Mercurial > repos > iuc > scanpy_inspect
comparison inspect.xml @ 0:5d2e17328afe draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 92f85afaed0097d1879317a9f513093fce5481d6
author | iuc |
---|---|
date | Mon, 04 Mar 2019 10:15:38 -0500 |
parents | |
children | a755eaa1cc32 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5d2e17328afe |
---|---|
1 <tool id="scanpy_inspect" name="Inspect with scanpy" version="@galaxy_version@"> | |
2 <description></description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <expand macro="requirements"/> | |
7 <expand macro="version_command"/> | |
8 <command detect_errors="exit_code"><![CDATA[ | |
9 @CMD@ | |
10 ]]></command> | |
11 <configfiles> | |
12 <configfile name="script_file"><![CDATA[ | |
13 @CMD_imports@ | |
14 @CMD_read_inputs@ | |
15 | |
16 #if $method.method == "tl.paga" | |
17 sc.tl.paga( | |
18 adata=adata, | |
19 groups='$method.groups', | |
20 use_rna_velocity =$method.use_rna_velocity, | |
21 model='$method.model', | |
22 copy=False) | |
23 #elif $method.method == "tl.dpt" | |
24 sc.tl.dpt( | |
25 adata=adata, | |
26 n_dcs=$method.n_dcs, | |
27 n_branchings=$method.n_branchings, | |
28 min_group_size=$method.min_group_size, | |
29 allow_kendall_tau_shift=$method.allow_kendall_tau_shift, | |
30 copy=False) | |
31 adata.obs.to_csv('$obs', sep='\t') | |
32 #end if | |
33 | |
34 @CMD_anndata_write_outputs@ | |
35 ]]></configfile> | |
36 </configfiles> | |
37 <inputs> | |
38 <expand macro="inputs_anndata"/> | |
39 <conditional name="method"> | |
40 <param argument="method" type="select" label="Method used for plotting"> | |
41 <!--<option value="tl.paga_compare_paths">, using `tl.paga_compare_paths`</option>!--> | |
42 <!--<option value="tl.paga_degrees">, using `tl.paga_degrees`</option>!--> | |
43 <!--<option value="tl.paga_expression_entropies">, using `tl.paga_expression_entropies`</option>!--> | |
44 <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using `tl.paga`</option> | |
45 <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using `tl.dpt`</option> | |
46 </param> | |
47 <when value="tl.paga"> | |
48 <param argument="groups" type="text" value="louvain" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations (`adata.obs`)."/> | |
49 <param argument="use_rna_velocity" type="boolean" truevalue="False" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that `adata.uns` contains a directed single-cell graph with key `['velocyto_transitions']`. This feature might be subject to change in the future."/> | |
50 <param argument="model" type="select" label="PAGA connectivity model" help=""> | |
51 <option value="v1.2">v1.2</option> | |
52 <option value="v1.0">v1.0</option> | |
53 </param> | |
54 </when> | |
55 <when value="tl.dpt"> | |
56 <param argument="n_dcs" type="integer" min="0" value="10" label="Number of diffusion components to use" help=""/> | |
57 <param argument="n_branchings" type="integer" min="0" value="0" label="Number of branchings to detect" help=""/> | |
58 <param argument="min_group_size" type="float" min="0" value="0.01" label="Min group size" help="During recursive splitting of branches ('dpt groups') for `n_branchings` > 1, do not consider groups that contain less than `min_group_size` data points. If a float, `min_group_size` refers to a fraction of the total number of data points."/> | |
59 <param argument="allow_kendall_tau_shift" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Allow Kendal tau shift?" help="If a very small branch is detected upon splitting, shift away from maximum correlation in Kendall tau criterion of Haghverdi et al (2016) to stabilize the splitting."/> | |
60 </when> | |
61 </conditional> | |
62 <expand macro="anndata_output_format"/> | |
63 </inputs> | |
64 <outputs> | |
65 <expand macro="anndata_outputs"/> | |
66 <data name="obs" format="tabular" label="${tool.name} on ${on_string}: Observations annotation"> | |
67 <filter>method['method'] == 'tl.dpt'</filter> | |
68 </data> | |
69 </outputs> | |
70 <tests> | |
71 <test> | |
72 <conditional name="input"> | |
73 <param name="format" value="h5ad" /> | |
74 <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | |
75 </conditional> | |
76 <conditional name="method"> | |
77 <param name="method" value="tl.paga"/> | |
78 <param name="groups" value="paul15_clusters"/> | |
79 <param name="use_rna_velocity" value="False"/> | |
80 <param name="model" value="v1.2"/> | |
81 </conditional> | |
82 <param name="anndata_output_format" value="h5ad" /> | |
83 <assert_stdout> | |
84 <has_text_matching expression="sc.tl.paga"/> | |
85 <has_text_matching expression="groups='paul15_clusters'"/> | |
86 <has_text_matching expression="use_rna_velocity =False"/> | |
