Mercurial > repos > iuc > scanpy_inspect
diff inspect.xml @ 0:5d2e17328afe draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scanpy/ commit 92f85afaed0097d1879317a9f513093fce5481d6
author | iuc |
---|---|
date | Mon, 04 Mar 2019 10:15:38 -0500 |
parents | |
children | a755eaa1cc32 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/inspect.xml Mon Mar 04 10:15:38 2019 -0500 @@ -0,0 +1,179 @@ +<tool id="scanpy_inspect" name="Inspect with scanpy" version="@galaxy_version@"> + <description></description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements"/> + <expand macro="version_command"/> + <command detect_errors="exit_code"><![CDATA[ +@CMD@ + ]]></command> + <configfiles> + <configfile name="script_file"><![CDATA[ +@CMD_imports@ +@CMD_read_inputs@ + +#if $method.method == "tl.paga" +sc.tl.paga( + adata=adata, + groups='$method.groups', + use_rna_velocity =$method.use_rna_velocity, + model='$method.model', + copy=False) +#elif $method.method == "tl.dpt" +sc.tl.dpt( + adata=adata, + n_dcs=$method.n_dcs, + n_branchings=$method.n_branchings, + min_group_size=$method.min_group_size, + allow_kendall_tau_shift=$method.allow_kendall_tau_shift, + copy=False) +adata.obs.to_csv('$obs', sep='\t') +#end if + +@CMD_anndata_write_outputs@ +]]></configfile> + </configfiles> + <inputs> + <expand macro="inputs_anndata"/> + <conditional name="method"> + <param argument="method" type="select" label="Method used for plotting"> + <!--<option value="tl.paga_compare_paths">, using `tl.paga_compare_paths`</option>!--> + <!--<option value="tl.paga_degrees">, using `tl.paga_degrees`</option>!--> + <!--<option value="tl.paga_expression_entropies">, using `tl.paga_expression_entropies`</option>!--> + <option value="tl.paga">Generate cellular maps of differentiation manifolds with complex topologies, using `tl.paga`</option> + <option value="tl.dpt">Infer progression of cells through geodesic distance along the graph, using `tl.dpt`</option> + </param> + <when value="tl.paga"> + <param argument="groups" type="text" value="louvain" label="Key for categorical in the input" help="You can pass your predefined groups by choosing any categorical annotation of observations (`adata.obs`)."/> + <param argument="use_rna_velocity" type="boolean" truevalue="False" falsevalue="False" checked="false" label="Use RNA velocity to orient edges in the abstracted graph and estimate transitions?" help="Requires that `adata.uns` contains a directed single-cell graph with key `['velocyto_transitions']`. This feature might be subject to change in the future."/> + <param argument="model" type="select" label="PAGA connectivity model" help=""> + <option value="v1.2">v1.2</option> + <option value="v1.0">v1.0</option> + </param> + </when> + <when value="tl.dpt"> + <param argument="n_dcs" type="integer" min="0" value="10" label="Number of diffusion components to use" help=""/> + <param argument="n_branchings" type="integer" min="0" value="0" label="Number of branchings to detect" help=""/> + <param argument="min_group_size" type="float" min="0" value="0.01" label="Min group size" help="During recursive splitting of branches ('dpt groups') for `n_branchings` > 1, do not consider groups that contain less than `min_group_size` data points. If a float, `min_group_size` refers to a fraction of the total number of data points."/> + <param argument="allow_kendall_tau_shift" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Allow Kendal tau shift?" help="If a very small branch is detected upon splitting, shift away from maximum correlation in Kendall tau criterion of Haghverdi et al (2016) to stabilize the splitting."/> + </when> + </conditional> + <expand macro="anndata_output_format"/> + </inputs> + <outputs> + <expand macro="anndata_outputs"/> + <data name="obs" format="tabular" label="${tool.name} on ${on_string}: Observations annotation"> + <filter>method['method'] == 'tl.dpt'</filter> + </data> + </outputs> + <tests> + <test> + <conditional name="input"> + <param name="format" value="h5ad" /> + <param name="adata" value="pp.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> + </conditional> + <conditional name="method"> + <param name="method" value="tl.paga"/> + <param name="groups" value="paul15_clusters"/> + <param name="use_rna_velocity" value="False"/> + <param name="model" value="v1.2"/> + </conditional> + <param name="anndata_output_format" value="h5ad" /> + <assert_stdout> + <has_text_matching expression="sc.tl.paga"/> + <has_text_matching expression="groups='paul15_clusters'"/> + <has_text_matching expression="use_rna_velocity =False"/> + <has_text_matching expression="model='v1.2'"/> + </assert_stdout> + <output name="anndata_out_h5ad" file="tl.paga.