <https://doi.org/10.1101/298430>`__. |
619 | 619 |
620 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional | 620 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional |
621 observations annotation (obsm). This data is accessible using the inspect tool for AnnData | 621 observations annotation (obsm). This data is accessible using the inspect tool for AnnData |
622 | 622 |
623 More details on the `scanpy documentation | 623 More details on the `tl.umap scanpy documentation |
624 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.umap.html>`__ | 624 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.umap.html>`__ |
625 | 625 |
626 Force-directed graph drawing, using `tl.draw_graph` | 626 Force-directed graph drawing, using `tl.draw_graph` |
627 =================================================== | 627 =================================================== |
628 | 628 |
629 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. | 629 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. |
637 The default layout (ForceAtlas2) uses the package fa2. | 637 The default layout (ForceAtlas2) uses the package fa2. |
638 | 638 |
639 The coordinates of graph layout are added to the return AnnData in the multi-dimensional | 639 The coordinates of graph layout are added to the return AnnData in the multi-dimensional |
640 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. | 640 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. |
641 | 641 |
642 More details on the `scanpy documentation | 642 More details on the `tl.draw_graph scanpy documentation |
643 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.draw_graph.html>`__ | 643 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.draw_graph.html>`__ |
644 | 644 |
645 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) | 645 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) |
646 =============================================================================== | 646 =============================================================================== |
647 | 647 |
648 Reconstruct the progression of a biological process from snapshot | 648 Reconstruct the progression of a biological process from snapshot |
667 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. | 667 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. |
668 | 668 |
669 The tool is similar to the R package `destiny` of Angerer et al (2016). | 669 The tool is similar to the R package `destiny` of Angerer et al (2016). |
670 | 670 |
671 More details on the `tl.dpt scanpy documentation | 671 More details on the `tl.dpt scanpy documentation |
672 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.dpt.html>`_ | 672 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.dpt.html>`_ |
673 | 673 |
674 | 674 |
675 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) | 675 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) |
676 ======================================================================================= | 676 ======================================================================================= |
677 | 677 |
698 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) | 698 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) |
699 | 699 |
700 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects | 700 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects |
701 | 701 |
702 More details on the `tl.paga scanpy documentation | 702 More details on the `tl.paga scanpy documentation |
703 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.paga.html>`_ | 703 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.paga.html>`_ |
704 ]]></help> | 704 ]]></help> |
705 <expand macro="citations"/> | 705 <expand macro="citations"/> |
706 </tool> | 706 </tool> |