Mercurial > repos > iuc > scater_plot_pca
diff scater-plot-dist-scatter.R @ 2:9e5c0bb18d08 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 154318f74839a4481c7c68993c4fb745842c4cce"
author | iuc |
---|---|
date | Thu, 09 Sep 2021 12:23:55 +0000 |
parents | 46fc6751d746 |
children |
line wrap: on
line diff
--- a/scater-plot-dist-scatter.R Tue Sep 03 14:29:30 2019 -0400 +++ b/scater-plot-dist-scatter.R Thu Sep 09 12:23:55 2021 +0000 @@ -13,45 +13,45 @@ # parse options -option_list = list( +option_list <- list( make_option( c("-i", "--input-loom"), action = "store", default = NA, - type = 'character', + type = "character", help = "A SingleCellExperiment object file in Loom format." ), make_option( c("-o", "--output-plot-file"), action = "store", default = NA, - type = 'character', + type = "character", help = "Path of the PDF output file to save plot to." ), make_option( c("-l", "--log-scale"), - action="store_true", - default=FALSE, - type = 'logical', + action = "store_true", + default = FALSE, + type = "logical", help = "Plot on log scale (recommended for large datasets)." ) ) -opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file', 'log_scale')) +opt <- wsc_parse_args(option_list, mandatory = c("input_loom", "output_plot_file")) # Check parameter values -if ( ! file.exists(opt$input_loom)){ - stop((paste('File', opt$input_loom, 'does not exist'))) +if (! file.exists(opt$input_loom)) { + stop((paste("File", opt$input_loom, "does not exist"))) } -# Input from Loom format +# Filter out unexpressed features -scle <- import(opt$input_loom, format='loom', type='SingleCellLoomExperiment') +sce <- import(opt$input_loom, format = "loom", type = "SingleCellLoomExperiment") -#do the scatter plot of reads vs genes -total_counts <- scle$total_counts -total_features <- scle$total_features_by_counts +# Do the scatter plot of reads vs genes +total_counts <- sce$total +total_features <- sce$detected count_feats <- cbind(total_counts, total_features) cf_dm <- as.data.frame(count_feats) @@ -59,21 +59,20 @@ read_bins <- max(total_counts / 1e6) / 20 feat_bins <- max(total_features) / 20 -# Make the plots -plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + - ylab("Feature count") + ggtitle("Scatterplot of reads vs features") -plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") -plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") -plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) +plot1 <- qplot(total_counts / 1e6, geom = "histogram", binwidth = read_bins, ylab = "Number of cells", xlab = "Read counts (millions)", fill = I("darkseagreen3")) + ggtitle("Read counts per cell") +plot2 <- qplot(total_features, geom = "histogram", binwidth = feat_bins, ylab = "Number of cells", xlab = "Feature counts", fill = I("darkseagreen3")) + ggtitle("Feature counts per cell") +plot3 <- ggplot(cf_dm, aes(x = total_counts / 1e6, y = total_features)) + geom_point(shape = 1) + geom_smooth() + xlab("Read count (millions)") + + ylab("Feature count") + ggtitle("Scatterplot of reads vs features") +plot4 <- plotColData(sce, y = "subsets_Mito_percent", x = "detected") + ggtitle("% MT genes") + geom_point(shape = 1) + theme(text = element_text(size = 15)) + theme(plot.title = element_text(size = 15)) + xlab("Total features") + ylab("% MT") -if (! opt$log_scale){ - final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) - ggsave(opt$output_plot_file, final_plot, device="pdf") +if (! opt$log_scale) { + final_plot <- ggarrange(plot1, plot2, plot3, plot4, ncol = 2, nrow = 2) + ggsave(opt$output_plot_file, final_plot, device = "pdf") } else { - plot_log_both <- plot + scale_x_continuous(trans = 'log10') + scale_y_continuous(trans = 'log10') - plot1_log <- plot1 + scale_y_continuous(trans = 'log10') - plot2_log <- plot2 + scale_y_continuous(trans = 'log10') - plot3_log <- plot3 + scale_y_log10(labels=number) - final_plot_log <- ggarrange(plot1_log, plot2_log, plot_log_both, plot3_log, ncol=2, nrow=2) - ggsave(opt$output_plot_file, final_plot_log, device="pdf") + plot1_log <- plot1 + scale_x_continuous(trans = "log10") + scale_y_continuous(trans = "log10") + plot2_log <- plot2 + scale_y_continuous(trans = "log10") + plot3_log <- plot3 + scale_y_continuous(trans = "log10") + plot4_log <- plot4 + scale_y_log10(labels = number) + final_plot_log <- ggarrange(plot1_log, plot2_log, plot3_log, plot4_log, ncol = 2, nrow = 2) + ggsave(opt$output_plot_file, final_plot_log, device = "pdf") }