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5" compare="sim_size"> + <assert_contents> + <has_h5_keys keys="X, obs, obsm, uns, var" /> + </assert_contents> + </output> + </test> + <test> + <conditional name="input"> + <param name="format" value="h5ad" /> + <param name="adata" value="tl.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" /> + </conditional> + <conditional name="method"> + <param name="method" value="tl.dpt"/> + <param name="n_dcs" value="15"/> + <param name="n_branchings" value="1"/> + <param name="min_group_size" value="0.01"/> + <param name="allow_kendall_tau_shift" value="True"/> + </conditional> + <param name="anndata_output_format" value="h5ad" /> + <assert_stdout> + <has_text_matching expression="sc.tl.dpt"/> + <has_text_matching expression="n_dcs=15"/> + <has_text_matching expression="n_branchings=1"/> + <has_text_matching expression="min_group_size=0.01"/> + <has_text_matching expression="allow_kendall_tau_shift=True"/> + </assert_stdout> + <output name="anndata_out_h5ad" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.h5ad" ftype="h5" compare="sim_size"> + <assert_contents> + <has_h5_keys keys="X, obs, obsm, uns, var" /> + </assert_contents> + </output> + <output name="obs" file="tl.dpt.diffmap.neighbors_gauss_braycurtis.recipe_weinreb17.paul15_subsample.obs.tabular" compare="sim_size"/> + </test> + </tests> + <help><![CDATA[ +Generate cellular maps of differentiation manifolds with complex topologies (`tl.paga`) +======================================================================================= + +By quantifying the connectivity of partitions (groups, clusters) of the +single-cell graph, partition-based graph abstraction (PAGA) generates a much +simpler abstracted graph (*PAGA graph*) of partitions, in which edge weights +represent confidence in the presence of connections. By tresholding this +confidence in `paga`, a much simpler representation of data +can be obtained. + +The confidence can be interpreted as the ratio of the actual versus the +expected value of connetions under the null model of randomly connecting +partitions. We do not provide a p-value as this null model does not +precisely capture what one would consider "connected" in real data, hence it +strongly overestimates the expected value. See an extensive discussion of +this in Wolf et al (2017). + +Together with a random walk-based distance measure, this generates a partial +coordinatization of data useful for exploring and explaining its variation. + +More details on the `tl.paga scanpy documentation +<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.paga.html#scanpy.api.tl.paga>`_ + + +Infer progression of cells through geodesic distance along the graph (`tl.dpt`) +=============================================================================== + +Reconstruct the progression of a biological process from snapshot +data. `Diffusion Pseudotime` has been introduced by Haghverdi et al (2016) and +implemented within Scanpy (Wolf et al, 2017). Here, we use a further developed +version, which is able to deal with disconnected graphs (Wolf et al, 2017) and can +be run in a `hierarchical` mode by setting the parameter +`n_branchings>1`. We recommend, however, to only use +`tl.dpt` for computing pseudotime (`n_branchings=0`) and +to detect branchings via `paga`. For pseudotime, you need +to annotate your data with a root cell. + +This requires to run `pp.neighbors`, first. In order to +reproduce the original implementation of DPT, use `method=='gauss'` in +this. Using the default `method=='umap'` only leads to minor quantitative +differences, though. + + +If `n_branchings==0`, no field `dpt_groups` will be written. + +- dpt_pseudotime : Array of dim (number of samples) that stores the pseudotime of each cell, that is, the DPT distance with respect to the root cell. +- dpt_groups : Array of dim (number of samples) that stores the subgroup id ('0','1', ...) for each cell. The groups typically correspond to 'progenitor cells', 'undecided cells' or 'branches' of a process. + +The tool is similar to the R package `destiny` of Angerer et al (2016). + +More details on the `tl.dpt scanpy documentation +<https://scanpy.readthedocs.io/en/latest/api/scanpy.api.tl.dpt.html#scanpy.api.tl.dpt>`_ + + ]]></help> + <expand macro="citations"/> +</tool> \ No newline at end of file