Mercurial > repos > iuc > scater_plot_dist_scatter
comparison scater-plot-dist-scatter.R @ 1:2e41b35b5bdd draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 61f3899168453092fd25691cf31871a3a350fd3b"
author | iuc |
---|---|
date | Tue, 03 Sep 2019 14:25:32 -0400 |
parents | 4887c4c69847 |
children | 81e5bdff4853 |
comparison
equal
deleted
inserted
replaced
0:4887c4c69847 | 1:2e41b35b5bdd |
---|---|
7 library(optparse) | 7 library(optparse) |
8 library(workflowscriptscommon) | 8 library(workflowscriptscommon) |
9 library(LoomExperiment) | 9 library(LoomExperiment) |
10 library(scater) | 10 library(scater) |
11 library(ggpubr) | 11 library(ggpubr) |
12 library(scales) | |
12 | 13 |
13 # parse options | 14 # parse options |
14 | 15 |
15 option_list = list( | 16 option_list = list( |
16 make_option( | 17 make_option( |
24 c("-o", "--output-plot-file"), | 25 c("-o", "--output-plot-file"), |
25 action = "store", | 26 action = "store", |
26 default = NA, | 27 default = NA, |
27 type = 'character', | 28 type = 'character', |
28 help = "Path of the PDF output file to save plot to." | 29 help = "Path of the PDF output file to save plot to." |
30 ), | |
31 make_option( | |
32 c("-l", "--log-scale"), | |
33 action="store_true", | |
34 default=FALSE, | |
35 type = 'logical', | |
36 help = "Plot on log scale (recommended for large datasets)." | |
29 ) | 37 ) |
30 ) | 38 ) |
31 | 39 |
32 opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file')) | 40 opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file', 'log_scale')) |
33 | 41 |
34 # Check parameter values | 42 # Check parameter values |
35 | 43 |
36 if ( ! file.exists(opt$input_loom)){ | 44 if ( ! file.exists(opt$input_loom)){ |
37 stop((paste('File', opt$input_loom, 'does not exist'))) | 45 stop((paste('File', opt$input_loom, 'does not exist'))) |
49 | 57 |
50 # Calculate binwidths for reads and features plots. Use 20 bins | 58 # Calculate binwidths for reads and features plots. Use 20 bins |
51 read_bins <- max(total_counts / 1e6) / 20 | 59 read_bins <- max(total_counts / 1e6) / 20 |
52 feat_bins <- max(total_features) / 20 | 60 feat_bins <- max(total_features) / 20 |
53 | 61 |
54 #make the plots | 62 # Make the plots |
55 plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + | 63 plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + |
56 ylab("Feature count") + ggtitle("Scatterplot of reads vs features") | 64 ylab("Feature count") + ggtitle("Scatterplot of reads vs features") |
57 plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") | 65 plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") |
58 plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") | 66 plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") |
59 plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) | 67 plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) |
60 | 68 |
61 final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) | 69 if (! opt$log_scale){ |
62 ggsave(opt$output_plot_file, final_plot, device="pdf") | 70 final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) |
71 ggsave(opt$output_plot_file, final_plot, device="pdf") | |
72 } else { | |
73 plot_log_both <- plot + scale_x_continuous(trans = 'log10') + scale_y_continuous(trans = 'log10') | |
74 plot1_log <- plot1 + scale_y_continuous(trans = 'log10') | |
75 plot2_log <- plot2 + scale_y_continuous(trans = 'log10') | |
76 plot3_log <- plot3 + scale_y_log10(labels=number) | |
77 final_plot_log <- ggarrange(plot1_log, plot2_log, plot_log_both, plot3_log, ncol=2, nrow=2) | |
78 ggsave(opt$output_plot_file, final_plot_log, device="pdf") | |
79 } |