diff seurat.R @ 0:8d8412d35247 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/seurat commit 24c0223b9baa6d59bba381ef94f7e77b1c204d80
author iuc
date Sun, 26 Aug 2018 16:24:02 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/seurat.R	Sun Aug 26 16:24:02 2018 -0400
@@ -0,0 +1,116 @@
+options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
+
+# we need that to not crash galaxy with an UTF8 error on German LC settings.
+loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
+
+suppressPackageStartupMessages({
+    library(Seurat)
+    library(SingleCellExperiment)
+    library(dplyr)
+    library(optparse)
+})
+
+option_list <- list(
+    make_option(c("-counts","--counts"), type="character", help="Counts file"),
+    make_option(c("-numPCs","--numPCs"), type="integer", help="Number of PCs to use in plots"),
+    make_option(c("-min.cells","--min.cells"), type="integer", help="Minimum cells to include"),
+    make_option(c("-min.genes","--min.genes"), type="integer", help="Minimum genes to include"),
+    make_option(c("-low.thresholds","--low.thresholds"), type="double", help="Low threshold for filtering cells"),
+    make_option(c("-high.thresholds","--high.thresholds"), type="double", help="High threshold for filtering cells"),
+    make_option(c("-x.low.cutoff","--x.low.cutoff"), type="double", help="X-axis low cutoff for variable genes"),
+    make_option(c("-x.high.cutoff","--x.high.cutoff"), type="double", help="X-axis high cutoff for variable genes"),
+    make_option(c("-y.cutoff","--y.cutoff"), type="double", help="Y-axis cutoff for variable genes"),
+    make_option(c("-cells.use","--cells.use"), type="integer", help="Cells to use for PCHeatmap"),
+    make_option(c("-resolution","--resolution"), type="double", help="Resolution in FindClusters"),
+    make_option(c("-min.pct","--min.pct"), type="double", help="Minimum percent cells in FindClusters"),
+    make_option(c("-logfc.threshold","--logfc.threshold"), type="double", help="LogFC threshold in FindClusters"),
+    make_option(c("-rds","--rds"), type="logical", help="Output Seurat RDS object")
+  )
+
+parser <- OptionParser(usage = "%prog [options] file", option_list=option_list)
+args = parse_args(parser)
+
+counts <- read.delim(args$counts, row.names=1)
+seuset <- CreateSeuratObject(raw.data = counts, min.cells = args$min.cells, min.genes = args$min.cells)
+
+# Open PDF for plots
+pdf("out.pdf")
+
+VlnPlot(object = seuset, features.plot = c("nGene", "nUMI"), nCol = 2)
+GenePlot(object = seuset, gene1 = "nUMI", gene2 = "nGene")
+
+print("Filtering cells")
+if (!is.null(args$low.thresholds)){
+    lowthresh <- args$low.thresholds
+} else {
+    lowthresh <- "-Inf"
+}
+if (!is.null(args$high.thresholds)){
+    highthresh <- args$high.thresholds
+} else {
+    highthresh <- "Inf"
+}
+seuset <- FilterCells(object = seuset, subset.names = c("nUMI"), 
+    low.thresholds=c(lowthresh), high.thresholds = c(highthresh))
+
+print("Normalizing the data")
+seuset <- NormalizeData(object = seuset, normalization.method = "LogNormalize", 
+    scale.factor = 10000)
+
+print("Finding variable genes")
+seuset <- FindVariableGenes(object = seuset, mean.function = ExpMean, 
+    dispersion.function = LogVMR, 
+    x.low.cutoff = args$x.low.cutoff, 
+    x.high.cutoff = args$x.high.cutoff,,
+    y.cutoff = args$y.cutoff
+)
+
+print("Scaling the data and removing unwanted sources of variation")
+seuset <- ScaleData(object = seuset, vars.to.regress = c("nUMI"))
+
+print("Performing PCA analysis")
+seuset <- RunPCA(object = seuset, pc.genes = seuset@var.genes)
+VizPCA(object = seuset, pcs.use = 1:2)
+PCAPlot(object = seuset, dim.1 = 1, dim.2 = 2)
+PCHeatmap(
+    object = seuset, 
+    pc.use = 1:args$numPCs, 
+    cells.use = args$cell.use, 
+    do.balanced = TRUE, 
+    label.columns = FALSE,
+    use.full = FALSE
+)
+
+print("Determining statistically significant principal components")
+seuset <- JackStraw(object = seuset, num.replicate = 100, display.progress= FALSE)
+JackStrawPlot(object = seuset, PCs = 1:args$numPCs)
+PCElbowPlot(object = seuset)
+
+print("Clustering the cells")
+seuset <- FindClusters(
+    object = seuset, 
+    reduction.type = "pca", 
+    dims.use = 1:args$numPCs, 
+    resolution = args$resolution,
+    print.output = 0, 
+    save.SNN = TRUE
+)
+
+print("Running non-linear dimensional reduction (tSNE)")
+seuset <- RunTSNE(object = seuset, dims.use = 1:args$numPCs, do.fast = TRUE)
+TSNEPlot(object = seuset)
+
+print("Finding differentially expressed genes (cluster biomarkers)")
+markers <- FindAllMarkers(object = seuset, only.pos = TRUE, min.pct = args$min.pct,
+    logfc.threshold = args$logfc.threshold)
+top10 <- markers %>% group_by(cluster) %>% top_n(10, avg_logFC)
+DoHeatmap(object = seuset, genes.use = top10$gene, slim.col.label = TRUE, remove.key = TRUE)
+
+# Close PDF for plots
+dev.off()
+
+if (!is.null(args$rds) ) {
+  saveRDS(seuset, "Seurat.rds")
+}
+
+sessionInfo()
\ No newline at end of file