87 <has_text_matching expression="model='v1.2'"/> | |
88 </assert_stdout> | |
89 <output name="anndata_out_h5ad" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5" compare="sim_size"> | |
90 <assert_contents> | |
91 <has_h5_keys keys="X, obs, obsm, uns, var" /> | |
92 </assert_contents> | |
93 </output> | |
94 </test> | |
95 <test> | |
96 <conditional name="input"> | |
97 <param name="format" value="h5ad" /> | |
98 <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> | |
99 </conditional> | |
100 <conditional name="method"> | |
101 <param name="method" value="tl.dpt"/> | |
102 <param name="n_dcs" value="15"/> | |
103 <param name="n_branchings" value="1"/> | |
104 <param name="min_group_size" value="0.01"/> | |
105 <param name="allow_kendall_tau_shift" value="True"/> | |
106 </conditional> | |
107 <param name="anndata_output_format" value="h5ad" /> | |
108 <assert_stdout> | |
109 <has_text_matching expression="sc.tl.dpt"/> | |
110 <has_text_matching expression="n_dcs=15"/> | |
111 <has_text_matching expression="n_branchings=1"/> | |
112 <has_text_matching expression="min_group_size=0.01"/> | |
113 <has_text_matching expression="allow_kendall_tau_shift=True"/> | |
114 </assert_stdout> | |
115 <output name="anndata_out_h5ad" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5" compare="sim_size"> | |
116 <assert_contents> | |
117 <has_h5_keys keys="X, obs, obsm, uns, var" /> | |
118 </assert_contents> | |
119 </output> | |
120 <output name="obs" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.obs.tabular" compare="sim_size"/> | |
121 </test> | |
122 </tests> | |
123 <help><![CDATA[ | |
124 Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) | |
125 ======================================================================================= | |
126 | |
127 By quantifying the connectivity of partitions (groups, clusters) of the | |
128 single-cell graph, partition-based graph abstraction (PAGA) generates a much | |
129 simpler abstracted graph (*PAGA graph*) of partitions, in which edge weights | |
130 represent confidence in the presence of connections. By tresholding this | |
131 confidence in `paga`, a much simpler representation of data | |
132 can be obtained. | |
133 | |
134 The confidence can be interpreted as the ratio of the actual versus the | |
135 expected value of connetions under the null model of randomly connecting | |
136 partitions. We do not provide a p-value as this null model does not | |
137 precisely capture what one would consider "connected" in real data, hence it | |
138 strongly overestimates the expected value. See an extensive discussion of | |
139 this in Wolf et al (2017). | |
140 | |
141 Together with a random walk-based distance measure, this generates a partial | |
142 coordinatization of data useful for exploring and explaining its variation. | |
143 | |
144 More details on the `tl.paga scanpy documentation | |
145 <https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.paga.html#scanpy.api.tl.paga>`_ | |
146 | |
147 | |
148 Infer progression of cells through geodesic distance along the graph (`tl.dpt`) | |
149 =============================================================================== | |
150 | |
151 Reconstruct the progression of a biological process from snapshot | |
152 data. `Diffusion Pseudotime` has been introduced by Haghverdi et al (2016) and | |
153 implemented within Scanpy (Wolf et al, 2017). Here, we use a further developed | |
154 version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can | |
155 be run in a `hierarchical` mode by setting the parameter | |
156 `n_branchings>1`. We recommend, however, to only use | |
157 `tl.dpt` for computing pseudotime (`n_branchings=0`) and | |
158 to detect branchings via `paga`. For pseudotime, you need | |
159 to annotate your data with a root cell. | |
160 | |
161 This requires to run `pp.neighbors`, first. In order to | |
162 reproduce the original implementation of DPT, use `method=='gauss'` in | |
163 this. Using the default `method=='umap'` only leads to minor quantitative | |
164 differences, though. | |
165 | |
166 | |
167 If `n_branchings==0`, no field `dpt_groups` will be written. | |
168 | |
169 - dpt_pseudotime : Array of dim (number of samples) that stores the pseudotime of each cell, that is, the DPT distance with respect to the root cell. | |
170 - dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. | |
171 | |
172 The tool is similar to the R package `destiny` of Angerer et al (2016). | |
173 | |
174 More details on the `tl.dpt scanpy documentation | |
175 <https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.dpt.html#scanpy.api.tl.dpt>`_ | |
176 | |
177 ]]></help> | |
178 <expand macro="citations"/> | |
179 </tool> |