comparison cluster_reduce_dimension.xml @ 5:6f2d2c7f77ee draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 6b5d0d6f038ebd0fae5dbca02ada51555518ed85"
author iuc
date Mon, 10 Feb 2020 05:27:02 -0500
parents 766be978777a
children 77b91b9bdf52
comparison
equal deleted inserted replaced
4:766be978777a 5:6f2d2c7f77ee
1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster," version="@galaxy_version@" profile="@profile@"> 1 <tool id="scanpy_cluster_reduce_dimension" name="Cluster, infer trajectories and embed" version="@galaxy_version@" profile="@profile@">
2 <description>infer trajectories and embed with scanpy</description> 2 <description>with scanpy</description>
3 <macros> 3 <macros>
4 <import>macros.xml</import> 4 <import>macros.xml</import>
5 <xml name="pca_inputs"> 5 <xml name="pca_inputs">
6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help=""/> 6 <param argument="n_comps" type="integer" min="0" value="50" label="Number of principal components to compute" help=""/>
7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""/> 7 <param argument="dtype" type="text" value="float32" label="Numpy data type string to which to convert the result" help=""/>
538 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell 538 of Traag et al,2017. The Louvain algorithm has been proposed for single-cell
539 analysis by Levine et al, 2015. 539 analysis by Levine et al, 2015.
540 540
541 This requires to run `pp.neighbors`, first. 541 This requires to run `pp.neighbors`, first.
542 542
543 More details on the `scanpy documentation 543 More details on the `tl.louvain scanpy documentation
544 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.louvain.html>`_ 544 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.louvain.html>`_
545 545
546 Cluster cells into subgroups (`tl.leiden`) 546 Cluster cells into subgroups (`tl.leiden`)
547 ========================================== 547 ==========================================
548 548
549 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008). 549 Cluster cells using the Leiden algorithm (Traag et al, 2018), an improved version of the Louvain algorithm (Blondel et al, 2008).
550 550
551 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015. 551 The Louvain algorithm has been proposed for single-cell analysis by Levine et al, 2015.
552 552
553 More details on the `scanpy documentation 553 More details on the `tl.leiden scanpy documentation
554 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.leiden.html>`_ 554 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.leiden.html>`_
555 555
556 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca` 556 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `pp.pca`
557 ============================================================================================================ 557 ============================================================================================================
558 558
559 @CMD_pca_outputs@ 559 @CMD_pca_outputs@
560 560
561 More details on the `scanpy documentation 561 More details on the `pp.pca scanpy documentation
562 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.pp.pca.html>`__ 562 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.pp.pca.html>`__
563 563
564 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca` 564 Computes PCA (principal component analysis) coordinates, loadings and variance decomposition, using `tl.pca`
565 ============================================================================================================ 565 ============================================================================================================
566 566
567 @CMD_pca_outputs@ 567 @CMD_pca_outputs@
568 568
569 More details on the `scanpy documentation 569 More details on the `tl.pca scanpy documentation
570 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.pca.html>`__ 570 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.pca.html>`__
571 571
572 Diffusion Maps, using `tl.diffmap` 572 Diffusion Maps, using `tl.diffmap`
573 ================================== 573 ==================================
574 574
575 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell 575 Diffusion maps (Coifman et al 2005) has been proposed for visualizing single-cell
586 586
587 The diffusion map representation of data are added to the return AnnData in the multi-dimensional 587 The diffusion map representation of data are added to the return AnnData in the multi-dimensional
588 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors 588 observations annotation (obsm). It is the right eigen basis of the transition matrix with eigenvectors
589 as colum. It can be accessed using the inspect tool for AnnData 589 as colum. It can be accessed using the inspect tool for AnnData
590 590
591 More details on the `scanpy documentation 591 More details on the `tl.diffmap scanpy documentation
592 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.diffmap.html>`__ 592 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.diffmap.html>`__
593 593
594 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne` 594 t-distributed stochastic neighborhood embedding (tSNE), using `tl.tsne`
595 ======================================================================= 595 =======================================================================
596 596
597 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been 597 t-distributed stochastic neighborhood embedding (tSNE) (Maaten et al, 2008) has been
598 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default, 598 proposed for visualizating single-cell data by (Amir et al, 2013). Here, by default,
599 we use the implementation of *scikit-learn* (Pedregosa et al, 2011). 599 we use the implementation of *scikit-learn* (Pedregosa et al, 2011).
