Mercurial > repos > iuc > scater_normalize
view scater-plot-dist-scatter.R @ 1:946179ef029c draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 61f3899168453092fd25691cf31871a3a350fd3b"
author | iuc |
---|---|
date | Tue, 03 Sep 2019 14:28:53 -0400 |
parents | 87757f7b9974 |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # Plot the distribution of read counts and feature counts, side by side, then a scatter plot of read counts vs feature counts below # Load optparse we need to check inputs library(optparse) library(workflowscriptscommon) library(LoomExperiment) library(scater) library(ggpubr) library(scales) # parse options option_list = list( make_option( c("-i", "--input-loom"), action = "store", default = NA, type = 'character', help = "A SingleCellExperiment object file in Loom format." ), make_option( c("-o", "--output-plot-file"), action = "store", default = NA, type = 'character', help = "Path of the PDF output file to save plot to." ), make_option( c("-l", "--log-scale"), action="store_true", default=FALSE, type = 'logical', help = "Plot on log scale (recommended for large datasets)." ) ) opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file', 'log_scale')) # Check parameter values if ( ! file.exists(opt$input_loom)){ stop((paste('File', opt$input_loom, 'does not exist'))) } # Input from Loom format scle <- import(opt$input_loom, format='loom', type='SingleCellLoomExperiment') #do the scatter plot of reads vs genes total_counts <- scle$total_counts total_features <- scle$total_features_by_counts count_feats <- cbind(total_counts, total_features) cf_dm <- as.data.frame(count_feats) # Calculate binwidths for reads and features plots. Use 20 bins read_bins <- max(total_counts / 1e6) / 20 feat_bins <- max(total_features) / 20 # Make the plots plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + ylab("Feature count") + ggtitle("Scatterplot of reads vs features") plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) if (! opt$log_scale){ final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) ggsave(opt$output_plot_file, final_plot, device="pdf") } else { plot_log_both <- plot + scale_x_continuous(trans = 'log10') + scale_y_continuous(trans = 'log10') plot1_log <- plot1 + scale_y_continuous(trans = 'log10') plot2_log <- plot2 + scale_y_continuous(trans = 'log10') plot3_log <- plot3 + scale_y_log10(labels=number) final_plot_log <- ggarrange(plot1_log, plot2_log, plot_log_both, plot3_log, ncol=2, nrow=2) ggsave(opt$output_plot_file, final_plot_log, device="pdf") }