Mercurial > repos > iuc > scater_plot_pca
comparison scater-plot-dist-scatter.R @ 0:bea3359ba852 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 5fdcafccb6c645d301db040dfeed693d7b6b4278
author | iuc |
---|---|
date | Thu, 18 Jul 2019 11:11:45 -0400 |
parents | |
children | 46fc6751d746 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:bea3359ba852 |
---|---|
1 #!/usr/bin/env Rscript | |
2 | |
3 # Plot the distribution of read counts and feature counts, side by side, then a scatter plot of read counts vs feature counts below | |
4 | |
5 # Load optparse we need to check inputs | |
6 | |
7 library(optparse) | |
8 library(workflowscriptscommon) | |
9 library(LoomExperiment) | |
10 library(scater) | |
11 library(ggpubr) | |
12 | |
13 # parse options | |
14 | |
15 option_list = list( | |
16 make_option( | |
17 c("-i", "--input-loom"), | |
18 action = "store", | |
19 default = NA, | |
20 type = 'character', | |
21 help = "A SingleCellExperiment object file in Loom format." | |
22 ), | |
23 make_option( | |
24 c("-o", "--output-plot-file"), | |
25 action = "store", | |
26 default = NA, | |
27 type = 'character', | |
28 help = "Path of the PDF output file to save plot to." | |
29 ) | |
30 ) | |
31 | |
32 opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file')) | |
33 | |
34 # Check parameter values | |
35 | |
36 if ( ! file.exists(opt$input_loom)){ | |
37 stop((paste('File', opt$input_loom, 'does not exist'))) | |
38 } | |
39 | |
40 # Input from Loom format | |
41 | |
42 scle <- import(opt$input_loom, format='loom', type='SingleCellLoomExperiment') | |
43 | |
44 #do the scatter plot of reads vs genes | |
45 total_counts <- scle$total_counts | |
46 total_features <- scle$total_features_by_counts | |
47 count_feats <- cbind(total_counts, total_features) | |
48 cf_dm <- as.data.frame(count_feats) | |
49 | |
50 # Calculate binwidths for reads and features plots. Use 20 bins | |
51 read_bins <- max(total_counts / 1e6) / 20 | |
52 feat_bins <- max(total_features) / 20 | |
53 | |
54 #make the plots | |
55 plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + | |
56 ylab("Feature count") + ggtitle("Scatterplot of reads vs features") | |
57 plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") | |
58 plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") | |
59 plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) | |
60 | |
61 final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) | |
62 ggsave(opt$output_plot_file, final_plot, device="pdf") |