600 600
601 It returns `X_tsne`, tSNE coordinates of data. 601 It returns `X_tsne`, tSNE coordinates of data.
602 602
603 More details on the `scanpy documentation 603 More details on the `tl.tsne scanpy documentation
604 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.tsne.html>`__ 604 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.tsne.html>`__
605 605
606 Embed the neighborhood graph using UMAP, using `tl.umap` 606 Embed the neighborhood graph using UMAP, using `tl.umap`
607 ======================================================== 607 ========================================================
608 608
609 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning 609 UMAP (Uniform Manifold Approximation and Projection) is a manifold learning
618 <https://doi.org/10.1101/298430>`__. 618 <https://doi.org/10.1101/298430>`__.
619 619
620 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional 620 The UMAP coordinates of data are added to the return AnnData in the multi-dimensional
621 observations annotation (obsm). This data is accessible using the inspect tool for AnnData 621 observations annotation (obsm). This data is accessible using the inspect tool for AnnData
622 622
623 More details on the `scanpy documentation 623 More details on the `tl.umap scanpy documentation
624 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.umap.html>`__ 624 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.umap.html>`__
625 625
626 Force-directed graph drawing, using `tl.draw_graph` 626 Force-directed graph drawing, using `tl.draw_graph`
627 =================================================== 627 ===================================================
628 628
629 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs. 629 Force-directed graph drawing describes a class of long-established algorithms for visualizing graphs.
637 The default layout (ForceAtlas2) uses the package fa2. 637 The default layout (ForceAtlas2) uses the package fa2.
638 638
639 The coordinates of graph layout are added to the return AnnData in the multi-dimensional 639 The coordinates of graph layout are added to the return AnnData in the multi-dimensional
640 observations annotation (obsm). This data is accessible using the inspect tool for AnnData. 640 observations annotation (obsm). This data is accessible using the inspect tool for AnnData.
641 641
642 More details on the `scanpy documentation 642 More details on the `tl.draw_graph scanpy documentation
643 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.draw_graph.html>`__ 643 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.draw_graph.html>`__
644 644
645 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) 645 Infer progression of cells through geodesic distance along the graph (`tl.dpt`)
646 =============================================================================== 646 ===============================================================================
647 647
648 Reconstruct the progression of a biological process from snapshot 648 Reconstruct the progression of a biological process from snapshot
667 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. 667 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process.
668 668
669 The tool is similar to the R package `destiny` of Angerer et al (2016). 669 The tool is similar to the R package `destiny` of Angerer et al (2016).
670 670
671 More details on the `tl.dpt scanpy documentation 671 More details on the `tl.dpt scanpy documentation
672 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.dpt.html>`_ 672 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.dpt.html>`_
673 673
674 674
675 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) 675 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`)
676 ======================================================================================= 676 =======================================================================================
677 677
698 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree) 698 - Adjacency matrix of the tree-like subgraph that best explains the topology (connectivities_tree)
699 699
700 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects 700 These datasets are stored in the unstructured annotation (uns) and can be accessed using the inspect tool for AnnData objects
701 701
702 More details on the `tl.paga scanpy documentation 702 More details on the `tl.paga scanpy documentation
703 <https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.tl.paga.html>`_ 703 <https://icb-scanpy.readthedocs-hosted.com/en/@version@/api/scanpy.tl.paga.html>`_
704 ]]></help> 704 ]]></help>
705 <expand macro="citations"/> 705 <expand macro="citations"/>
706 </tool> 706 </tool>